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Abstract. A code X is (>k)-circular if any concatenation of at most k words from X, when read
on a circle, admits exactly one partition into words from X. A code that is (>k)-circular for all
integers k is said to be circular. Any code is (>0)-circular and a code of trinucleotides is circular
as soon as it is (>4)-circular. A code is k-circular if it is (>k)-circular and not (>k + 1)-circular.
The theoretical aspects of trinucleotide k-circular codes have been developed in a companion
article [Michel, C.J., Mouillon, B., Sereni, J.-S., Trinucleotide k-circular codes I: theory, submitted
for publication].

Trinucleotide circular codes always retrieve the reading frame, leaving no ambiguous sequences.
On the contrary, trinucleotide k-circular codes, for k ∈ {0, 1, 2, 3} all have ambiguous sequences,
for which the reading frame cannot always be retrieved. However, such a trinucleotide k-circular
code is still able to retrieve the reading frame for a number of sequences, thereby exhibiting a
partial circularity property. We describe this combinatorial property for each class of trinucleotide
k-circular codes with k ∈ {0, 1, 2, 3}. The circularity, i.e. the reading frame retrieval, is an ordinary
property in genes. In order to consider the different cases of ambiguous sequences, we derive a new
and general formula to measure the reading frame loss, whatever the trinucleotide k-circular code.
This formula allows us to study the evolution of any trinucleotide k-circular code of (maximal)
cardinality 20 to the genetic code, based on the reading frame retrieval property. We applied this
approach to analyse the evolution of the trinucleotide circular code X observed in genes to the
genetic code.

The (>1)-circular codes of maximal size 20 necessarily have the same number of each nucleotide,
specifically 15 = 3 · 20/4. This balanceness property can also be achieved by trinucleotide codes
of cardinality 4, 8, 12 and 16. We call such trinucleotide codes balanced. We develop a general
mathematical method to compute the number of balanced trinucleotide codes of each size, which
also applies to self-complementary trinucleotide codes. We establish and quantify a relation
between this balanceness property and the self-complementarity property.

The combinatorial hierarchy of trinucleotide k-circular codes is updated with the growth
function results. The numbers of amino acids coded by the maximal, minimal, self-complementary
trinucleotide k- or (k, k, k)-circular codes are given.
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1. Introduction

In 1996, a statistical computation of the 64 trinucleotides in each of the three frames of genes of
bacteria and eukaryotes (2 ·3 ·64 = 384 trinucleotides analysed) identifies, by a simple inspection, 20
trinucleotides which occur preferentially in reading frames compared to the two shifted frames [1].
Furthermore, this set X of 20 trinucleotides is a maximal C3 self-complementary circular code [1]:

X = {AAC, GTT, AAT, ATT, ACC, GGT, ATC, GAT, CAG, CTG,(1.1)

CTC, GAG, GAA, TTC, GAC, GTC, GCC, GGC, GTA, TAC}.

The circular code X (1.1) is also identified in genes of archaea, plasmids and viruses, in addition to
bacteria and eukaryotes, and by two different statistical approaches [8,9]. The historical context
of this result is described in a recent article [10]. We also refer the reader to the reviews [4,7]
for the biological context and the main combinatorial studies of circular codes. The necessary
definitions and theorems will be recalled here.
Motifs from the circular code X (1.1), called X-motifs, are significantly enriched in the genes
of most organisms, from bacteria to eukaryotes [2,11]. However, these X-motifs that retrieve
the reading frame in genes are discontinuous and separated by motifs that are unable to retrieve
the reading frame. The k-circular codes, in particular trinucleotide k-circular codes, have the
mathematical property to generate both motifs that retrieve and motifs that do not retrieve the
reading frame in genes.
The necessary definitions and notations are gathered in Section 2, and they follow those in the
companion article [12], which details the theoretical aspects.
In Subsection 3.1, we develop a method, based on graph theory, to explicitly determine all
ambiguous sequences for a given trinucleotide k-circular code. We then apply the method to the
classes of trinucleotide k-circular codes in Subsection 3.2, which allows us to design new rules to
retrieve the reading frame in genes.
In Section 4, we show that the circularity property (reading frame retrieval) is actually an
ordinary property: all the trinucleotide codes can be classified into three classes, corresponding
to “no circularity”, “partial circularity” and “complete circularity”. As it turns out, every self-
complementary trinucleotide k-circular code has at least a partial circularity property, and every
trinucleotide k-circular code of cardinality at least 4 also has at least a partial circularity property,
and hence in particular the genetic code.
In Subsection 5.1, we derive a new and general formula to measure the reading frame loss, whatever
the trinucleotide k-circular code. We apply it in Subsection 5.2 to propose an evolutionary model
of the trinucleotide circular code X observed in genes to the genetic code.
In Section 6.1, we study a newly introduced and interesting property: the balanceness of trinu-
cleotide codes, which we relate to the circularity and self-complementarity properties. After having
explained why all trinucleotide (>1)-circular codes of maximal size 20 are balanced, we develop
in Subsection 6.2 a general method based on linear algebra to compute the number of balanced
trinucleotide codes of each size, which also applies to self-complementary trinucleotide codes. We
exhibit and quantify the relation with self-complementarity in Subsection 6.3.
In Section 7, we update the hierarchy of trinucleotide k-circular codes.
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In Section 8, we perform an in-depth study of the amino acids coded by the maximal, minimal, self-
complementary trinucleotide k- or (k, k, k)-circular codes. For each class, the maximum numbers
of amino acids coded are determined and the list of corresponding trinucleotide codes is explicitly
given. Interestingly, this maximum number for a class is not always attained by the trinucleotide
codes of maximal cardinality (within the class).

2. Definitions and notations

For the reader’s convenience we here recall the most relevant notions, in order to have this
article self-contained. The theoretical aspects, with computer results, proofs, examples, remarks,
illustrations and refinements are found in the companion article [12].
We work with the genetic alphabet B := {A, C, G, T}, which has cardinality 4. An element N of B is
called nucleotide. A word over the genetic alphabet is a sequence of nucleotides. A trinucleotide is
a sequence of three nucleotides, that is, an element of B3 using the standard word-theory notation.
If w = N1 · · ·Ns and w′ = N ′1 · · ·N ′t are two sequences of nucleotides of respective lengths s and t,
then the concatenation w · w′ of w and w′ is the sequence N1 · · ·NsN ′1 · · ·N ′t composed of s + t

nucleotides.
Given a sequence w = N1N2 · · ·Ns ∈ Bs and an integer j ∈ {0, 1, . . . , s− 1}, the circular j-shift
of w is the word Nj+1 · · ·NsN1 · · ·Nj . Note that the circular 0-shift of w is w itself. A sequence w′

of nucleotides is a circular shift of w if w′ is the circular j-shift of w for some j ∈ {0, 1, . . . , s− 1}.
The elements in B3 can thus be partitioned into conjugacy classes, where the conjugacy class of a
trinucleotide w ∈ B3 is the set of all circular shifts of w.

Definition 2.1. Let B be the genetic alphabet.
• A trinucleotide code is a subset of B3, that is, a set of trinucleotides.
• If X is a trinucleotide code and w is a sequence of nucleotides, then an X-decomposition
of w is a tuple (x1, . . . , xt) ∈ Xt of trinucleotides from X such that w = x1 · x2 · · ·xt.

We now formally define the notion of circularity of a code.

Definition 2.2. Let X ⊆ B3 be a trinucleotide code.
• Let m be a positive integer and let (x1, . . . , xm) ∈ Xm be an m-tuple of trinucleotides
from X. A circular X-decomposition of the concatenation c := x1 · · ·xm is an X-
decomposition of a circular shift of c.
• Let k be a non-negative integer. The code X is (>k)-circular if for every m ∈ {1, . . . , k}
and each m-tuple (x1, . . . , xm) of trinucleotides from X, the concatenation x1 · · ·xm

admits a unique circular X-decomposition. Note that every trinucleotide code is trivially
(>0)-circular. The code X is k-circular if X is (>k)-circular and not (>k + 1)-circular.
• The code X is circular if it is (>k)-circular for all k ∈ N.

We recall the definition of the graph associated to a trinucleotide code [3].

Definition 2.3. Let X ⊆ B3 be a trinucleotide code. We define a graph G(X) = (V (X), E(X))
with set of vertices V (X) and set of arcs E(X) as follows:

• V (X) :=
⋃

N1N2N3∈X

{N1, N3, N1N2, N2N3}; and
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• E(X) := {N1 → N2N3 : N1N2N3 ∈ X} ∪ {N1N2 → N3 : N1N2N3 ∈ X}.
The graph G(X) is the graph associated to X.

The length of a directed cycle in a graph G is the number of arcs of the cycle. We note that,
since every arc of G(X) joins a nucleotide and a dinucleotide; in particular the graph G(X)
cannot contain a directed cycle of odd length. As explained in the companion article [12], a
theorem [5, Theorem 3.3] implies that a cycle in G(X), if any, must be have length in {2, 4, 6, 8}
and, in particular, that a trinucleotide (>4)-circular code must be circular. It follows that all
trinucleotide codes over B can be naturally partitioned into 5 classes using the following definition.

Definition 2.4. We define the circularity cir(X) of a non-empty trinucleotide code X to be the
largest integer k ∈ {0, 1, 2, 3, 4} such that X is (>k)-circular.

Thus, the possible values of cir(X) for a trinucleotide code X are 0, 1, 2, 3, 4, which determine
the 5 classes.

3. Ambiguous sequences determined from the graph associated to a trinucleotide
k-circular code

We show in this section how all sequences are ambiguous for a trinucleotide k-circular code —
i.e. impossibility to identify the reading frame — can be determined from the associated graph.

3.1. Method. As it turns out, every ambiguous sequence comes from a “concatenation” of
directed cycles in the graph, and corresponds to a directed walk, in the following sense. All notions
will be illustrated on examples.
As is usual for graphs without parallel arcs, let us designate a directed walk using only vertices.

Definition 3.1. A directed walk from v0 to v` in a graph G is a sequence W := v0, . . . , v` of
vertices of G with ` ≥ 1 such that for each i ∈ {1, . . . , `}, there is an arc in G from vi−1 to vi. The
directed walk W is closed if v0 = v`.

Note that the vertices in a directed walk are not required to be all distinct, and neither are the
arcs involved.
We are interested in sequences of trinucleotides with more than one circular X-decomposition, for
a given trinucleotide k-circular code X, as defined in Definition 2.2.

Definition 3.2. Let X be a trinucleotide code and w a sequence of trinucleotides.
(1) We say that w is a sequence with ambiguous frame for X if

• w admits an X-decomposition; and
• the 1-shift w1 or the 2-shift w2 of w, possibly both, admits an X-decomposition.

(2) We say that w is a frameless sequence for X if
• w does not admit an X-decomposition; and
• both the 1-shift w1 and the 2-shift w2 of w admit an X-decomposition.

Note that the length of the sequences defined in Definition 3.2 must be a multiple of 3, as some of
their circular shifts must admit an X-decomposition. It is thus useful to define the trinucleotide
length of a sequence as follows.
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Definition 3.3. If the sequence w is a concatenation of trinucleotides, then its trinucleotide
length `(w) is the number of trinucleotides concatenated, that is, the number of nucleotides in w

divided by 3.

Notice also that if w is frameless for a trinucleotide code X, then both its circular 1-shift and its
circular 2-shift are sequences with ambiguous frame for X.
Fix a trinucleotide k-circular code X, for some k ∈ {0, 1, 2, 3}. Rephrasing arguments already
exploited earlier [3,5], a sequence with ambiguous frame for X corresponds to a directed closed walk
in G(X). More precisely, let W = v0, . . . , v` be a directed closed walk in G(X) (so v0 = v`), and
let w be the sequence of nucleotides obtained by concatenating the nucleotides and dinucleotides
(i.e. vertices) v0, . . . , v`−1, respecting the order. If v0 is a nucleotide, then the sequence w1 also
admits an X-decomposition, while if v0 is a dinucleotide, then w2 also admits an X-decomposition.
Conversely, let w = N1 · · ·Ns be a sequence of s nucleotides obtained by concatenating trinucleotides
from X. If w1 admits an X-decomposition, then N1, N2N3, . . . , Ns−2, Ns−1Ns, N1 is a directed
closed walk in G(X). If w2 admits an X-decomposition, then N1N2, N3, . . . , Ns−2Ns−1, Ns, N1N2

is a directed closed walk in G(X). We thus see that if both w1 and w2 admit an X-decomposition,
then two different directed closed walks give rise to w: the one starting with N1 and the one
starting with N1N2. In summary, every directed closed walk in G(X) yields a sequence with
ambiguous frame, and if two different directed closed walks give rise to the same sequence with
ambiguous frame w, then all three circular shifts of w admit an X-decomposition.
It is an elementary fact of graph theory — which can be obtained by a straightforward induction —
that if W is a directed closed walk from v0 to itself, then the subgraph formed by the arcs spanned
by W can be decomposed into directed cycles C1, . . . , Ct such that each of these directed cycles
has a vertex in common with (at least) another one of them (and C1 goes through v0). In other
words, the subgraph spanned by the arcs of these t directed cycles is (strongly) connected, and
for each vertex v of the subgraph, the in-degree and the out-degree of v are the same. Therefore,
every sequence with ambiguous frame for X is built from a sequence of directed cycles forming a
(strongly) connected subgraph of G(X), and hence one can view the directed cycles of G(X) as a
basis generating all possible sequences with ambiguous frame for X. We however point out that
one such sequence C1, . . . , Ct gives rise to different sequences with ambiguous frame — that are
not circular shifts of one another — as once arranged in directed cycles, the vertices may be in a
different order than originally, and may even not form a directed walk.
For example, let G be the graph depicted in Figure 1, which is a subgraph of the graph associated
to a trinucleotide 1-circular code. The graph formed by the arcs spanned by the directed closed
walk

W := v0, u1, v1, u2, v2, u3, v3, b3, v2, b2, v1, b1, v0

is G itself, which indeed decomposes into three directed cycles C1, C2, C3, where Ci := vi−1 → ui →
vi → bi → vi−1 for i ∈ {1, 2, 3}. However, the sequence of vertices obtained by traversing these
three directed cycles is

v0, u1, v1, b1, v0, v1, u2, v2, b2, v1, v2, u3, v3, b3, v2,

which is different from W and does not correspond to a directed walk.
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v0 v1 v2 v3

u1 u2 u3

b1 b2 b3

Figure 1. A graph G composed of three directed cycles of length 4.

A

T T

T C
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GA

AA

CG

AT CA
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T G

GT

Figure 2. The graph G(X6) associated to the trinucleotide 3-circular code X6

contains 16 different directed cycles of length 8, two of which having no arc in
common.

This fact also puts constraints on the possible lengths of ambiguous sequences. Indeed, recall that
the arcs spanned by any directed closed walk in a graph can be partitioned into sets of arcs each
spanning a directed cycle of the graph.
As a consequence the length of a sequence gives an important information regarding the reading
frame retrieval of a trinucleotide k-circular code. We now make this precise by giving several
properties for trinucleotide k-circular codes for each k ∈ {0, 1, 2, 3}.

3.2. Application to each class of trinucleotide k-circular codes.
3.2.1. Trinucleotide 3-circular codes. If X is a trinucleotide 3-circular code then every directed

cycle in G(X) has length 8. The next two observations follow.

Observation 3.4. The reading frame of any sequence w with trinucleotide length `(w) not divisible
by 4 can be retrieved by any trinucleotide 3-circular code, i.e. either `(w) ≡ 0 (mod 4) or w is not
ambiguous.

Observation 3.5. Any sequence w with ambiguous frame for a trinucleotide 3-circular code must
have a trinucleotide length `(w) multiple of 4, that is `(w) ≡ 0 (mod 4).

As an example, let us consider the following trinucleotide 3-circular code of size 12:

X6 := {AAT, ACG, ATT, CAG, CGT, CTG, GCC, GGC, GTA, TAC, TCA, TGA}.
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The associated graph G(X6) is depicted in Figure 2: G(X6) contains a directed cycle of length 8 and
no shorter one, so X6 is 3-circular. As a matter of fact, G(X6) contains precisely 24 = 16 different
directed cycles (all of length 8): all of them must go through A, T, G, C (in this circular order), and
between any two consecutive nucleotides there are exactly two directed paths of length 2 to choose
from. In particular, for any directed cycle C in G(X6), there exists another directed cycle that is
arc-disjoint from C (obtained by always using the path of length 2 not intersecting C between two
consecutive nucleotides).
Let us consider the directed closed walk W := A, CG, T, AC, G, TA, C, GT, A in G(X6). It gives
rise to the sequence w := ACG · TAC · GTA · CGT , which is composed of four trinucleotides
from X6. Both the circular 1-shift and the circular 2-shift of w admit an X6-decomposition,
namely w1 = CGT · ACG · TAC · GTA and w2 = GTA · CGT · ACG · TAC. All three cir-
cular shifts of w are thus sequences with ambiguous frame. Therefore the sequence of ver-
tices AC, G, TA, C, GT, A, CG, T, AC must also be a directed closed walk in G(X), which gives
rise to the same sequence w. There exist also sequences with exactly two circular shifts having
ambiguous frame, and hence there exist frameless sequences, as defined in Definition 3.2(2). For
instance, the sequence w′ := GAA · TTA · CGG · CCT does not admit an X6-decomposition be-
cause GAA /∈ X6. However, both w′1 = AAT ·TAC ·GGC ·CTG and w′2 = ATT ·ACG·GCC ·TGA

admit an X6-decomposition, and hence w′ is a frameless sequence. Note that, consequently, w′1
and w′2 are both sequences with ambiguous frame; the unique directed closed walk in G(X6) giving
rise to w′1 being W ′

1 := A, AT, T, AC, G, GC, C, TG, A and the unique directed closed walk in G(X6)
giving rise to w′2 being W ′

2 := AT, T, AC, G, GC, C, TG, A, AT . Notice that considering the last
vertex of W to be the first of W ′

1 (which can be understood as “concatenating” these two directed
closed walks), we obtain the directed closed walk

A, CG, T, AC, G, TA, C, GT, A, AT, T, AC, G, GC, C, TG, A,

of G(X6), which decomposes in two directed cycles of length 8. It gives rise to the sequence with
ambiguous frame

w · w′1 = CGT ·ACG · TAC ·GTG ·AAT · TAC ·GGC · CTA,

obtained by concatenating w and w′1. The circular 1-shift of w · w′1, which is

GTA · CGT ·ACG · TGA ·ATT ·ACG ·GCC · TAC,

admits an X6-decomposition while the circular 2-shift of w · w′1, which is

TAC ·GTA · CGT ·GAATTACGGCCT ·ACG,

does not — and hence this 2-shift is a frameless sequence.
One can also directly observe from the structure of the directed cycles in G(X6) that removing a
single trinucleotide from X6 cannot yield a trinucleotide circular code. As every sequence with
ambiguous frame must contain the trinucleotide AAT or ACG, removing both AAT and ACG

from X6 yields a trinucleotide circular code, since these removals would destroy all directed cycles
in the graph.
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3.2.2. Trinucleotide 2-circular codes. Consider now a trinucleotide 2-circular code X. The
associated graph must contain a directed cycle of length 6 and no shorter one. It may or may not
contain a directed cycle of length 8. In the latter case, our previous considerations imply that the
number of trinucleotides from X concatenated to create a sequence with ambiguous frame must
be a multiple of 3. In the former case, since directed cycles of different lengths must have a vertex
in common (because there are only 4 nucleotides and every directed cycle contains at least two of
them in a trinucleotide (>1)-circular code), our previous considerations show that one can build
sequences with ambiguous frame by concatenating any number of trinucleotides greater than 2
and different from 5. This exhibits a drastic difference between the class of trinucleotide 2-circular
codes and that of trinucleotide 3-circular codes; and actually even within the class of trinucleotide
2-circular codes, depending on whether or not the associated graph contains directed cycles of
length 8. We thus obtain the following observations.

Observation 3.6. The reading frame of any sequence w with trinucleotide length `(w) not divisible
by 3 can be retrieved by any trinucleotide 2-circular code without directed cycles of length 8 in the
associated graph, i.e. either `(w) ≡ 0 (mod 3) or w is not ambiguous (for such a trinucleotide
code).

Observation 3.7. The reading frame of any sequence w with trinucleotide length `(w) ∈ {1, 2, 5}
can be retrieved by any trinucleotide 2-circular code.

Observation 3.8. Any sequence w with ambiguous frame for a trinucleotide 2-circular code without
directed cycles of length 8 in the associated graph must have a trinucleotide length `(w) divisible
by 3, that is `(w) ≡ 0 (mod 3).

Observation 3.9. Any sequence w with ambiguous frame for a trinucleotide 2-circular code must
have a trinucleotide length `(w) greater than 2 and different from 5, that is `(w) ≥ 3 and `(w) 6= 5.

3.2.3. Trinucleotide 1-circular codes. A trinucleotide 1-circular code X can potentially admit
a sequence with ambiguous frame composed of t trinucleotides from X, for any integer t greater
than 1, which as we shall see in Section 3.2.4 is very close to the case of the trinucleotide 0-circular
codes. However, if the associated graph contains no directed cycle of length other than 4, then every
ambiguous sequence is the concatenation of an even number of trinucleotides — and hence such a
code X will retrieve the reading frame in any concatenation of an odd number of trinucleotides
from X.

Observation 3.10. The reading frame of any sequence w with trinucleotide length `(w) not
divisible by 2 can be retrieved by any trinucleotide 1-circular code without directed cycles of length
different from 4 in the associated graph, i.e. either `(w) is even or w is not ambiguous (for such a
trinucleotide code).

Observation 3.11. Any sequence w with ambiguous frame for a trinucleotide 1-circular code
without directed cycles of length different from 4 in the associated graph must have a trinucleotide
length `(w) divisible by 2, that is `(w) ≡ 0 (mod 2).

As another example, consider the code X7 := {AAT, ACG, CAA, CGG, GAA, GGA, TCA}, with
the associated graph G(X7) depicted in Figure 3. Since G(X7) has a directed cycle of length 4
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and no shorter one, X7 is 1-circular. However, as G(X7) also contains a cycle of length 6, the
trinucleotide code X7 admits a sequence with ambiguous frame composed of t trinucleotides for any
integer t ≥ 2. For instance, ACG ·GGA and ACG ·GAA ·TCA are two sequences with ambiguous
frames, respectively composed of 2 and 3 trinucleotides. The former is obtained from the directed
closed walk A, CG, G, GA, A and the latter from A, CG, G, AA, T, CA, A. We deduce that w · w
and w ·w′ also are ambiguous sequences, which are respectively composed of 4 and 5 trinucleotides.

A

CG

G

AA

T

CA

GA

T C AT

GG

C

AC

Figure 3. The graph G(X7) associated to the trinucleotide 1-circular code X7

contains exactly two directed cycles: one of length 4 and one of length 6. Therefore
there are sequences with ambiguous frames for X7 composed of any number of
trinucleotides greater than 1.

3.2.4. Trinucleotide 0-circular codes. Trinucleotide 0-circular codes can admit sequences with
ambiguous frame of any positive trinucleotide length, since they must contain a word and its
circular 1-shift.

Observation 3.12. Sequences w of any positive trinucleotide length `(w) with ambiguous frame
exist for any trinucleotide 0-circular code.

4. Circularity (reading frame retrieval): an ordinary property in genes

On the genetic alphabet B, there are 264 ≈ 1019 trinucleotide codes (including the empty set).
According to the theoretical work developed earlier [12], they can be classified into 3 classes
according to their circularity property, i.e. their property of reading frame retrieval:

(i) trinucleotide codes with no circularity: no sequence generated by such a trinucleotide
code can retrieve the reading frame;

(ii) trinucleotide codes with a partial circularity: some sequences generated by such a trin-
ucleotide code cannot retrieve the reading frame, but some some other sequences can
retrieve the reading frame;

(iii) trinucleotide codes with a complete circularity: any sequence generated by such a trinu-
cleotide circular code can retrieve the reading frame.

Observation 4.1. Among the huge number of 264 trinucleotide codes, only 24 trinucleotide codes
have no circularity (class (i)). These 24 trinucleotide codes are all the codes forming a conjugacy
class:



10 TRINUCLEOTIDE K-CIRCULAR CODES II: BIOLOGY

- the 4 codes with a single periodic trinucleotide {NNN} where N ∈ B (of size 1);
- the 20 codes {N1N2N3, N2N3N1, N3N1N2} where Ni, Nj , Nk ∈ B (of size 3) (note that N1 =
N2 = N3 leads to a periodic trinucleotide).

Remark 4.2. The codes {N1N1N1, N2N2N2} and {N1N2N3, N2N3N1} where Ni, Nj , Nk ∈ B have
a partial circularity (class (ii)).

Observation 4.1 leads to several important consequences.

Observation 4.3. Any trinucleotide code not forming a conjugacy class has a circularity property,
partial or complete, in particular any “random” trinucleotide code.

Observation 4.4. Any trinucleotide code of size ≥ 4 has always a circularity property, partial or
complete.

Observation 4.5. Any self-complementary trinucleotide code has always a circularity property,
partial or complete.

Observations 4.3, 4.4 and 4.5 explain some unexpected and strange distributions of “random”
trinucleotide codes in genes that sometimes are close to the distributions of some trinucleotide
circular codes. This statistical trinucleotide circular code noise observed by several authors in
the past, including the first author as early as 1996 and recently reported again by Gumbel and
Wiedemann [6], is explained by our theoretical work. The method developed in Section 5 allows
for a new classification of trinucleotide codes with a partial circularity according to the intensity
of the loss of reading frame retrieval (see Equation (5.1)).

5. A new formula to measure the reading frame loss in the trinucleotide k-circular
codes

5.1. Method. For the trinucleotide circular codes, the window for retrieving the reading
frame is directly determined by the length of a longest directed path p in the associated graph
(which is well defined since the associated graph is acyclic). The larger this directed path length is,
the larger the number of nucleotides required to always retrieve the reading frame is. Trinucleotide
circular codes have thus been partitioned according to this length into 8 classes (as we shall see in
Section 7), starting with the more restrictive strong comma-free codes and comma-free codes to
the more flexible circular codes in X8.
With the trinucleotide k-circular codes, which generalise the trinucleotide circular codes, this
approach cannot be used anymore: the graph associated to a trinucleotide k-circular code with k < 4
is no longer acyclic. As a result, it contains directed paths of arbitrarily large lengths. However, a
new measure can be proposed using the graph analysis carried out in Section 3, regarding closed
directed walks.
Indeed, as reported earlier, the length of the smallest sequences with ambiguous frame for X for a
given trinucleotide k-circular code X only depends on the lengths of the directed cycles in the
associated graph G(X): a directed cycle of length 2 · ` implies a sequence with ambiguous frame
composed of ` trinucleotides. Since G(X) has an infinite number of directed closed walks, we rather
consider the number of directed cycles of each possible length normalised as follows.
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Definition 5.1. The reading frame loss function f of a trinucleotide code X is the map-
ping f : B3 → R given by

f(X) := q8(G(X)) + 4
3 q6(G(X)) + 2 q4(G(X)) + 4 q2(G(X)) =

4∑
i=1

4
i
· q2·i(G(X)),(5.1)

where qi(G) is the number of directed cycles of length i in the graph G for every positive integer i.

Note that f(X) is not necessarily an integer.

Proposition 5.2. For every trinucleotide code X, we have 0 ≤ f(X) ≤ 301056. Moreover,
f(X) = 0 if and only if X is a trinucleotide circular code, and f(X) = 301056 if and only if X is
the genetic code Xg, where

q2(Xg) = 64, q4(Xg) = 1440, q6(Xg) = 26880, q8(Xg) = 262080.

Proof. Let X be a trinucleotide circular code and G(X) its associated graph. Since each
directed cycle in G(X) must have even length not exceeding 8, we deduce that f(X) = 0 if and
only if the associated graph G(X) is acyclic, which holds if and only if X is circular.
Moreover, every trinucleotide code X is contained in Xg, which implies that q2i(X) ≤ q2i(Xg) for
each i ∈ {1, 2, 3, 4}, and hence f(X) ≤ f(Xg).
Finally, for each i ∈ {1, 2, 3, 4}, every directed cycle in G(Xg) corresponds to the choice of i

circularly ordered nucleotides N1, . . . , Ni and i ordered dinucleotides d1, . . . , di, because Xg contains
all possible trinucleotides. There are i! possible ways of ordering any of the

(16
i

)
possible subsets

of i dinucleotides. Similarly, there are precisely (i− 1)! ways of circularly ordering any of the
(4

i

)
possible subsets of i nucleotides. Therefore,

q2i(Xg) =
(

4
i

)
(i− 1)! ·

(
16
i

)
i!,

which concludes the proof. �

A similar analysis can be developed for the amino acid code Xaa, composed of all trinucleotides
except the stop codons, namely TAA, TAG and TGA, i.e. Xaa = Xg \ {TAA, TAG, TGA}.

Proposition 5.3. The reading frame loss function f of the amino acid code Xaa is f(Xaa) =
600332

3 ≈ 200110, where

q2(Xaa) = 58, q4(Xaa) = 1171, q6(Xaa) = 19628, q8(Xaa) = 171366.

Proof. We proceed as for proving Proposition 5.2, but we now have to take into account the
fact that the following arcs are not present in G(Xaa):

T → AA, T → AG, T → GA

A← TA, A← TG, G← TA.

Consequently, to compute q2(Xaa) we have 4 choices for the nucleotide N in a directed cycle of
length 2, and then respectively 16, 15, 14, or 13 choices for the dinucleotide regarding whether N

is C, G, A or T . This yields a total of 58 different directed cycles of length 2.
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For q4(Xaa), there are
(4

2
)

= 6 choices for the set S = {N1, N2} of two nucleotides in a directed
cycle of legnth 4 — the order does not matter here. Discriminating regarding each possible choice
of N1 and N2, the number of possibilities for the two dinucleotides are

15 · 14 if S = {A, C}, 142 if S = {A, G}, 15 · 11 if S = {A, T},

152 if S = {C, G}, 15 · 13 if S = {C, T}, 15 · 12 if S = {G, T},

for a total of 1171.
For q6(Xaa), there are 4 choices for the set S = {N1, N2, N3} of three nucleotides in a directed
cycle of legnth 6, and each set can occur in two different orderings along the cycle. The number of
choices for the three dinucleotides are

2 · 143 if S = {A, C, G},

11 · 14 · 15 + (11 · 13 · 14 + 2 · 142) if S = {A, C, T},

11 · 142 + (11 · 13 · 14 + 142) if S = {A, G, T},

(12 · 142 + 14 · 15) + 12 · 15 · 14 if S = {C, G, T},

for a total of 19628.
Finally, for q8(Xaa), all 4 nucleotides appear on a directed cycle of length 8, in 6 different possible
orders. We observe that the two orders A, C, G, T and A, G, C, T yield the same number of choices
for the 4 dinucleotides, and similarly for the two orders A, G, T, C and T, C, G, A, and for the two
orders A, C, T, G and T, G, C, A. These three numbers respectively are

11 · 142 · 13, 11 · 133 + 14 · 132 + 142 · 13, 11 · 13 · 14 · 13 + 142 · 13,

for a total of 2 · 85683 = 171366. �

The function f can be considered as a measure of the reading frame loss: for a trinucleotide
code X, the smaller the value of the function f(X) is, the lower the reading frame loss is.
We remark that the approach taken here (and in Section 3) generalises to arbitrary finite word
lengths (dinucleotide, tetranucleotide) and to arbitrary finite alphabets.
We point out that the two aforementioned measures (the length of a longest directed path p and
the reading frame loss function f) are enough to analyse the reading frame retrieval property in
all classes of trinucleotide codes.

5.2. Application: evolution of the trinucleotide circular code X to the genetic
code. The study proposed in Subsection 5.1 allows us to propose for the first time a model of
evolution from a trinucleotide circular code to the genetic code, and more precisely to study the
ability to retrieve the reading frame for trinucleotide codes of cardinality greater than 20 thanks
to the reading frame loss function f (Definition 5.1). Figure 4 proposes an evolution from the
trinucleotide circular code X defined in (1.1) to the genetic code Xg.
Keeping the self-complementarity property of X, we subsequently add to X all possible pairs
of complementary codons. More precisely, at first there are exactly 32 − 10 = 22 pairs of
complementary codons not in X. Consequently, if we want to add to X a certain number n

of pairs of complementary codons, then there are exactly
(22

n

)
possible choices. For instance,
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for the cardinality 22, we have
(22

1
)

= 22 different trinucleotide codes, for the cardinality 24 we
have

(22
2
)

= 231 different trinucleotide codes and so forth.
For each possible cardinality of the trinucleotide codes (that are self-complementary extensions
of X), Figure 4 gives the minimum, the mean and the maximum of the reading frame loss function f

over all the possible trinucleotide codes. In particular, the mean f̄ is thus calculated as follows for
each even cardinality 2 · (10 + n) ∈ {22, . . . , 64}:

(5.2) f̄ := 1(22
n

) ∑
X′

f(X ′),

where the sum runs over all the self-complementary trinucleotide codes X ′ of cardinality 2 · (10 + n)
that contain X.
Moreover, for a given cardinality, several sequences can achieve the minimum for the reading frame
loss function (see Appendix A). From a certain point, the extensions that contain the periodic
trinucleotides AAA and TTT do not achieve the minimum of the reading frame loss function (see
Appendix A).
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Figure 4. Evolution of the trinucleotide circular code X (1.1) to the genetic
code. The three curves represent the minimum Min, the mean f̄ (5.2) and the
maximum Max of the reading frame loss function f (5.1). The X-axis is the
cardinality of the trinucleotide codes (even number between 22 and 64) and the
Y -axis is the reading frame loss function f in a logarithmic scale.
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6. Three new properties in the evolution of the genetic code: circularity,
complementarity and balance

The evolution of primitive codes to the genetic code according to a process of reading frame
retrieval, may involve three properties which are investigated in this section: the two classical
properties of circularity and self-complementarity, and a new identified property of trinucleotide
code balance.

6.1. Balanced trinucleotide codes. Any trinucleotide circular code X of maximal size 20
must be balanced, in the sense that the 4 nucleotides must appear the same number of times (15) in
the code. Formally, the number of occurrences of a given nucleotide in the sequence of nucleotides
formed by the concatenation of all 20 trinucleotides of X, which has thus size 3 · 20 = 60, contains
precisely 15 occurrences of each nucleotide.
This balance property actually holds for all trinucleotide (>1)-circular codes of cardinality 20.
Indeed, by definition such a code X contain exactly one trinucleotide in each of the 20 conjugacy
classes S, and hence X can be seen as a mapping g : C → B3 \ P where C is the set composed
of the 20 conjugacy classes and P := {AAA, CCC, GGG, TTT} is the set of the 4 periodic
trinucleotides. The 60 non-periodic trinucleotides N1N2N3 contain in total exactly 45 occurrences
of each nucleotide. The number of occurrences of a nucleotide N in all the trinucleotides N1N2N3

of X is

(6.1) NbN (X) :=
∑
S∈C

NbN (g(S)),

where NbN (N1N2N3) stands for the number of occurrences of N in N1N2N3. As each conjugacy
class is composed of the circular shifts of a trinucleotide, all trinucleotides in a given conjugacy
class S have the same number of occurrences of each given nucleotide N , which we write NbN (S).
Consequently, (6.1) does not actually depend on g (that is, on X), and

NbN (X) =
∑
S∈C

NbN (S) = 60
4 = 15,

where the second equality follows by the definition of the conjugacy classes.

Definition 6.1. A trinucleotide code X is balanced if for each nucleotide N ∈ B the number of
occurrences of N in the trinucleotides of X is |X|4 .

The cardinality of a balanced trinucleotide code must be a multiple of 4.
In this section we analyse more deeply the balance property of the trinucleotide k-circular
codes, by considering trinucleotide codes of cardinalities smaller than 20, and hence cardinality
in {4, 8, 12, 16}.
Furthermore, we establish a new theoretical relation between the balance property and the classical
biological property of self-complementarity. Indeed, if X is a self-complementary trinucleotide code
then NbA(X) = NbT (X) and NbC(X) = NbG(X). It thus seems natural to study balanceness
with respect to self-complementarity.
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6.2. Method. We can use the algorithmic approaches developed in our companion article [12]
to enumerate the trinucleotide k-circular codes that are balanced. However, we are interested
also in trinucleotide 0-circular codes, for which the computations would take several weeks on
a standard PC. Thus, we here develop a much quicker approach based on linear algebra, which
allows us to count — and enumerate if desired — the number of trinucleotide (>0)-circular codes
of any cardinality and with any prescribed number of occurrences of each nucleotide in total. We
point out that the counting is essentially instantaneous for trinucleotide codes of any possible size
(less than a second).
We here present the general method on an example, to avoid unnecessary abstraction. Assume
that we want to enumerate the number of trinucleotide (>0)-circular codes X of cardinality n

without a periodic trinucleotide and such that NbN (X) = nN for each nucleotide N ∈ B; so nA +
nC + nG + nT = 3n. We partition the possibilities for X according to the number of trinucleotides
contained in each of the conjugacy classes. To this end, let C1, . . . , C20 be the conjugacy classes
of the non-periodic trinucleotides. We associate to X the vector vX := (|X ∩ C1|, . . . , |X ∩ C20|)t,
which is thus a vector of integers all between 0 and 3.
We associate to each conjugacy class C the vector vC := (NbN (C))t

N∈{A,C,G}. For instance, the
conjugacy class {AAC, ACA, CAA} yields the vector (2, 1, 0)t.
We can now write M̃·vX = b where b := (n, nA, nC , nG)t and M̃ is the matrix with columns (1, vCi)

t

for i ∈ {1, . . . , 20}. If the conjugacy classes are enumerated in lexicographically increasing order
regarding their lexicographic minimal element (so we have C1 = {AAC, ACA, CAA} and C20 =
{GTT, TTG, TGT}), then

M̃ :=


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 0 0 2 1 1 1 0 0 1 0 0 2 2 1 1 1 1 0 0
0 1 0 0 1 0 1 2 1 0 1 0 1 0 2 1 1 0 2 1

 .

Conversely, every vector v = (v1, . . . , v20)t satisfying M̃ · v = b with vi a non-negative integer
at most 3 for each i ∈ {1, . . . , 20}, corresponds to several different sought trinucleotide codes X.
More precisely, each vector v is associated with exactly

∏20
i=0

( 3
vi

)
different trinucleotide codes X;

and, by definition, different such vectors cannot be associated with the same trinucleotide code.
Let S be this set of specific solutions to our matrix equation.
Finding the set S is standard, and is immediate using any computer algebra system that can solve
linear systems. From a theoretical point of view, we can first compute a basis of the kernel of
the matrix M̃, and then any particular solution s to the matrix equation. The solutions to our
matrix equation are then exactly the linear combinations of elements of the basis to which we
add s. We thus efficiently obtain a general form for the vectors that are solution. In any case, it
is then straightforward to extract the vectors that belong to S, which allows us to compute the
aforementioned product for each of them, and thus the total number of sought trinucleotide codes.
The method can also be slightly adapted to allow for periodic trinucleotides, or tailored to self-
complementary trinucleotide codes by using only 10 different conjugacy classes, for instance. If
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periodic trinucleotides are allowed then the matrix becomes

M :=


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 0 0 0
2 2 2 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 3 0 0
1 0 0 2 1 1 1 0 0 1 0 0 2 2 1 1 1 1 0 0 0 0 3 0
0 1 0 0 1 0 1 2 1 0 1 0 1 0 2 1 1 0 2 1 0 0 0 3

 ,

where the last four variables v21, . . . , v24 must each be either 0 or 1.
As for self-complementary trinucleotide codes, we obtain a balanced trinucleotide code X as soon
as NbA(X) = NbC(X) since the other equalities will follow by self-complementarity. Therefore,
the vector b becomes (m, nA, nC)t where m := n/2 is half the size of the self-complementary
trinucleotide code. The following matrices can be used when periodic trinucleotides are forbidden
or allowed, respectively:

M̃sc :=


1 1 1 1 1 1 1 1 1 1
2 2 3 1 1 1 2 2 1 0
1 1 0 2 2 2 1 1 2 3


or

Msc :=


1 1 1 1 1 1 1 1 1 1 1 1
2 2 3 1 1 1 2 2 1 0 3 0
1 1 0 2 2 2 1 1 2 3 0 3

 .

For example, the third column corresponds to the conjugacy class C3 = {AAT, ATA, TAA}: if w

is a trinucleotide in C3, then its complementary trinucleotide w belongs to {ATT, TAT, TTA}.
Therefore, w and w contain together 3 occurrences of the nucleotide A and 0 occurrence of the
nucleotide C, hence the associated vector (3, 0)t.
The general process can be optimised by gathering conjugacy classes with the same associated
vector, e.g. C5 = {ACG, CGA, GAC} and C7 = {AGC, GCA, CAG} are both associated with the
vector (1, 1, 1)t. We can thus blend the corresponding two variables into a single variable v′5, which
is then allowed to vary between 0 and 6; the corresponding contribution for the number of codes
is
( 6

v′
5

)
. To illlustrate this, we mention that the self-complementary case can be fully computed

(with or without periodic trinucleotides) using only four variables and a single matrix, namely
1 1 1 1
2 1 3 0
1 2 0 3

 ,

where the variables v1 and v2 range in {0, . . . , 12}, while the variables v3 and v4 range in {0, . . . , 4}
if the periodic trinucleotides are allowed and {0, . . . , 3} otherwise.

6.3. Application.
6.3.1. Case with periodic trinucleotides. We use the notation N>0(n) =

(64
n

)
and N sc

>0(m) =
(32

m

)
already introduced in the companion article [12] for the number of trinucleotide (>0)-circular
codes of length n and the number of self-complementary trinucleotide (>0)-circular codes of
length 2m = n, respectively. We furthermore let Nb

>0(n) be the number of balanced trinucleotide
codes of cardinality n ∈ {0, . . . , 64}, so Nb

>0(n) = 0 if n 6≡ 0 (mod 4). We also define N sc,b
>0 (m)

to be the number of balanced self-complementary trinucleotide codes of cardinality 2m = n, and
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Table 1. Case with periodic trinucleotides: numbers N sc,b
>0 (m) and Nb

>0(n), and
probabilities psc,b

>0 (m) (6.3) and pb
>0(n) (6.2) of balanceness for self-complementary

trinucleotide codes versus trinucleotide codes with cardinality in {4, 8, . . . , 60}. The
ratio r>0(n) (6.4) gives a quantitative measure of balanceness between these two
classes of trinucleotide codes. As mentioned in the companion article [12], the
numbers N sc

>0(m) and N>0(n) are equal to
(32

m

)
and

(64
n

)
, respectively.

Card. Self-complementary codes Codes Ratio

n = 2m N sc
>0(m) N sc,b

>0 (m) psc,b
>0 (m)(%) N>0(n) Nb

>0(n) pb
>0(n)(%) r>0(n)

{4, 60} 496 160 32.26 635376 14688 2.31 13.95

{8, 56} 35960 8456 23.52 4426165368 42048456 0.95 24.75

{12, 52} 906192 181376 20.02 3284214703056 19253443632 0.59 34.14

{16, 48} 10518300 1903490 18.10 488526937079580 2111538087534 0.43 41.87

{20, 44} 64512240 10925696 16.94 19619725782651120 69390367780296 0.35 47.89

{24, 40} 225792840 36649008 16.23 250649105469666120 779622128266488 0.31 52.18

{28, 36} 471435600 74716224 15.85 1118770292985239888 3237736351419828 0.29 54.76

{32} 601080390 94532308 15.73 1832624140942590534 5181557395735824 0.28 55.62

hence N sc,b
>0 (m) ≤ Nb

>0(2m) for m ∈ {0, . . . , 32}. Let X be a trinucleotide (>0)-circular code.
As B3 is itself a balanced trinucleotide (>0)-circular code, we deduce that X is balanced if and only
if B3\X is balanced. Consequently, Nb

>0(n) = Nb
>0(64−n) and, similarly, N sc,b

>0 (m) = N sc,b
>0 (32−m).

Table 1 gives the numbers N b
>0(n) and N sc,b

>0 (n/2) for n ∈ {4, 8, . . . , 60}, computed with the
method presented Subsection 6.2, specifically with the matrices M and Msc. Combining with the
numbers N>0(n) and N sc

>0(n/2) from in the companion article [12], the probability pb
>0(n) that

a uniform random trinucleotide code of a given cardinality be balanced, can be determined as
follows:

(6.2) pb
>0(n) :=

Nb
>0(n)

N>0(n) .

Similarly, the probability psc,b
>0 (m) that a uniform random self-complementary trinucleotide code of

a given cardinality be balanced, can be determined as follows:

(6.3) psc,b
>0 (m) :=

N sc,b
>0 (m)

N sc
>0(m) .

In order to evaluate the two properties, balanceness and self-complementarity, we define the
ratio r>0(n) between these two probabilities, that is

(6.4) r>0(n) :=
psc,b
>0 (n/2)
pb
>0(n)

.

6.3.2. Case without periodic trinucleotides. We use a similar approach, with analogous mathe-
matical symbols labelled with a tilde for differentiation. In particular, Ñ>0(n) =

(60
n

)
and Ñ sc

>0(m) =(30
m

)
. The numbers Ñb

>0(n) and Ñ sc,b
>0 (m) are obtained using the matrices M̃ and M̃sc from Sub-

section 6.2. Table 2 presents the values obtained. The two probabilities p̃b
>0(n) and p̃sc,b

>0 (m),
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Table 2. Case without periodic trinucleotides: numbers Ñ sc,b
>0 (m) and Ñb

>0(n), and
probabilities p̃sc,b

>0 (m) (6.3) and p̃b
>0(n) (6.2) of balanceness for self-complementary

trinucleotide codes versus trinucleotide codes with no periodic trinucleotide and
with cardinality in {4, 8, . . . , 56}. The ratio r̃>0(n) gives a quantitative measure
of balanceness between these two classes of trinucleotide codes. As mentioned in
the companion article [12], the numbers Ñ sc

>0(m) and Ñ>0(n) are equal to
(30

m

)
and

to
(60

n

)
, respectively.

Card. Self-complementary codes Codes Ratio

n = 2m Ñ sc
>0(m) Ñ sc,b

>0 (m) p̃sc,b
>0 (m)(%) Ñ>0(n) Ñb

>0(n) p̃b
>0(n)(%) r̃>0(n)

{4, 56} 435 153 35.17 487635 13689 2.81 12.53

{8, 52} 27405 6981 25.47 2558620845 30286845 1.18 21.52

{12, 48} 593775 128501 21.64 1399358844975 10384658505 0.74 29.16

{16, 44} 5852925 1147389 19.60 149608375854525 829956638277 0.55 35.34

{20, 40} 30045015 5531229 18.41 4191844505805495 19301198755293 0.46 39.98

{24, 36} 86493225 15331173 17.73 36052387482172425 148339543503821 0.41 43.08

{28, 32} 145422675 25318293 17.41 103719945525634515 404636393455353 0.39 44.63

and the ratio r̃>0(n) are computed similarly as in Subsection 6.3.1. Let X ⊆ B3 \ P be a trin-
ucleotide (>0)-circular code without a periodic trinucleotide. As B3 \ P is itself a balanced
trinucleotide (>0)-circular code, we deduce that X is balanced if and only if (B3 \ P) \ X is
balanced. Consequently, Ñb

>0(n) = Ñb
>0(60− n) and, similarly, Ñ sc,b

>0 (m) = Ñ sc,b
>0 (30−m).

6.3.3. Graphical representations of the numerical values in Tables 1 and 2. Figure 5 gives a
graphical representation of the numerical values in Tables 1 and 2. It shows that the probability
of balanceness for both the trinucleotide codes and the self-complementary trinucleotide codes
decreases as the cardinality of the code increases. Furthermore, the shapes of the curves are similar
for the periodic and non-periodic cases. From an evolutionary point of view, the property of
balanceness would have been stronger in primitive life, with trinucleotide codes of small cardinalities.
Then, it becomes weaker after mutations in the trinucleotide codes, process leading to an increase
of their cardinalities. However, the statistical behaviour of the decrease of the balanceness differs
between the trinucleotide codes and the self-complementary trinucleotide codes, for both the
periodic and the non-periodic cases. Indeed, Figure 6 shows that the ratio r>0(n) increases
with the cardinality n for n ≤ 32. For the cardinality 20, which is the maximal cardinality for
trinucleotide (>1)-circular codes, the value is 47.89. Between cardinalities 4 and 20, this ratio is
multiplied by 3.43. Similarly, for the case without periodic trinucleotide, the ratio r̃>0(n) increases
with the cardinality n of the trinucleotide code for n ≤ 30. For the cardinality 20, the value
is 39.98. Between cardinalities 4 and 20, this ratio is multiplied by 3.19. The difference between
the values 3.43 (periodic case) and 3.19 (non-periodic case) might hint at a particular property of
the periodic trinucleotides with respect to self-complementarity and balanceness, which could be
further investigated in the future.
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>0(n), of balanceness for self-complementary trinucleotide codes versus trinu-

cleotide codes, respectively with and without periodic trinucleotides and cardinality
in {4, 8, . . . , 60} and in {4, 8, . . . , 56}. The probabilities psc,b

>0 (m) (6.3) and p̃sc,b
>0 (m)

are represented on the left y-axis. The probabilities pb
>0(m) (6.2) and p̃b

>0(m) are
represented on the right y-axis. The red and yellow curves are symmetric about the
cardinality 32 and the blue and violet ones are symmetric about the cardinality 30.

In summary, these results demonstrate a relation between the properties of self-complementarity
and balanceness. Precisely, according to these quantitative evaluations, the self-complementarity
of the trinucleotide codes decreases the balanceness loss occurring when their cardinalities increase
during evolution.

7. Hierarchy of the trinucleotide k-circular codes

In Section 6 and Figure 4 of an earlier work [5] was proposed an evolutionary hypothesis of the
genetic code based on a growing combinatorial hierarchy of trinucleotide codes with circularity k,
where k ∈ {0, 1, 2, 3, 4}. Figure 7 updates Figure 4 from this work [5] as the minimum and maximum
sizes of trinucleotide k-circular codes and their numbers are determined here for k ∈ {1, 2, 3}
(see Table 1 in the companion article [12]). As the minimum sizes of trinucleotide 3- and 2-circular
codes are 4 and 5 trinucleotides, respectively, codes in the primitive soup for constructing the modern
standard genetic code with less than 4 trinucleotides could not be 3- or 2-circular. Furthermore, as
the maximum sizes of trinucleotide 3- and 2-circular codes are 18 and 20 trinucleotides, respectively,
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Figure 6. Ratios r>0(n) (6.4) and r̃>0(n) giving a quantitative measure of balance-
ness between the self-complementary trinucleotide codes and the trinucleotide codes,
respectively with and without periodic trinucleotides and cardinality in {4, 8, . . . , 60}
and in {4, 8, . . . , 56}. The red curve is symmetric about the cardinality 32 and the
blue one is symmetric about the cardinality 30.

the 3-circular codes would be more primitive than the 2-circular codes. These two observations
agree with the evolutionary model of the genetic code proposed earlier [5].
Evolution would have started with the trinucleotide (>4)-circular (circular) codes in Xp with an
increasing complexity according to the maximal path length p (from 1 to 8) in their associated
graph. As the maximal path length p is related to the window nucleotide length of reading frame
retrieval, the circular codes in X1 (strong comma-free) or in X2 (comma-free) are more constrained
than those in X8. The maximal C3-self-complementary trinucleotide circular code X observed in
genes (1.1) belongs to the class X8. Then evolution continued with the three classes of k-circular
codes, where k ∈ {1, 2, 3}, which are less constrained than the classes of circular codes as they
have a partial circularity (see Section 4). Only the maximal trinucleotide 1-circular codes of 20
trinucleotides can code 20 amino acids: 52 out of 3, 473, 671, 209 trinucleotide 1-circular codes have
this property (see Appendix II in [5]). Evolution from the trinucleotide 1-circular codes to the
genetic code of cardinality 64 can be achieved by the trinucleotide 0-circular codes which have a
partial circularity and a cardinality that can be greater than 20 and up to 64.
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Circular codes X6

Cardinality: {4,…,20} trinucleotides
Number of X6 codes with 4 trinucl.: 1344

Number of X6 codes with 20 trinucl.: 4,566,696

Strong comma-free codes X1

Cardinality: {1,…,9} trinucleotides
Number of X1 codes with 1 trinucl.: 48
Number of X1 codes with 9 trinucl.: 8

Comma-free codes X2

Cardinality: {1,…,20} trinucleotides
Number of X2 codes with 1 trinucl.: 12

Number of X2 codes with 20 trinucl.: 408

Circular codes X3

Cardinality: {2,…,20} trinucleotides
Number of X3 codes with 2 trinucl.: 48

Number of X3 codes with 20 trinucl.: 2352

Circular codes X4

Cardinality: {3,…,20} trinucleotides
Number of X4 codes with 3 trinucl.: 1056

Number of X4 codes with 20 trinucl.: 294,312

Circular codes X5

Cardinality: {3,…,20} trinucleotides
Number of X5 codes with 3 trinucl.: 48

Number of X5 codes with 20 trinucl.: 252,960

Circular codes X8

Cardinality: {5,…,20} trinucleotides
Number of X8 codes with 5 trinucl.: 1296

Number of X8 codes with 20 trinucl.: 7,023,792

Circular codes X7

Cardinality: {4,…,20} trinucleotides
Number of X7 codes with 4 trinucl.: 48

Number of X7 codes with 20 trinucl.: 823,920

2-circular codes 2-X
Cardinality: {5,…,20} trinucleotides

Number of 2-X codes with 5 trinucl.: 984
Number of 2-X codes with 20 trinucl.: 148,752

No 2-X code codes for 20 amino acids

0-circular codes 0-X = Codes
Cardinality: {1,…,64} trinucleotides

Number of 0-X codes with 1 trinucl.: 4
{AAA}, {CCC}, {GGG}, {TTT}

Number of 0-X codes with 64 trinucl.: 1
Genetic codes (standard and variant)

code for 20 amino acids

1-circular codes 1-X
Cardinality: {2,…,20} trinucleotides

Number of 1-X codes with 2 trinucl.: 6
Number of 1-X codes with 20 trinucl.: 3,473,671,209

52 1-X codes code for 20 amino acids

3-circular codes 3-X
Cardinality: {4,…,18} trinucleotides

Number of 3-X codes with 4 trinucl.: 6
Number of 3-X codes with 18 trinucl.: 2280

Figure 7. A combinatorial hierarchy of the trinucleotide k-circular codes,
where k ∈ {0, 1, 2, 3, 4}. The hierarchy of the trinucleotide circular ((>4)-circular)
codes in Xp is given as a function of the maximal path length p in the associated
graph.
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8. Amino acids coded by the trinucleotide k-circular codes

We have computed the number of amino acids coded by the trinucleotide k-circular codes where k ∈
{2, 3} according to the standard genetic code. As we shall see in the forthcoming subsections, from
an amino acid coding point of view the maximum number of amino acids coded by the 3-circular
codes is 16. The maximum number of amino acids coded by the 2-circular codes is 17. Furthermore,
the number 429 (183 + 183 + 58 + 5; see Subsection 8.1.2) of 2-circular codes coding 17 amino
acids is much larger than the number 8 (6 + 2; see Subsection 8.1.1) of 3-circular codes coding 16
amino acids. These observations might suggest that the 2-circular codes appeared in the course of
evolution after the 3-circular codes.
The maximum number of amino acids coded by the self-complementary trinucleotide 2- and
3-circular codes is identical for both classes and equal to 14. However, the number 26 (4 + 17 + 5;
see Subsection 8.2.2) of self-complementary trinucleotide 2-circular codes coding 14 amino acids is
larger than the number 3 (1 + 2; see Subsection 8.2.1) of the self-complementary trinucleotide 3-
circular codes, which might suggest again that the 2-circular codes would have appeared after
the 3-circular codes.
Finally, the trinucleotide (3, 3, 3)-circular codes exist only for length 10. We do verify below that 8
of these 96 codes code 10 amino acids. However, due to these very specific combinatorial properties,
it seems very unlikely that such codes would have been a step in the evolution process of the genetic
code. We also note that the maximum number of amino acids coded by the (2, 2, 2)-circular codes
is 15, compared to 10 for the (3, 3, 3)-circular codes, an additional argument that the 2-circular
codes would have appeared after the 3-circular codes.

8.1. Amino acids coded by the trinucleotide k-circular codes. The growth function
of the trinucleotide k-circular codes is given in Table 1 of the companion article [12], allowing the
readers to retrieve the corresponding numbers.

8.1.1. Trinucleotide 3-circular codes. Among the 6 minimum trinucleotide 3-circular codes of
length 4 (see List 5.8 in [12]), 3 code 3 amino acids and 3 code 4 amino acids.

Observation 8.1. The maximum number of amino acids coded by a trinucleotide 3-circular code
is M3 = 16.

The number M3 is already obtained with a code of length 16. Items (1)–(3) and Lists 8.2, 8.3
and 8.4 complete these observations.

(1) 6 trinucleotide 3-circular codes of length 16 (among 788820) code the maximum number 16
of amino acids (see List 8.2).

(2) 2 trinucleotide 3-circular codes of length 17 (among 83520) code the maximum number 16
of amino acids (see List 8.3).

(3) 7 maximum trinucleotide 3-circular codes of length 18 (among 2280) code the largest
number 15 of amino acids (see List 8.4).

We point out that no maximum trinucleotide 3-circular code of length 18 codes M3 amino acids.
Indeed, not all trinucleotide 3-circular codes of length 16 or 17 are contained in a trinucleotide
3-circular code of length 18.
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List 8.2 (The 6 trinucleotide 3-circular codes of length 16 (among 788820) coding the maximum
number M3 = 16 of amino acids).

{AAC, AAG, AT A, AT G, CAC, CAG, CCT, CGG, GAC, GAG, GGT, GT A, T CG, T GC, T T A, T T C},

{AAC, AAG, AT A, AT G, CAC, CAG, CCT, CGT, GAC, GAG, GCT, GGC, GT A, T CT, T GG, T T A},

{AAC, AAG, AT A, AT G, CAC, CAG, CCT, CGT, GAC, GAG, GCT, GGC, GT A, T GG, T T A, T T C},

{AAC, AAG, AT A, AT G, CAC, CAG, CGT, GAC, GAG, GCT, GGC, GT A, T CC, T GG, T T A, T T C},

{AAC, AAG, AT C, AT G, CAC, CAG, CCG, CGT, CT C, GAC, GCT, GGA, GT T, T AC, T GG, T T C},

{AAC, AAG, AT C, AT G, CAC, CAG, CCT, CGT, GAC, GAG, GCT, GGC, GT A, T GG, T T A, T T C}.

List 8.3 (The 2 trinucleotide 3-circular codes of length 17 (among 83520) coding the maximum
number M3 = 16 of amino acids).

{AAC, AAG, AT A, AT C, AT G, CAC, CAG, CCT, CGT, GAC, GAG, GCT, GGC, GT A, T GG, T T A, T T C},

{AAC, AAG, AT C, AT G, CAC, CAG, CCG, CGT, CT C, GAC, GCT, GGA, GT T, T AC, T AG, T GG, T T C}.

List 8.4 (The 7 maximum trinucleotide 3-circular codes of length 18 (among 2280) coding the
largest number M3 − 1 = 15 of amino acids).

{AAC, AAG, AAT, ACG, CAG, CAT, CCT, CGG, CT A, GAG, GAT, GCC, GT A, GT C, T GC, T GG, T T A, T T C},

{AAC, AAG, AAT, ACG, CAG, CAT, CCT, CGG, CT A, GAG, GAT, GCC, GT C, T GC, T GG, T GT, T T A, T T C},

{AAC, AAG, ACT, AT A, CAG, CCA, CCT, CGC, GAG, GAT, GGC, GT A, GT T, T CG, T CT, T GC, T GG, T T A},

{AAC, AAG, AT A, AT C, AT G, AT T, CAG, CCA, CGC, CT T, GAC, GAG, GGC, GGT, GT T, T AC, T CC, T GC},

{AAC, AAG, AT C, AT G, AT T, CAC, CAG, CCG, CCT, CT T, GAC, GCG, GGA, GT A, GT T, T AC, T CG, T GG},

{AAC, AAG, AT C, AT G, AT T, CAC, CAG, CCG, CCT, CT T, GAC, GCG, GGA, GT T, T AC, T AG, T CG, T GG},

{AAC, AAG, AT C, AT G, AT T, CAG, CCA, CGC, CT T, GAC, GAG, GGC, GGT, GT T, T AC, T AG, T CC, T GC}.

8.1.2. Trinucleotide 2-circular codes. Among the 984 minimum trinucleotide 2-circular codes
of length 5, there are 50 coding 3 amino acids, 381 coding 4 amino acids and 553 coding 5 amino
acids.

Observation 8.5. The maximum number of amino acids coded by a trinucleotide 2-circular code
is M2 = 17.

The number M2 is already obtained with a code of length 17. Items (1)–(4) and List 8.6 complete
these observations.

(1) 183 trinucleotide 2-circular codes of length 17 (among 142169112) code the maximum
number 17 of amino acids.

(2) 183 trinucleotide 2-circular codes of length 18 (among 27843072) code the maximum
number 17 of amino acids.

(3) 58 trinucleotide 2-circular codes of length 19 (among 3104832) code the maximum
number 17 of amino acids.

(4) 5 maximum trinucleotide 2-circular codes of length 20 (among 148752) code the maximum
number 17 of amino acids (see List 8.6).

We point out that the 183 trinucleotide codes in Item (1) are all contained in the 183 trinucleotide
codes in Item (2).
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List 8.6 (The 5 maximum trinucleotide 2-circular codes of length 20 (among 148752) coding the
maximum number M2 = 17 of amino acids).
{AAC, AAG, AAT, ACC, CAG, CAT, CCT, CGC, GAC, GAG, GAT, GGC, GT A, GT T, T AC, T CG, T GC, T GG, T T A, T T C},

{AAC, AAG, AAT, ACC, CAG, CAT, CCT, CGC, GAC, GAG, GAT, GGC, GT T, T AC, T AG, T CG, T GC, T GG, T T A, T T C},

{AAC, AAG, AAT, ACC, CAG, CAT, CCT, CGC, GAC, GAG, GGC, GT A, GT T, T AC, T CG, T GA, T GC, T GG, T T A, T T C},

{AAC, AAG, AAT, ACC, CAG, CAT, CCT, CGC, GAC, GAG, GGC, GT T, T AC, T AG, T CG, T GA, T GC, T GG, T T A, T T C},

{AAG, AGC, AGG, AGT, AT A, AT C, AT G, CAA, CAC, CCG, CCT, GAC, GCT, GGC, GT C, T AC, T GG, T GT, T T A, T T C}.

Finally, it was (mathematically) established earlier [5] that there are exactly 52 maximum trinu-
cleotide 1-circular codes of length 20 (among 3473671209) coding for 20 amino acids (see the list in
Appendix II in [5]). We verified that all these 52 trinucleotide codes actually are (1, 1, 1)-circular.

8.2. Amino acids coded by the self-complementary trinucleotide k-circular codes.
The growth function of the self-complementary trinucleotide k-circular codes is given in Table 4 of
the companion article [12], allowing the readers to retrieve the corresponding numbers.

8.2.1. Self-complementary trinucleotide 3-circular codes. Among the 4 minimum self-comple-
mentary trinucleotide 3-circular codes of length 4 (see List 5.21 in [12]), 1 codes 3 amino acids
and 3 code 4 amino acids.

Observation 8.7. The maximum number of amino acids coded by a self-complementary trinu-
cleotide 3-circular code is M sc

3 = 14.

The number M sc
3 is already obtained with a code of length 14. Items (1)–(2) and Lists 8.8 and 8.9

complete these observations.
(1) 1 self-complementary trinucleotide 3-circular code of length 14 (among 464) codes the

maximum number 14 of amino acids (see List 8.8).
(2) 2 self-complementary trinucleotide 3-circular codes of length 16 (among 80) code the

maximum number 14 of amino acids (see List 8.9).

List 8.8 (The unique self-complementary trinucleotide 3-circular code of length 14 (among 464)
coding the maximum number M sc

3 = 14 of amino acids).
{ACG, CGT, AGC, GCT, AT C, GAT, CAA, T T G, CCA, T GG, GAA, T T C, GT A, T AC}.

List 8.9 (The 2 maximum self-complementary trinucleotide 3-circular codes of length 16 (among 80)
coding the maximum number M sc

3 = 14 of amino acids).
{ACG, CGT, AGC, GCT, AGG, CCT, AT C, GAT, CAA, T T G, CCA, T GG, GAA, T T C, GT A, T AC},

{ACG, CGT, AGC, GCT, AT C, GAT, CAA, T T G, CCA, T GG, CT C, GAG, GAA, T T C, GT A, T AC}.

8.2.2. Self-complementary trinucleotide 2-circular codes. Among the 8 minimum self-comple-
mentary trinucleotide 2-circular codes of length 6 (see List 5.24 in [12]), 1 codes 4 amino acids, 4
code 5 amino acids and 3 code 6 amino acids.

Observation 8.10. The maximum number of amino acids coded by a self-complementary trinu-
cleotide 2-circular code is M sc

2 = 14.

The number M sc
2 is already obtained with a code of length 14. Items (1)–(4) and Lists 8.11, 8.12

and 8.13 complete these observations.
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(1) 4 self-complementary 2-circular codes of length 14 (among 1704) code the maximum
number 14 of amino acids (see List 8.11).

(2) 17 self-complementary trinucleotide 2-circular codes of length 16 (among 780) code the
maximum number 14 of amino acids.

(3) 5 self-complementary trinucleotide 2-circular code of length 18 (among 176) code the
maximum number 14 of amino acids (see List 8.12).

(4) 1 maximum self-complementary trinucleotide 2-circular code of length 20 (among 16)
codes the largest number 13 of amino acids (see List 8.13).

We point out that no maximum self-complementary trinucleotide 2-circular code of length 20
codes M sc

2 = 14 amino acids.

List 8.11 (The 4 self-complementary trinucleotide 2-circular codes of length 14 (among 1704)
coding the maximum number M sc

2 = 14 of amino acids).

{ACA, T GT, AT C, GAT, CAG, CT G, CGA, T CG, GAA, T T C, GCC, GGC, GT A, T AC},

{ACG, CGT, AT C, GAT, CAA, T T G, CCA, T GG, GAA, T T C, GCC, GGC, GT A, T AC},

{ACT, AGT, AGG, CCT, AT G, CAT, CAA, T T G, GAA, T T C, GAC, GT C, GCA, T GC},

{ACT, AGT, AT G, CAT, CAA, T T G, CCG, CGG, GAA, T T C, GAC, GT C, GCA, T GC}.

List 8.12 (The 5 self-complementary trinucleotide 2-circular codes of length 18 (among 176) coding
the maximum number M sc

2 = 14 of amino acids).

{ACT, AGT, AGG, CCT, AT C, GAT, CAA, T T G, CAC, GT G, GAA, T T C, GAC, GT C, GCC, GGC, T AA, T T A},

{ACT, AGT, AGG, CCT, AT G, CAT, CAA, T T G, CCG, CGG, GAA, T T C, GAC, GT C, GCA, T GC, T AA, T T A},

{ACT, AGT, AGG, CCT, AT G, CAT, CCA, T GG, CCG, CGG, GAA, T T C, GAC, GT C, GCA, T GC, T AA, T T A},

{ACT, AGT, AT G, CAT, CAA, T T G, CCG, CGG, CT C, GAG, GAA, T T C, GAC, GT C, GCA, T GC, T AA, T T A},

{ACT, AGT, AT G, CAT, CCA, T GG, CCG, CGG, CT C, GAG, GAA, T T C, GAC, GT C, GCA, T GC, T AA, T T A}.

List 8.13 (The unique maximum self-complementary trinucleotide 2-circular code of length 20
(among 16) coding the largest number M sc

2 − 1 = 13 of amino acids).

{AAC, GT T, AAG, CT T, AAT, AT T, CAC, GT G, CAG, CT G, CT C, GAG, GAC, GT C, GCC, GGC, GT A, T AC, T CA, T GA}.

8.3. Amino acids coded by the trinucleotide (k, k, k)-codes. The growth function of
the trinucleotide (k, k, k)-circular codes is given in Table 6 of the companion article [12], allowing
the readers to retrieve the corresponding numbers.

8.3.1. Trinucleotide (3, 3, 3)-circular codes. All the trinucleotide (3, 3, 3)-circular codes have
length 10.

Observation 8.14. The maximum number of amino acids coded by a trinucleotide (3, 3, 3)-circular
code is M(3,3,3) = 10.

Among the 96 trinucleotide (3, 3, 3)-circular codes, there are 4 coding 6 amino acids, 14 coding 7
amino acids, 45 coding 8 amino acids, 25 coding 9 amino acids, and 8 coding M(3,3,3) = 10 amino
acids (see List 8.15).
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List 8.15 (The 8 trinucleotide (3, 3, 3)-circular codes of length 10 (among 96) coding the maximum
number M(3,3,3) = 10 of amino acids).

{AAC, ACG, AT A, CAT, CCT, GAG, GCC, GT A, T GC, T GG},

{AAG, ACC, AT A, CAT, CCT, GAC, GCG, GT A, T GC, T GG},

{ACG, AGA, AT T, CAA, CAT, GCG, GGT, GT A, T GC, T T C},

{ACG, AGT, AT A, CAA, CAT, GCG, GGA, GT T, T GC, T T C},

{AT A, AT G, CAA, CCG, CGT, GAG, GCA, GGT, T AC, T CC},

{AT A, AT G, CAG, CCA, CGT, GAA, GCG, GGT, T AC, T CC},

{AT G, AT T, CAC, CCG, CGT, GCA, GGA, T AC, T CT, T GG},

{AT G, AT T, CAC, CCT, CGG, GCA, GGA, T AC, T CG, T GT}.

8.3.2. Trinucleotide (2, 2, 2)-circular codes. Among the 72 minimum trinucleotide (2, 2, 2)-
circular codes of length 6, there are 6 coding 4 amino acids, 33 coding 5 amino acids and 33
coding 6 amino acids.

Observation 8.16. The maximum number of amino acids coded by a trinucleotide (2, 2, 2)-circular
code is M(2,2,2) = 15.

The number M(2,2,2) is already obtained with a code of length 15. Items (1)–(5) and Lists 8.17
and 8.18 complete these observations.

(1) 4 trinucleotide (2, 2, 2)-circular codes of length 15 (among 224832) code the maximum
number 15 of amino acids (see List 8.17).

(2) 74 trinucleotide (2, 2, 2)-circular codes of length 16 (among 55620) code the largest
number 14 of amino acids.

(3) 59 trinucleotide (2, 2, 2)-circular codes of length 17 (among 12312) code the largest
number 14 of amino acids.

(4) 34 trinucleotide (2, 2, 2)-circular codes of length 18 (among 1944) code the largest num-
ber 14 of amino acids.

(5) 8 trinucleotide (2, 2, 2)-circular codes of length 19 (among 144) code the largest number 14
of amino acids (see List 8.18).

We point out that no trinucleotide (2, 2, 2)-circular code of length greater than 15 codes the
maximum number M(2,2,2) = 15 of amino acids.

List 8.17 (The 4 trinucleotide (2, 2, 2)-circular codes of length 15 (among 224832) coding the
maximum number M(2,2,2) = 15 of amino acids).

{AAG, AAT, ACT, AGG, AT C, CAG, CCA, GAC, GGC, GT A, T AT, T CC, T GG, T GT, T T C},

{AAG, AAT, ACT, AGG, CAA, CCA, CT G, GAC, GCG, GT A, T AT, T CA, T GG, T GT, T T C},

{AAG, AAT, ACT, AT C, CAG, CCA, CGT, GAC, GAG, GCC, GT G, T AT, T CC, T T C, T T G},

{AAT, AGC, AT G, AT T, CAA, CAC, CCT, CGT, CT T, GAC, GAG, GCG, GT A, T AC, T GG}.
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List 8.18 (The 8 maximum trinucleotide (2, 2, 2)-circular codes of length 19 (among 144) coding
the largest number M(2,2,2) − 1 = 14 of amino acids).

{AAC, AAG, AAT, ACC, ACT, AGT, AT T, CAT, CCT, CGA, CGT, CT T, GAG, GAT, GCC, GCG, GCT, GGT, GT T},

{AAC, AAG, AAT, ACC, AGC, AGG, AT C, GAC, GCC, GGC, GT A, GT C, T AC, T AT, T CC, T GC, T GG, T GT, T T C},

{AAC, AAG, AAT, AGC, AGG, AT C, CAC, CGC, CT C, GAC, GGC, GT A, GT C, T AC, T AT, T GC, T GG, T GT, T T C},

{AAC, AAG, AAT, AGC, AT C, AT T, CAC, CGC, CT C, GAC, GAG, GGC, GT C, GT G, GT T, T AC, T GA, T GC, T T C},

{AAC, ACC, AGA, AGC, AGG, AT A, AT C, GAC, GAT, GCC, GGC, GT C, T AC, T CC, T GC, T GG, T T A, T T C, T T G},

{AAC, AGC, AT C, AT G, CAC, CGC, CT C, GAA, GAC, GGA, GGC, GGT, GT C, T AA, T AC, T AT, T GC, T GT, T T C},

{AAT, ACG, ACT, AGT, AT T, CAA, CAC, CAT, CCT, CGC, CGT, CT T, GAA, GAT, GCT, GGA, GGC, GGT, GT T},

{AAT, ACT, AGC, AGT, AT T, CAA, CAT, CCA, CCG, CCT, CGT, CT T, GAA, GAG, GAT, GCG, GCT, GGT, GT T}.

8.4. Amino acids coded by the self-complementary trinucleotide (k, k, k)-codes.
The growth function of the self-complementary trinucleotide (k, k, k)-circular codes is given in
Table 7 of the companion article [12], allowing the readers to retrieve the corresponding numbers.
There is no self-complementary trinucleotide (3, 3, 3)-circular code.
Among the 96 minimum self-complementary trinucleotide (2, 2, 2)-circular codes of length 10, there
are 1 coding 5 amino acids, 6 coding 6 amino acids, 17 coding 7 amino acids, 28 coding 8 amino
acids, 29 coding 9 amino acids and 15 coding 10 amino acids.

Observation 8.19. The maximum number of amino acids coded by a self-complementary trinu-
cleotide (2, 2, 2)-circular code is M sc

(2,2,2) = 12.

The number M sc
(2,2,2) is already obtained with a code of length 12. Items (1)–(3) and Lists 8.20, 8.21

and 8.22 complete these observations.

(1) 1 self-complementary trinucleotide (2, 2, 2)-circular code of length 12 (among 184) codes
the maximum number 12 of amino acids (see List 8.20).

(2) 4 self-complementary trinucleotide (2, 2, 2)-circular codes of length 14 (among 56) code
the maximum number 12 of amino acids (see List 8.21).

(3) 1 self-complementary trinucleotide (2, 2, 2)-circular code of length 16 (among 4) codes the
largest number 10 of amino acids (see List 8.22).

We point out that no maximum self-complementary trinucleotide (2, 2, 2)-circular code of length 16
codes the maximum number M sc

(2,2,2) = 12 of amino acids.

List 8.20 (The unique self-complementary trinucleotide (2, 2, 2)-circular code of length 12 (among 184)
coding the maximum number M sc

(2,2,2) = 12 of amino acids).

{ACG, CGT, AT C, GAT, CAA, T T G, CCA, T GG, GAA, T T C, GCC, GGC}.

List 8.21 (The 4 self-complementary trinucleotide (2, 2, 2)-circular codes of length 14 (among 56)
coding the maximum number M sc

(2,2,2) = 12 of amino acids).

{AAG, CT T, AAT, AT T, ACA, T GT, CT C, GAG, GAC, GT C, GCC, GGC, T CA, T GA},

{AAG, CT T, AAT, AT T, CCA, T GG, CT C, GAG, GAC, GT C, GCC, GGC, T CA, T GA},

{AAT, AT T, ACA, T GT, ACT, AGT, CCA, T GG, CCG, CGG, CT C, GAG, GAC, GT C},

{AAT, AT T, ACA, T GT, ACT, AGT, CCA, T GG, CCG, CGG, GAA, T T C, GAC, GT C}.
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List 8.22 (The unique maximum self-complementary trinucleotide (2, 2, 2)-circular code of length 16
(among 4) coding the largest number M sc

(2,2,2) − 2 = 10 of amino acids).

{AAC, GT T, AAG, CT T, AAT, AT T, CAC, GT G, CAG, CT G, CT C, GAG, GAC, GT C, T CA, T GA}.

9. Conclusion

The theory of trinucleotide k-circular codes developed in the companion article [12], has open
several new biological fields studied in this work.
A method was proposed to determine the ambiguous sequences from a trinucleotide k-circular
code. It also hinted at classifying the genetic sequences into three classes: (i) sequences with
reading frame retrieval; (ii) sequences with ambiguous frame; and (iii) sequences without frame
(frameless). Furthermore, this approach applied to the different classes of trinucleotide k-circular
codes led to new properties for determining the reading frame of a genetic sequence as a function
of its trinucleotide length.
In contrast to the classical view in the circular code theory, we showed that the circularity
property, i.e. the property of reading frame retrieval, is an ordinary property in genes as almost
all the 264 ≈ 1019 trinucleotide codes have a partial circularity (except the empty set and the 24
conjugacy classes codes). In particular “random” trinucleotides codes have a partial circularity.
The complete circularity is achieved with the 115, 606, 988, 558 ≈ 1011 trinucleotide circular codes.
For coding the 20 amino acids, life could have constructed an alphabet of 20 (different) nucleotides
in bijection with the 20 amino acids, avoiding thus the problem of reading frame retrieval. Due
to chemical reasons, this mathematical structure was not selected. Thus, a reduced alphabet of
only 4 nucleotides has required codes with words of length greater than 1, e.g. trinucleotide codes,
that automatically has led to a process of reading frame retrieval.
A new formula is derived to measure the reading frame loss in the trinucleotide k-circular codes.
It ranges from 0 with a circular code to 262080 with the genetic code. Furthermore, it allowed, for
the first time, to develop a model of evolution from a trinucleotide code to the genetic code, i.e.
an evolution of trinucleotide codes of cardinality greater than 20.
Three properties are identified in the evolution of primitive codes to the genetic code: the two
classical properties of circularity and self-complementarity, and the new property of trinucleotide
code balance. A method based on linear algebra is proposed to compute the balanced trinucleotide
codes, in the general case and in the self-complementarity case. The definition of a probability
ratio based on the numbers of trinucleotides codes that are balanced or not, showed that the
self-complementarity of the trinucleotide codes decreases the balanceness loss occurring when their
cardinalities increase during evolution.
The hierarchy of the trinucleotide k-circular codes is updated according to the growth functions
obtained.
Finally, the numbers of amino acids coded by the different classes of trinucleotide k-circular codes
are determined. All results converge to the evolutionary hypothesis that the 2-circular codes would
have appeared after the 3-circular codes.
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Appendix A. List of self-complementary additions to X minimising the reading
frame loss

List of pairs of complementary codons added to the trinucleotide circular code X (1.1) up to
the genetic code Xg, minimising the reading frame loss function f (Equation (5.1)). After the
trinucleotide 0-circular code, the type 2, 4, 6, 8 and the number of corresponding directed cycles in
the associated graph are given.
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Cardinality 22: {AAA, T T T } : {{2, 2}}, {AAG, CT T } : {{2, 2}}, {AGC, GCT } : {{2, 2}}, {CAC, GT G} : {{2, 2}}, {CCC, GGG} : {{2, 2}}, {GGA, T CC} : {{2, 2}}.

Cardinality 24: {AAA, T T T, AGC, GCT } : {{2, 4}}, {AAA, T T T, CAC, GT G} : {{2, 4}}, {AAA, T T T, CCC, GGG} : {{2, 4}}, {AAA, T T T, GGA, T CC} : {{2, 4}},

{AAG, CT T, AGC, GCT } : {{2, 4}}, {AAG, CT T, CAC, GT G} : {{2, 4}}, {AAG, CT T, CCC, GGG} : {{2, 4}}, {AAG, CT T, GGA, T CC} : {{2, 4}},

{AGC, GCT, CAC, GT G} : {{2, 4}}, {AGC, GCT, CCC, GGG} : {{2, 4}}, {AGC, GCT, GGA, T CC} : {{2, 4}}, {CAC, GT G, CCC, GGG} : {{2, 4}},

{CAC, GT G, GGA, T CC} : {{2, 4}}, {CCC, GGG, GGA, T CC} : {{2, 4}}.

Cardinality 26: {AAA, T T T, AGC, GCT, CAC, GT G} : {{2, 6}}, {AAA, T T T, AGC, GCT, CCC, GGG} : {{2, 6}}, {AAA, T T T, AGC, GCT, GGA, T CC} : {{2, 6}},

{AAA, T T T, CAC, GT G, CCC, GGG} : {{2, 6}}, {AAA, T T T, CAC, GT G, GGA, T CC} : {{2, 6}}, {AAA, T T T, CCC, GGG, GGA, T CC} : {{2, 6}},

{AAG, CT T, AGC, GCT, CAC, GT G} : {{2, 6}}, {AAG, CT T, AGC, GCT, CCC, GGG} : {{2, 6}}, {AAG, CT T, AGC, GCT, GGA, T CC} : {{2, 6}},

{AAG, CT T, CAC, GT G, CCC, GGG} : {{2, 6}}, {AAG, CT T, CAC, GT G, GGA, T CC} : {{2, 6}}, {AAG, CT T, CCC, GGG, GGA, T CC} : {{2, 6}},

{AGC, GCT, CAC, GT G, CCC, GGG} : {{2, 6}}, {AGC, GCT, CAC, GT G, GGA, T CC} : {{2, 6}}, {AGC, GCT, CCC, GGG, GGA, T CC} : {{2, 6}},

{CAC, GT G, CCC, GGG, GGA, T CC} : {{2, 6}}.

Cardinality 28: {AAA, T T T, AGC, GCT, CAC, GT G, CCC, GGG} : {{2, 8}}, {AAA, T T T, AGC, GCT, CAC, GT G, GGA, T CC} : {{2, 8}}, {AAA, T T T, AGC, GCT, CCC, GGG, GGA, T CC} : {{2, 8}},

{AAA, T T T, CAC, GT G, CCC, GGG, GGA, T CC} : {{2, 8}}, {AAG, CT T, AGC, GCT, CAC, GT G, CCC, GGG} : {{2, 8}}, {AAG, CT T, AGC, GCT, CAC, GT G, GGA, T CC} : {{2, 8}},

{AAG, CT T, AGC, GCT, CCC, GGG, GGA, T CC} : {{2, 8}}, {AAG, CT T, CAC, GT G, CCC, GGG, GGA, T CC} : {{2, 8}}, {AGC, GCT, CAC, GT G, CCC, GGG, GGA, T CC} : {{2, 8}}.

Cardinality 30: {AAA, T T T, AGC, GCT, CAC, GT G, CCC, GGG, GGA, T CC} : {{2, 10}}, {AAG, CT T, AGC, GCT, CAC, GT G, CCC, GGG, GGA, T CC} : {{2, 10}}.

Cardinality 32: {AAG, CT T, AGC, GCT, AT A, T AT, CAC, GT G, CCC, GGG, GGA, T CC} : {{2, 12}, {4, 2}}.

Cardinality 34: {AAG, CT T, AGC, GCT, AT A, T AT, CAC, GT G, CCC, GGG, GCA, T GC, GGA, T CC} : {{2, 16}, {4, 4}}.

Cardinality 36: {AAA, T T T, AGC, GCT, AT A, T AT, CAC, GT G, CCC, GGG, GCA, T GC, GGA, T CC, T AA, T T A} : {{2, 20}, {4, 20}}.

Cardinality 38: {AAG, CT T, ACT, AGT, AT G, CAT, CAA, T T G, CAC, GT G, CCC, GGG, CCG, CGG, CGC, GCG, CT A, T AG} : {{2, 22}, {4, 80}, {6, 74}, {8, 23}}.

Cardinality 40: {AAG, CT T, ACT, AGT, AGC, GCT, AGG, CCT, AT G, CAT, CAA, T T G, CAC, GT G, CCC, GGG, CCG, CGG, CGC, GCG} : {{2, 22}, {4, 113}, {6, 130}, {8, 48}}.

Cardinality 42: {AAG, CT T, ACG, CGT, ACT, AGT, AGC, GCT, AGG, CCT, AT G, CAT, CAA, T T G, CAC, GT G, CCC, GGG, CCG, CGG, CGC, GCG} : {{2, 24}, {4, 157}, {6, 356}, {8, 233}}.

Cardinality 44: {AAG, CT T, ACG, CGT, ACT, AGT, AGC, GCT, AGG, CCT, AT G, CAT, CAA, T T G, CAC, GT G, CCC, GGG, CCG, CGG, CGC, GCG, CT A, T AG} : {{2, 28}, {4, 204}, {6, 776}, {8, 960}}.

Cardinality 46: {AAA, T T T, AAG, CT T, ACG, CGT, ACT, AGT, AGC, GCT, AGG, CCT, AT G, CAT, CAA, T T G, CAC, GT G, CCC, GGG, CCG, CGG, CGC, GCG, CT A, T AG} :

{{2, 30}, {4, 252}, {6, 1362}, {8, 2754}}.

Cardinality 48: {AAA, T T T, AAG, CT T, ACG, CGT, ACT, AGT, AGC, GCT, AGG, CCT, AT A, T AT, AT G, CAT, CAA, T T G, CAC, GT G, CCC, GGG, CCG, CGG, CGC, GCG, CT A, T AG} :

{{2, 32}, {4, 319}, {6, 2280}, {8, 7380}}.
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Cardinality 50: {AAA, T T T, AAG, CT T, ACG, CGT, ACT, AGT, AGC, GCT, AGG, CCT, AT A, T AT, AT G, CAT, CAA, T T G, CAC, GT G, CCA, T GG, CCC, GGG, CCG, CGG, CGC, GCG, CT A, T AG} :

{{2, 36}, {4, 421}, {6, 3650}, {8, 14473}},

{AAA, T T T, AAG, CT T, ACG, CGT, ACT, AGT, AGC, GCT, AGG, CCT, AT A, T AT, AT G, CAT, CAA, T T G, CAC, GT G, CCC, GGG, CCG, CGG, CGC, GCG, CT A, T AG, GGA, T CC} :

{{2, 36}, {4, 421}, {6, 3650}, {8, 14473}}.

Cardinality 52: {AAA, T T T, AAG, CT T, ACG, CGT, ACT, AGT, AGC, GCT, AGG, CCT, AT A, T AT, AT G, CAT, CAA, T T G, CAC, GT G, CCA, T GG, CCC, GGG, CCG, CGG, CGA, T CG, CGC, GCG,

CT A, T AG} : {{2, 40}, {4, 538}, {6, 5528}, {8, 27104}},

{AAA, T T T, AAG, CT T, ACG, CGT, ACT, AGT, AGC, GCT, AGG, CCT, AT A, T AT, AT G, CAT, CAA, T T G, CAC, GT G, CCC, GGG, CCG, CGG, CGC, GCG, CT A, T AG, GCA, T GC,

GGA, T CC} : {{2, 40}, {4, 538}, {6, 5528}, {8, 27104}}.

Cardinality 54: {AAA, T T T, AAG, CT T, ACA, T GT, ACG, CGT, ACT, AGT, AGC, GCT, AGG, CCT, AT A, T AT, AT G, CAT, CAA, T T G, CAC, GT G, CCA, T GG, CCC, GGG, CCG, CGG, CGC, GCG,

CT A, T AG, GCA, T GC} : {{2, 44}, {4, 650}, {6, 7680}, {8, 45408}},

{AAA, T T T, AAG, CT T, ACG, CGT, ACT, AGT, AGA, T CT, AGC, GCT, AGG, CCT, AT A, T AT, AT G, CAT, CAA, T T G, CAC, GT G, CCC, GGG, CCG, CGG, CGA, T CG, CGC, GCG,

CT A, T AG, GGA, T CC} : {{2, 44}, {4, 650}, {6, 7680}, {8, 45408}}.

Cardinality 56: {AAA, T T T, AAG, CT T, ACA, T GT, ACG, CGT, ACT, AGT, AGC, GCT, AGG, CCT, AT A, T AT, AT G, CAT, CAA, T T G, CAC, GT G, CCA, T GG, CCC, GGG, CCG, CGG, CGA, T CG,

CGC, GCG, CT A, T AG, GCA, T GC} : {{2, 48}, {4, 789}, {6, 10458}, {8, 70153}},

{AAA, T T T, AAG, CT T, ACG, CGT, ACT, AGT, AGA, T CT, AGC, GCT, AGG, CCT, AT A, T AT, AT G, CAT, CAA, T T G, CAC, GT G, CCC, GGG, CCG, CGG, CGA, T CG, CGC, GCG,

CT A, T AG, GCA, T GC, GGA, T CC} : {{2, 48}, {4, 789}, {6, 10458}, {8, 70153}}.

Cardinality 58: {AAA, T T T, AAG, CT T, ACA, T GT, ACG, CGT, ACT, AGT, AGA, T CT, AGC, GCT, AGG, CCT, AT A, T AT, AT G, CAT, CAA, T T G, CAC, GT G, CCA, T GG, CCC, GGG, CCG, CGG,

CGA, T CG, CGC, GCG, CT A, T AG, GCA, T GC} : {{2, 52}, {4, 923}, {6, 13580}, {8, 103285}},

{AAA, T T T, AAG, CT T, ACA, T GT, ACG, CGT, ACT, AGT, AGA, T CT, AGC, GCT, AGG, CCT, AT A, T AT, AT G, CAT, CAA, T T G, CAC, GT G, CCC, GGG, CCG, CGG, CGA, T CG,

CGC, GCG, CT A, T AG, GCA, T GC, GGA, T CC} : {{2, 52}, {4, 923}, {6, 13580}, {8, 103285}}.

Cardinality 60: {AAA, T T T, AAG, CT T, ACA, T GT, ACG, CGT, ACT, AGT, AGA, T CT, AGC, GCT, AGG, CCT, AT A, T AT, AT G, CAT, CAA, T T G, CAC, GT G, CCA, T GG, CCC, GGG, CCG, CGG,

CGA, T CG, CGC, GCG, CT A, T AG, GCA, T GC, T AA, T T A} : {{2, 56}, {4, 1084}, {6, 17472}, {8, 146640}},

{AAA, T T T, AAG, CT T, ACA, T GT, ACG, CGT, ACT, AGT, AGA, T CT, AGC, GCT, AGG, CCT, AT A, T AT, AT G, CAT, CAA, T T G, CAC, GT G, CCC, GGG, CCG, CGG, CGA, T CG,

CGC, GCG, CT A, T AG, GCA, T GC, GGA, T CC, T AA, T T A} : {{2, 56}, {4, 1084}, {6, 17472}, {8, 146640}},

{AAA, T T T, AAG, CT T, ACA, T GT, ACG, CGT, AGA, T CT, AGC, GCT, AT A, T AT, AT G, CAT, CAA, T T G, CAC, GT G, CCA, T GG, CCC, GGG, CCG, CGG, CGA, T CG, CGC, GCG,

CT A, T AG, GCA, T GC, GGA, T CC, T AA, T T A, T CA, T GA} : {{2, 56}, {4, 1084}, {6, 17472}, {8, 146640}}.

Cardinality 62: {AAA, T T T, AAG, CT T, ACA, T GT, ACG, CGT, ACT, AGT, AGA, T CT, AGC, GCT, AGG, CCT, AT A, T AT, AT G, CAT, CAA, T T G, CAC, GT G, CCA, T GG, CCC, GGG, CCG, CGG,

CGA, T CG, CGC, GCG, CT A, T AG, GCA, T GC, GGA, T CC, T AA, T T A} : {{2, 60}, {4, 1260}, {6, 21952}, {8, 199472}},

{AAA, T T T, AAG, CT T, ACA, T GT, ACG, CGT, AGA, T CT, AGC, GCT, AGG, CCT, AT A, T AT, AT G, CAT, CAA, T T G, CAC, GT G, CCA, T GG, CCC, GGG, CCG, CGG, CGA, T CG,

CGC, GCG, CT A, T AG, GCA, T GC, GGA, T CC, T AA, T T A, T CA, T GA} : {{2, 60}, {4, 1260}, {6, 21952}, {8, 199472}}.

Cardinality 64: {AAA, T T T, AAG, CT T, ACA, T GT, ACG, CGT, ACT, AGT, AGA, T CT, AGC, GCT, AGG, CCT, AT A, T AT, AT G, CAT, CAA, T T G, CAC, GT G, CCA, T GG, CCC, GGG, CCG, CGG,

CGA, T CG, CGC, GCG, CT A, T AG, GCA, T GC, GGA, T CC, T AA, T T A, T CA, T GA} : {{2, 64}, {4, 1440}, {6, 26880}, {8, 262080}}.
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