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Abstract
A surrogate model is developed to accurately approximate a two-dimensional hydrodynamics numerical solver in order to

conduct a reduced-cost variance-based global sensitivity analysis of the hydraulic state. The impact of uncertainties in river

bottom friction and boundary conditions on the simulated water depth is analyzed for quasi-unsteady flows. An autoen-

coder technique adapted to non-linear variable dimension reduction is used to reduce the multi-dimensional model output

so that the formulation of the surrogate remains computationally parsimonious. In addition, following the divide-and-

conquer principle, a mixture of local polynomial chaos expansions is proposed to deal with non-linearity in the hydraulic

state with respect to uncertain inputs. Machine learning techniques are used to automatically partition the input space into

clusters that are not affected by non-linearities and support accurate surrogates. This combined strategy is applied to a

reach of the Garonne River where river and floodplains dynamics are simulated by the numerical solver Telemac-2D. The

merits of this strategy are highlighted when the flood front reaches regions where the topography features a strong gradient

and where, consequently, strong non-linearities occur between the water depth and friction as well as hydrologic input

forcing. By applying this strategy, the Q2 metric improves by 90% compared to a classical polynomial chaos expansion

surrogate, resulting in a much more reliable sensitivity analysis. This is particularly important in floodplain areas where

human and economic activities are at stake.

Keywords Hydrodynamics � Machine learning � Mixture of experts � Sobol indices � Surrogate model � Uncertainty
quantification

1 Introduction

1.1 Flood monitoring

According to the World Health Organization (WHO), in

Europe, floods are the most common natural hazard leading

to emergencies, causing extensive damage, disruption and

health effects (WHO 2017). Over the last 20 years, flood

events have been recorded in 49 of the 53 member states.

Estimates from WHO Regional Office for Europe, based on

data from the international disaster database (EM-DAT),

indicate that approximately 400 floods have caused the

deaths of more than 2000 people, affected 8.7 millions

others, and generated a loss of at least 72 billion euros over

2000–2014 (Guha-Sapir et al. 2015). The magnitude of the

physical and human costs of such events can be reduced if

adequate emergency prevention, preparedness, response,

and recovery measures are implemented in a sustainable

and timely manner (WMO 2013). Resilient and proactive

health systems that anticipate needs and challenges are

more likely to reduce risks and respond effectively during

emergencies, thereby saving lives and alleviating human

suffering. In this sense, several measures have been taken
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by governments and environmental organizations to mini-

mize these effects (EFAS 2017), including the assessment

and mapping of flood and tsunami health risks in order to

indicate areas at highest risk, identify and analyze capaci-

ties for flood risk prevention, preparedness, response, and

recovery with respect to the assessed flood risk, determine

recommended actions for flood health emergency risk

management, and assess resources and identify priorities

for action.

The climate community estimates that about 1.3 billion

people will be affected by flooding by 2050 due to climate

change, increase in population density, and global degra-

dation of environmental conditions (Arnell and Gosling

2016). It is increasingly clear that climate change has

detectably influenced several water-related variables that

contribute to floods, such as rainfall and snow melt. As

global warming contributes to exacerbating sea level rise

and extreme weather, floods are expected to grow by

approximately 45% by the end of this century (Kulp and

Strauss 2019). Thus, it is crucial to understand, assess, and

anticipate flood events.

Flood monitoring benefits from world wide efforts by

international programs dedicated to Earth observation from

space, such as Copernicus, as well as from space agencies

that support missions, such as Sentinel, or Surface Water

Ocean Topography (SWOT) designed to study the topog-

raphy of oceans and continental bodies of water (Bianca-

maria et al. 2016). In spite of the increasing volume,

resolution, and precision of remote sensing water surface

elevation observations, the prediction of flood events

requires the use of reliable and robust numerical hydro-

dynamic models.

In France, the forecasting and vigilance of hydrological

events likely to generate floods is ensured by Service de

Prévision des Crues (SPC) whose action is coordinated by

Service central d’hydrométéorologie et d’appui à la

prévision des inondations (SCHAPI) of the Ministry of the

Ecological Transition. The SPC/SCHAPI network works in

partnership with Météo-France, which provides it with the

meteorological variables (observations and forecasts) nec-

essary to drive their hydrodynamic models.

1.2 Hydrodynamic numerical solvers

River hydrodynamic models are used to predict river water

depth and discharge from which flood risk can be assessed.

These predictions provide a Decision Support System

(DSS) (Daupras et al. 2015) with informed hydraulic

parameters and variables (water depth, discharge, and

velocity) along with their evolution in the future for lead-

times that range from a couple of hours to a couple of days

depending on the dynamics of the catchment. DSS are thus

able to manage flood risk and eventually issue alerts for

protective actions. Several research projects and concerted

actions have been funded on the subject of river flood

monitoring. For instance, the Hydrologic Ensemble Pre-

diction EXperiment (HEPEX) aims to develop and

demonstrate new hydrologic forecasting technologies and

to facilitate the implementation of beneficial technologies

into the operational environment (Schaake et al. 2006).

The European Flood Awareness System (EFAS), initiated

in 2003 (Thielen et al. 2009), seeks to improve flood pre-

paredness in transnational European river basins by pro-

viding medium-range deterministic and probabilistic flood

forecasting information, from 3 to 10 days in advance, to

national hydro-meteorological services, e.g., SPC and

SCHAPI.

Hydrodynamic numerical models are generally based on

a deterministic approach that solves the Shallow Water

Equations (SWE) derived from the free surface Navier-

Stokes equations (de Saint-Venant 1871; Sohr 2001) and

are prone to uncertainties. The uncertainty in the water

depth and discharge field computed with a hydrodynamic

solver is due to uncertainty in simplifying assumptions

with respect to physics, particularly with respect to the flow

dimension, approximate knowledge of hydraulic parame-

ters, and imperfect description of forcing and geographical

data. Uncertainty quantification aims to quantify and rank

the major sources of uncertainties, thus allowing for a

better informed and, eventually, improved hydraulic

forecast.

1.3 Surrogate models for sensitivity analysis

Global Sensitivity Analysis (GSA) consists in studying

how the uncertainty in the output of a model (numerical or

otherwise) can be apportioned to the different sources of

uncertainty in the model input (Saltelli 2002; Razavi et al.

2021). The aim of GSA is to identify and rank the

parameters that contribute mostly to the variability of the

output of a model, also called a Quantity of Interest (QoI).

It thus identifies which source of uncertainty should be

reduced to most efficiently reduce uncertainty in the sim-

ulated QoI. A popular approach for sensitivity analysis is

based on the decomposition of the output variance as the

sum of the contributions associated with each input

parameter and their combinations from which Sobol sen-

sitivity indices are computed (Archer et al. 1997; Saltelli

2010). Extensions of those indices exist in the case of

functional output (De Lozzo and Marrel 2017). This

approach thus relies on sampling the uncertainties in the

input space and the propagation of uncertainties through

the model. Monte Carlo (MC) simulation is the most

common technique used for sampling and Sobol indices

computation (Sobol’ 2001). However, its convergence is

slow as it scales inversely to the square root of the MC
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sample size and its cost becomes prohibitive for compu-

tationally expensive models such as two-dimensional (2D)

hydrodynamic solvers, especially in the context of real-

time forecasting. To overcome this limitation, surrogate

models may be used in place of the direct solver (Razavi

et al. 2012). A surrogate model is a cheap-to-evaluate and

parsimonious data-driven emulator of a reference model.

This reference model can be seen as a black box that only

provides a limited number of evaluations or observations.

Thus, its output is known only at a few selected input

points by means of a design of experiments. Then, the

surrogate model seeks to approximate the reference model

from this sparse input-output dataset. A variety of

approximation techniques have been developed and

applied as surrogates, such as linear regression mod-

els (Haldar and Mahadevan 1999), multidimensional scal-

ing (Kruskal and Wish 1978), splines (Friedman 1991),

Gaussian process (Rasmussen and Williams 2006), radial

basis functions (Buhmann 2003), polynomial chaos

expansions (Ghanem and Spanos 1991; El Garroussi et al.

2019), and artificial neural networks (Kasiviswanathan and

Sudheer 2013). Some of them can interpolate the learning

input-output dataset, e.g., Gaussian process regression,

whereas others are designed to model the relationship

between a QoI and sources of random uncertainty, e.g.,

polynomial chaos expansions.

The surrogate model based on

Polynomial Chaos Expansion (PCE) (Lucor et al. 2004;

Le Maı̂tre and Kino 2010) has proven useful in a wide

range of applications, providing a low-cost yet accurate

meta-model to estimate sensitivity indices (Sudret 2008;

Crestaux et al. 2009). This surrogate model relies on the

decomposition of the output random variable onto an

orthonormal basis of polynomial functions. The polyno-

mial coefficients are obtained either by using intrusive

methods requiring access to the analytical code behind the

numerical solver (e.g., Galerkin projection) or non-intru-

sive methods that rely on a learning database using the

numerical solver as a black box (e.g., least square

approximation). For steady flow in 1D and 2D, Roy et al.

(2018), Goutal et al. (2018), and El Garroussi et al. (2020)

show that the PCE surrogate model succeeds in repre-

senting the response in water depth to uncertainties in river

bottom friction and upstream discharge, allowing for an

efficient computation of Sobol indices, water depth

Probability Density Function (PDF), and water depth error

covariance matrix over a reach of the Garonne River in

southwest France.

However, PCE surrogates tend to struggle when applied

to problems that feature non-polynomial non-linearities (Li

and Ghanem 1998) or stochastic discontinuities that may

occur for time-varying processes (Najm 2009). Indeed, for

unsteady flow with a 2D hydrodynamic model, strong non-

linearities in the water depth response to changes in bottom

friction and upstream discharge may occur when water

overflows the minor bed of the river; especially near dikes

and in areas where bathymetry features strong spatial

gradients. These non-linearities tend to exacerbate in

unsteady regime, when the flood front, characterized by a

non-zero velocity and a zero water depth, enters a previ-

ously dry floodplain domain. In this context, classical PCE

meta-modeling is no longer adequate (Le Maı̂tre 2004;

El Garroussi et al. 2020). Different approaches with vary-

ing degrees of complexity have been proposed in the lit-

erature to address the issue of PCE meta-modeling in the

presence of non-linearities. Examples include multi-reso-

lution/multi-element polynomial chaos expansions (Le

Maı̂tre et al. 2004; Wan and Karniadakis 2005), regression

trees (Torre et al. 2019; Choubin et al. 2019; Marelli et al.

2021), multivariate adaptive regression splines (Friedman

1991; Dertimanis et al. 2018), among others. They rely on

the idea of partitioning the input parameter space into

(often disjoint) sub-spaces followed by the use of intrusive

or non-intrusive methods to estimate PCE coefficients. The

surrogate model strategy should also be compatible with

the dimension of the numerical solver output. Indeed, for

functional output discretized over a mesh grid, the con-

struction of a surrogate per mesh node would be compu-

tationally expensive, and could potentially lead to

inconsistency as spatial coherence of the signal simulated

field is not accounted for. The dimension of the model

output should thus be reduced before the meta-modeling

algorithm is applied (Bellman and Kalaba 1961; Lataniotis

et al. 2020; El Garroussi et al. 2019). Dimension reduction

stands in the transformation of high-dimension data into a

meaningful representation of reduced dimension. On one

hand, linear strategies, such as

Principal Component Analysis (PCA) (Wold et al. 1987),

linear discriminant analysis (Izenman 2008), factor analy-

sis (Yong and Pearce 2013), and 3-way tables (Cichocki

et al. 2009) are often used. On the other hand, kernel PCA

(Schölkopf et al. 1997), Laplacian eigenmap (Belkin and

Niyogi 2003), locally linear embedding (Roweis and Saul

2000), isomap (Tenenbaum et al. 2000), and

AutoEncoder (AE) (Wang et al. 2016) are used to deal

with non-linearities within data.

1.4 Objective and outline

In this paper, a surrogate model is developed to represent

the 2D water depth field over the river and floodplain of the

Garonne river, with respect to bottom friction and dis-

charge. The surrogate model strategy aims to overcome the

limitations of the classical PCE approach from El Gar-

roussi et al. (2020), which provides a poorly predictive

surrogate model in the presence of non-linearities for a
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transient flow. Both PCA and AE algorithms are investi-

gated to reduce the dimension of the hydraulic output field

so that the computational cost of the surrogate construction

remains parsimonious. A Mixture of Polynomial Chaos

Expansion (MPCE) approach is then implemented in the

reduced space. Machine Learning (ML) techniques are

used to partition the input space into disjoint clusters that

are not affected by non-linearities and support an accurate

PCE surrogate. The overall strategy, further denoted as

reduced Mixture of Polynomial Chaos Expansions

(rMPCE), allows to take advantage of the advances made

in PCE surrogate modeling for local regression as well as

in ML for dimension reduction and clustering. The

resulting surrogate is used to carry out a GSA in order to

rank the sources of uncertainty with a variance-based

sensitivity analysis in the presence of non-linearities and at

a parsimonious computational cost. The rMPCE approach

and its application for the computation of Sobol indices for

a reach of the Garonne river is presented.

The paper is organized as follows. Section 2 provides a

brief overview of uncertainty in hydraulics. Section 3

presents the methods for dimension reduction, clustering

and classification, and polynomial chaos for the mixture of

experts surrogate. It also presents metrics to assess the

validity of the surrogate and the formulation of Sobol

indices. Results are presented in Sect. 4, illustrating the

capability of the rMPCE to deal with both high-dimension

and complex non-linear processes. Finally, concluding

remarks, limitations, and perspectives are given in Sect. 5.

2 Uncertainty quantification for hydraulic
modeling

2.1 The Garonne catchment

The study area extends over a 50 km reach of the Garonne

river (southwest France) from Tonneins (upstream) to the

confluence with the rivers Lot and La Réole (downstream)

(see Fig. 1). It has a population of nearly 40,000 mainly

concentrated in Tonneins and Marmande. This part of the

valley is identified as an area at high risk of flooding (Lang

and Coeur 2014). Significant floods have affected this

territory, such as the floods of December 1981 and

February 2003, to a lesser extent January 2014, and more

recently January 2021. Significant floods occurred also in

June 1875, March 1930, and February 1952. The climate in

the Marmande area is a degraded oceanic climate. Due to

the downstream situation of the territory of Marmande,

floods can occur at any season and with various origins

(oceanic, Pyrenean, Mediterranean, Cévenol). Their char-

acteristics are very different from one season to another,

but the threats they represent remain very important. This

part of the valley was equipped in the nineteenth century

with infrastructure to protect the Garonne floodplain from

flooding events. A system of longitudinal dykes and weirs

was progressively constructed after the 1875 flood in order

to protect floodplains and organize submersion and flood

retention areas. Protections on the Garonne river form a

system of successive storage areas for the floodplain

beyond the dikes. This configuration is similar to the

characteristic of other managed rivers such as the Rhone

and the Loire. The QoI for the study is the water depth

simulated over the river bed and the floodplain using the bi-

dimension numerical model presented in Sect. 2.2. The

uncertainties in the model parameters and forcing as well

as in the model outputs are described in Sect. 2.3.

2.2 2D hydraulic modeling

The Shallow Water Equations (SWE) (de Saint-Venant

1871) are commonly used in environmental hydrodynamics

modeling. They are derived from the Navier-Stokes equa-

tions (Sohr 2001) and based on the assumption that the

horizontal length scale is significantly greater than the

vertical scale, implying that vertical velocities are negli-

gible, vertical pressure gradients are hydrostatic, and hor-

izontal pressure gradients are due to displacement of the

free surface. SWE express mass and momentum conser-

vation averaged in the vertical dimension. The non-con-

servative form of the equations is written in terms of the

water depth h and the horizontal components ux and uy of

the velocity u! in Cartesian coordinates (Hervouet 2007a):

Continuity:
oh

ot
þ u!:grad

��!
hþ h div u!¼ 0 ð1aÞ

Momentum along x :
oux
ot

þ u!:grad
��!

ux
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��!
ux

� �

ð1bÞ
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ouy
ot

þ u!:grad
��!
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• qw/qair [kg m�3] is the water/air density;

• Patm [Pa] is the atmospheric pressure;

• uw;x and uw;y [m s�1] are the horizontal wind velocity

components;

• CD [-] is the wind influence coefficient;

• Ks [m1=3 s�1] is the river bed and floodplain friction

coefficient, using the Strickler formulation (Bernardara

et al. 2010; Strickler 1981);

• Fx and Fy [m s�2] are the horizontal components of

external forces (friction, wind and atmospheric forces),

• h [m] is the water depth;

• H ¼ hþ zB [m] is the water level with zB the bottom

level;

• ux and uy [m s�1] are the horizontal components of

velocity;

• me [m2 s�1] is the water diffusion coefficient; and

• g [m s2] is the standard gravity.

To solve the system of SWE (1), initial conditions

hðx; y; t ¼ 0Þ ¼ h0ðx; yÞ, uxðx; y; t ¼ 0Þ ¼ ux;0ðx; yÞ and

uyðx; y; t ¼ 0Þ ¼ uy;0ðx; yÞ are provided along with bound-

ary conditions (BC) at the surface, the bottom, and at

upstream and downstream frontiers: hðxBC; yBC; tÞ ¼
hBCðtÞ.

Due to the presence of non-linear terms in SWE, a

closed-form solution of those equations is not available,

except for very simplified cases. Therefore, they are dis-

cretized in space/time and their dynamic is numerically

integrated using various schemes, e.g., method of charac-

teristics (Chintu 1986), (discontinuous) Galerkin metho-

d (Eskilsson and Sherwin 2004), finite-element

method (Hervouet 2007b), and finite-volume

method (Anastasiou and Chan 1997), among others.

In this study, the Telemac-2D (T2D)1 solver (Galland

et al. 1991) based on a finite-element method is

used (Hervouet 2007b). The equations are solved over a

triangular mesh (see Fig. 1) featuring about 41,000 nodes,

refined in the river bed and near the dykes. The discharge at

Tonneins is imposed as the upstream boundary condition

where the state-discharge rating curve at La Réole is

imposed as the downstream boundary condition. A quasi-

unsteady state is considered, which refers to the

Fig. 1 Satellite image of the Garonne river (southwest France) 50 km

reach between Tonneins (upstream) and La Réole (downstream) on

which the mesh is overlaid. Inset at the bottom left is a zoom of the

mesh on the Garonne in Marmande regions. The red circles indicate

monitoring stations and the blue arrow indicates the flow direction

1 www.opentelemac.org.
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convergence to a steady state. Indeed, the upstream dis-

charge is set as a ramp starting from the initial condition

value (1500 m3 s�1) linearly increasing to a constant Qup

(denoted Q for simplicity in the following). Each T2D

transient simulation is integrated over 3 days (53 time steps

of 5000 s) so that a steady flow associated to Q is pre-

scribed over the entire area at the end of Day 3.

The Strickler friction coefficient Ks is uniformly defined

over four areas as displayed in Fig. 2. The friction coeffi-

cient values result from a calibration procedure over a set

of non-over flowing events. These are set, respectively, to

45, 38, and 40 m1=3 s�1over upstream, middle and down-

stream parts of the river bed and 17 m1=3 s�1over the

floodplain. More details on the Garonne river T2D model

are given in Besnard and Goutal (2011).

2.3 Hydraulic uncertainty quantification

Typically, uncertainties are classified in two groups: epis-

temic uncertainty, resulting from incomplete knowledge of

the correct settings of the model’s parameters, and aleatory

uncertainty, resulting from the incomplete knowledge of

the true value of the physical system and usually linked to

the aleatory nature of the physics. In this study, both

epistemic and aleatory uncertainties are considered by

investigating the effect of uncertainties in friction coeffi-

cients and in the upstream discharge forcing on water depth

for the transient flow simulated with T2D.

Indeed, the small number of discharge and water depth

measurements limits the spatial description and calibration

of the friction in the river bed and the floodplain, leading to

discontinuous values between friction areas. The Ks coef-

ficients setting is indeed prone to uncertainty related to the

zoning assumption, the calibration procedure, and the set of

calibration events. This uncertainty is more significant in

the floodplain area where there is no observing station. The

limited number of measurements also yields errors in

upstream inflow to the river as it relies on the use of a

rating curve, usually extrapolated for high flow, to translate

the inflow from the measured water depth.

In the GSA sampling, the uncertainties in the friction

coefficients and inflow are assumed to be independent. This

assumption brings significant simplification with respect to

reality where friction depends on water level. Yet it allows

for a simplified description and calibration of friction

coefficients, given the density of the observing network.

Classically, according expert knowledge, the friction

coefficient is contained in an interval bounded by physical

values depending on the roughness of soil mate-

rial (Vazquez 2006; Goutal et al. 2018). Consequently,

using the principle of maximum entropy (Shore and

Johnson 1980), the distribution of the bounded Strickler

friction coefficient is uniform. The boundaries of the uni-

form distribution are arbitrarily chosen �5 from the cali-

brated value (Besnard and Goutal 2011) for the main

channel roughness, as shown in Table 1. The Strickler

friction coefficient of the floodplain is characterized by

high uncertainty due to different land cover; therefore, the

support of its distribution is wider and the boundaries have

been chosen based on expert judgment. It should be noted

that small Strickler’s coefficient values are considered to

account for the presence of vegetation or urban areas in the

floodplain.

The upstream discharge is estimated using an extrapo-

lation of discharge frequency curves at high probabilities

(75 %) of occurrence of floods with a return period of two

years. Confidence intervals on the extrapolated value can

be derived. In that case, when the mean value (discharge of

the two-year return period) and the standard deviation

(extrapolated from the confidence intervals) are known, the

maximum entropy distribution is Gaussian (Shore and

Johnson 1980). The upstream discharge is, therefore,

assumed to follow a Gaussian distribution centered on its

biennial value at Tonneins (3300 m3 s�1), with a standard

deviation of 1100 m3 s�1. Moreover, to avoid unrealistic

values, the PDF is truncated at 600 m3 s�1, corresponding

to the annual mean discharge, and 6000 m3 s�1, corre-

sponding to the vicennial flood at Tonneins. The charac-

teristics of the uncertain model inputs distributions are

summarized in Table 1.

3 Uncertainty propagation using reduced
mixture of polynomial chaos expansions

3.1 Introduction to the rMPCE strategy

This section proposes a reduced Mixture of Polynomial

Chaos Expansions (rMPCE). This advanced surrogate

model strategy aims to predict a 2D output field subject to

non-linearities with respect to sub-divided input space

variables. This strategy features an output reduction stage

and a local regression stage via clustering and classifica-

tion. These stages are detailed in the following after a

general presentation of the strategy.

The direct model in denoted by M. It computes a p

length real output y ¼ y1; . . .; yp
� �

from a d length real

input x ¼ x1; . . .; xdð Þ. The learning set consists of n (input,

output) samples, a.k.a., evaluations, snapshots, or obser-

vations, is denoted xðiÞ; yðiÞ
� 	

i2L , where L ¼ f1; . . .; ng
is the set of indices of the n learning samples. The corre-

sponding learning input matrix is denoted X with ½X�ij ¼
x
ðiÞ
j and the learning output matrix is denoted Y with
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½Y�ij ¼ y
ðiÞ
j . Lastly, underline is reserved for random vari-

ables (e.g., u or U) while vectors and matrices are written

in bold and in lower case (e.g., x) and upper case (e.g., X),

respectively.

Transposed to the test case, these elements are defined

as follows. The vector of upstream inflow and spatially

defined friction coefficients x ¼ ðQ;KsÞ is denoted x when

treated as a random variable. y ¼ h1; . . .; hp
� �

is the 2D

water depth field at the T2D simulation time step of interest

T, discretized over a mesh of size p and denoted y when

treated as a random variable. The time step of interest

corresponds to the flood’ s rising part; it occurs 1 day, 2 h,

21 min and 20 s after the beginning of the studied flood. At

this simulation time, the classical PCE leads to poor results

(El Garroussi et al. 2020). Without loss of generality, the

proposed strategy remains applicable for all time steps.

The rMPCE strategy is a two-stage process as illustrated

in Fig. 3:

1. an offline learning stage that builds the model from a

learning database,

2. an online prediction stage that evaluates the model to

issue a prediction.

Fig. 2 Position of the five uncertain hydraulic variables over the study area: upstream discharge Qup, floodplain bottom friction Ks;1, upstream,

middle, and downstream river bed bottom friction Ks;2, Ks;3, and Ks;4, respectively

Table 1 Distribution of input variable uncertainties

Uncertain input variable Calibration values Distribution Variation coefficient (%)

Q [m3 s�1] – Nð3 300; 1 100Þf600; 6 000g 33.3

Ks;1 [m1=3 s�1] 17 U½5; 20� 34.6

Ks;2 [m1=3 s�1] 45 U½40; 50� 6.4

Ks;3 [m1=3 s�1] 38 U½33; 43� 7.6

Ks;4 [m1=3 s�1] 40 U½35; 45� 7.2
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Moreover, the hyper-parameters of the surrogate model can

be optimized in an outer loop around the learning stage in

order to increase its accuracy measured on a validation

database.

The learning stage developed in algorithm 1 features

four main steps:

1. Reduction of the output variable dimension from p to

~p\p: the original space of dimension p is replaced

with a latent space of dimension ~p built from the

learning output matrix Y. The learning output matrix

Y 2 Mn;pðRÞ is then replaced with the reduced learn-

ing output matrix ~Y 2 Mn; ~pðRÞ, which is computa-

tionally easier to handle. This reduction step is called

encoding while the reverse is called decoding and maps

from the latent space R ~p to the original one Rp.

2. Unsupervised clustering of the n learning output data

into K groups, a.k.a., clusters: the reduced learning

output matrix ~Y is split into K local reduced learning

output matrix ~Y
ðkÞ 2 Mnk ; ~pðRÞ; k 2 f1; . . .;Kg, where

the nk observations in ~Y
ðkÞ

share common patterns;

Lk � L is the sub-set of the learning indices of the

samples belonging to the kth cluster, with [K
k¼1Lk ¼

L and Lk \Lk0 ¼ ; for any k0 6¼ k.

3. Classification of the input space into K subspaces,

based on the clustering results:

• This step defines the boundaries of separation

between the different classes within the input space.

• This step provides a classifier taking a x as input

and returning its degree of membership CkðxÞ to the

kth class, with CkðxÞ� 0 and
PK

k¼1 CkðxÞ ¼ 1 by

construction.

4. Construction of a 2D-functional output PCE surrogate

for each cluster; e.g., for the kth cluster:

• The dimension of the local output matrix YðkÞ ¼
y
ðiÞ
j

� �

i 2 Lk

1� j� p

related to the kth cluster is reduced

from p to ~p and denoted
gYðkÞ .

• A multi-output PCE is built from the local learning

input matrix XðkÞ ¼ x
ðiÞ
j

� �

i 2 Lk

1� j� d

and the

reduced local output matrix
gYðkÞ .

• The local surrogate model maps from the input

space to the local latent space and requires a

decoding step to go back to the original local output

space.
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Fig. 3 Flowchart of the rMPCE surrogate model: learning phase (left hand side) and prediction phase (right hand side)
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The prediction phase predicts the water depth ŷ of a

given input x. First, the degree of membership to the

K classes is computed from the classifier: C1ðxÞ; . . .;CKðxÞ.
Then, the local PCE models are evaluated at x. Lastly, the

global prediction in the latent space is a convex combi-

nation of the local ones:

~̂y ¼
X

K

k¼1

CkðxÞPCEkðxÞ

and ~̂y is expanded to the original output space, resulting in

the prediction ŷ.

The current study is limited to hard classification, where

a single class is attached to a given x. This implies that

Ck : R
d ! f0; 1g instead of Ck : R

d ! ½0; 1�. This results

in the evaluation of a single local PCE; more precisely, the

one indexed by k̂ 2 fk : CkðxÞ ¼ 1g.

3.2 Dimension reduction

In spite of recent advances that propose to estimate the

PCE coefficients on a sparse grid (Eldred and Burkardt

2009) or with basis adaptive methods (Li and Ghanem

1998), the formulation of a surrogate model remains

computationally expensive, especially when the dimension

of the output is large. A common strategy applied here, is

to build a surrogate model in a reduced output space,

evaluating it for an input value, and then projecting its

output value onto the original output space. In this study,

two dimension reduction methods are investigated: PCA

and AE. Both methods are applied on Y 2 Mn;pðRÞ, the
matrix of the n evaluations of the p-length output y as

illustrated in Fig. 3.

In this study, the output y is the water depth field dis-

cretized over the T2D unstructured mesh over the Garonne

area. The output matrix Y is encoded onto a reduced latent

space (see Fig. 4) as the matrix of the n evaluations of the

~p-length reduced output ~y, ~Y 2 Mn; ~pðRÞ, and is further

used for the clustering stage. Moreover, any element of the

latent space can be decoded onto the original output space.

In particular, the initial matrix Y can be reconstructed, with

some loss of information quantifying the performance of

the reduction dimension technique.

3.2.1 Principal components analysis

PCA (Wold et al. 1987; Abdi and Williams 2010) is a

popular data processing and dimension reduction technique

with numerous applications in hydraulics (El Garroussi

et al. 2019; Noori et al. 2010). PCA seeks an orthogonal

latent space spanned by the space directions of greatest

variance, expressed as linear combinations of the original

variables. PCA can be computed via the

Singular Value Decomposition (SVD) (Abdi and Williams

2010) of the matrix Y 2 Mn;pðRÞ.
The SVD of Y reads Y ¼ UDV>, where U is an n	 n

orthogonal matrix, V is a p	 p orthogonal matrix, and D is

a rectangular diagonal matrix with non-negative real

numbers on the diagonal. Columns of UD are called

principal components (PCs) and form an orthonormal basis

in which the n samples yð1Þ; . . .; yðnÞ are linearly uncorre-

lated. Then, the projection of the latter on the ~p� p first

PCs reads: ~Y ¼ ½U�:;1: ~p½D�1: ~p;1: ~p 2 Mn; ~pðRÞ, thus reducing

the output data dimension from p to ~p. The column of V

displays the corresponding weights associated to the PCs

and any observation ~y in the latent space can be projected

onto the original space: y ¼ V>
 �

1:p;1: ~p
~y.

PCA allows summarizing data when the interesting

patterns increase the variance of projections onto orthog-

onal components. But PCA also has limitations that are

developed in Lever et al. (2017): the underlying structure

of the data must be linear, patterns that are highly corre-

lated may be unresolved because all modes are
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uncorrelated, and the goal is to maximize variance and not

necessarily to find clusters.

3.2.2 Autoencoder

In order to deal with non-linear structure in the data matrix

Y, the use of an AE (Hinton and Salakhutdinov 2006; van

der Maaten et al. 2007) for dimension reduction was

investigated. It relies on an unsupervised artificial neural

network that encodes a variable of dimension p into a latent

variable of dimension ~p� p and decodes this latent one to a

recovered variable of dimension p, as close as possible to

the original. The latent space is often called a bottleneck

because of the particular shape of this neural network,

illustrated in Fig. 4. In this paper, an AE with a symmet-

rical architecture (Nowlan and Hinton 1992) was used in

order to reduce the number of parameters to be optimized

in the network; it is based on encoder-decoder weight

sharing. Steps needed for encoding and decoding are pre-

sented in Algorithms 3 and 4, respectively. An ‘-depth

encoder maps y 2 Rp onto the latent space R ~p using ‘

successive encoding transformations:

8l 2 f1; . . .; ‘g;ul ¼ rl wlul�1 þ blð Þ 2 Rpl

with u0 ¼ y. wl 2 Mpl;pl�1
ðRÞ is a matrix of weight

parameters, bl 2 Rpl is a vector of bias parameters, and

rl : R
pl 7!Rpl is an activation function. The ‘ successive

layers are of decreasing dimension:

p ¼ p0 [ pl [ . . .[ p‘ ¼ ~p.

Then, the decoder maps the latent variable u‘ 2 R ~p onto

the original space, using ‘ successive decoding transfor-

mations using the transposes of the encoder weight matri-

ces as weight matrices for the decoder:

8l 2 f1; . . .; ‘g;u‘þl ¼ r‘�l w
T
‘�lþ1u‘þl�1 þ b‘þl

� �

2 Rp‘�l :

with r0 being the identity function.

Fig. 4 Output space dimension

reduction consists of encoding

the output variable into a

reduced dimension space, called

the latent space. The initial

water depth vector is

reconstructed as the reduced

space vector is decoded onto the

original output space
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Thus, an autoencoder /‘ ¼ /d;‘ 
 /e;‘ is a sequence of

2‘ transformations, the first ‘ performing an encoding /e;‘ :

Rp 7!R ~p and the next ‘ a decoding /d;‘ : R
~p 7!Rp. The

learning phase seeks the weights and biases minimizing the

error k/‘ðYÞ � Yk22 while the use phase expands the

dimension of a vector ~y 2 R ~p with the decoding function:

/d;‘ð~yÞ 2 Rp. These weights and biases are usually ini-

tialized randomly and updated during training through the

gradient backpropagation technique (Amari 1993).

3.3 Clustering and classification tools

Clustering is an unsupervised learning process that classi-

fies data for which variables are observed via labels by

using similarity measures. This approach is widely used for

the purposes of data visualization, data compression, data

denoising, or to better understand the correlations present

in the data. In the present work, clustering methods are

applied to the matrix ~Y resulting from the output dimension

reduction stage as shown in Fig. 3. It seeks to group the n

dimension-reduced observations ~yð1Þ; . . .; ~yðnÞ
n o

into K

clusters and create the corresponding sub-sets of learning

indices L1; . . .;LK , with [K
k¼1Lk ¼ L and Lk \Lk0 ¼

; if k 6¼ k0. The kth cluster is associated with the label k,

also known as the index or class. Then, these labels are

mapped to the input space, here upstream forcing and

bottom friction, to train a classifier x ! C1ðxÞ; . . .;CKðxÞð Þ
mapping from Rd to ½0; 1�K to identify the boundaries

between these clusters in the input space and to give the

degree of membership of an input x to each of the corre-

sponding classes. In the case of hard classification, only

one class is associated to the input x and so the classifier

maps from Rd to f0; 1gK .

3.3.1 Clustering

Formally, clustering involves partitioning the set of

observations L into K disjoint sets L1; . . .;LK by

returning labels indicating the index of the class of mem-

bership of each observation. Both k-means (Likas et al.

2003) and Gaussian mixture models (Mclachlan and Bas-

ford 1988) clustering algorithms are investigated in this

paper. Both require prescribing the number of clusters K.

The latter can either be prescribed manually based on the

user’s knowledge or estimated from a selection criteria

such as the silhouette criterion (Rousseeuw 1987) that

evaluates the separation distance between the resulting

clusters. For a given observation indexed by i, belonging to

the kth cluster, the silhouette criterion reads:

skðiÞ ¼
bkðiÞ � akðiÞ

maxðakðiÞ; bkðiÞÞ
ð2Þ

where:

• akðiÞ ¼ 1
jLk j�1

P

j2Lk ;j 6¼i dði; jÞ is the average distance of
the ith observation to all other observations in the kth

cluster, with dði; jÞ ¼ ~yðiÞ � ~yðjÞ
�

�

�

�

2
,

• bkðiÞ ¼ minl6¼k
1

jLlj
P

j2Ll
dði; jÞ is the smallest mean

distance of the ith observation to all observations in any

other cluster, of which i is not a member,

• jSj is the cardinal number of the set S.

Therefore, if i has been properly assigned, then the score sk
is equal to 1. A score of 0 means that clusters are over-

lapping, and a score less than 0 means that i was assigned

to the wrong cluster.

The k-means algorithm partitions the n observations

into K clusters in which each observation belongs to the

cluster with the nearest mean. It seeks to minimize the

variance within the clusters:
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argmin
L1;...;LK

X

K

k¼1

X

i2Lk

~yðiÞ � lk
�

�

�

�

2
; ð3Þ

where lk ¼ jLkj�1P

i2Lk
~yðiÞ is the empirical mean of ~y in

cluster Lk.

Given an initial set of K means l
ð1Þ
1 ; :::; l

ð1Þ
K , the algo-

rithm iterates the two following steps, presented at iteration

t, until convergence:

• Assignment step: assign each observation to the cluster

with the nearest mean, i.e., 8k 2 f1; . . .;Kg:

L
ðtÞ
k ¼ i : i 2 Lj8j 2 f1; . . .;Kg; ~yðiÞ � l

ðtÞ
k

�

�

�

�

�

�

2

n

� ~yðiÞ � l
ðtÞ
j

�

�

�

�

�

�

2

o

:

• Update step: recalculate means for observations

assigned to each cluster, i.e., 8k 2 f1; . . .;Kg:

l
ðtþ1Þ
k ¼ 1

L
ðtÞ
k













X

i2LðtÞ
k

~yðiÞ:

Because k-means struggles with clusters of varying density

and with outliers, a clustering algorithm based on mixture

of distributions was investigated here.

The Gaussian Mixture Model (GMM) relies on the

assumption that the empirical distribution of the n observed

vectors ~yð1Þ; . . .; ~yðnÞ is close to a mixture of K Gaussian

distributions. Then, each observation is associated to the

most likely Gaussian distributions, which then defines its

cluster. The GMM is a mixture of K multivariate normal

distributions. The kth distribution is characterized by its

mean lk, covariance matrix Rk, and weight xk. The PDF of

this GMM reads:

pð~yÞ ¼
X

K

k¼1

xkpGð~y; lk;RkÞ; ð4Þ

where

pGð~y; l;RÞ ¼
1

ð2pÞ ~p=2kRk1=2
exp � 1

2
~y� lð Þ>R�1 ~y� lð Þ

� �

is the PDF of the Gaussian distribution with mean l and

covariance matrix R.

The GMM parameters xk; lk;Rkf g1� k�K are estimated

iteratively using an Expectation Maximization algo-

rithm (Moon 1996; Bettebghor et al. 2011) until conver-

gence of the likelihood. The expectation of the posterior

probability kk of belonging to cluster Lk can be expressed

with Bayes’ theorem:

kkð~yÞ ¼
xkpG ~y; lk;Rkð Þ

PK
j¼1 xjpG ~y; lj;Rj

� � :

This is the E-step, where E stands for Expectation. Then,

the mixture parameters lk and Rk can be re-estimated by

maximizing pGð~y; lk;RkÞ:

lk ¼
P

i2L kk ~yðiÞ
� �

~yðiÞ

P

j2L kk ~yðjÞ
� � ;

Rk ¼
P

i2L kk ~yðiÞ
� �

~yðiÞ � lk

� �

~yðiÞ � lk

� �>

P

j2L kk ~yðjÞ
� � ;

xk ¼
1

n

X

i2L
kk ~yðiÞ
� �

:

This is the M-step, where M stands for Maximization. The

cluster of each observation i can be determined using

Eq .4.

Contrary to the k-means grouping, the GMM grouping

can be either soft or hard. Soft grouping means that each

observation i is assigned to each cluster in a weighted

manner while hard grouping means that each observation i

belongs to only one cluster. In this study, a hard splitting is

considered: any point ~y is assigned to cluster

argmaxk pGð~y;lk;RkÞ.
The clustering assigns each of the n learning observa-

tions a label among f1; . . .;Kg. The classification uses

these labels to draw the boundaries between classes in the

input space.

3.3.2 Classification

Classification is a supervised learning process based on

labels and derived from the clustering that groups obser-

vations into classes with respect to their labels, and iden-

tifies the boundaries between these classes.

The clustering has annotated each of the n learning

observations with a label. According to these labels, the

input variable, here, the liquid boundary condition and the

friction of the river bottom xðiÞ ¼ QðiÞ;K
ðiÞ
s

h i

, is associated

to kth cluster. The degree of membership of xðiÞ to the kth

cluster is written through the corresponding variable ci,

such as ci ¼ k.

Here, a multi-class classification algorithm is consid-

ered: support vector machines (Cortes and Vapnik 1995).

Support Vector Machines (SVM) aim at solving

classification problems by finding good decision bound-

aries between two classes within the input space. For multi-

class classification (K[ 2), the same principle is used. The

multi-class problem is broken down to multiple binary
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classification cases called one-vs-one. SVM proceed to find

the decision boundaries in two steps:

• Mapping step: Input data are mapped to a new high-

dimension representation (target representation space)

where the classification problem becomes simpler and

where the decision boundary can be expressed as a

hyperplane.

• Maximizing the margin step: The separation hyperplane

(decision boundary) is computed by maximizing the

distance between the hyperplane and the closest data

points from each class.

Because the mapping step is often computationally

intractable, a ‘‘kernel trick’’ (Vapnik 1995; Scholkopf

et al. 1999) is used. It is based on a kernel function k that

maps any two input data xðiÞ; xðjÞ
� 	

to the distance between

these data in the target representation space, completely

bypassing the explicit computation of the new representa-

tion. The kernel trick is also used to develop non-linear

generalization of the SVM. Let H be a k-kernels space. A

general SVM is a discriminator of the form DðxÞ ¼
ciðf ðxÞ þ bÞ where f 2 H and b 2 R are given by solving

the general problem for a given C� 0:

minf2H;b2R
1

2
kfk2H þ C

X

n

i¼1

fi;

ci f ðxðiÞ
� �

þ bÞ� 1� fi; 8i 2 f1; . . .; ng;
0� fi; 8i 2 f1; . . .; ng:

8

>

>

>

>

<

>

>

>

>

:

ð5Þ

where fi model the potential errors when the margin con-

straint is not verified. The decision functions of the fol-

lowing form are obtained:

f ðxÞ ¼
X

i2A
aicik x; xðiÞ

� �

ð6Þ

where A is the constraints set and ai are solutions of the

following quadratic programming problem:

mina2Rn
1

2

X

n

i;j¼1

aiajcicjk xðiÞ; xðjÞ
� �

�
X

n

i¼1

ai;

0� ai �C; 8i 2 f1; . . .; ng;
Pn

i¼1 aici ¼ 0:

8

>

>

>

>

<

>

>

>

>

:

ð7Þ

The main advantage of the SVM algorithm is its capability

to deal with a wide variety of classification problems

including high-dimension and non-linearly separable

problems. One of its major drawbacks is that it requires

many parameters to set correctly (under Scikit learn

library (Pedregosa et al. 2011)) to attain good classification

results.

3.4 Polynomial chaos expansions

The PCE surrogate model is built within each of the

K classes in parallel (see Fig. 3).

Let us consider the construction of a PCE within a single

class and a computational model of interest

M : Dx � Rd 7!R, taking the vector x ¼ ðx1; . . .; xdÞ 2 Dx

as input and returning y 2 Rp as output: y :¼ MðxÞ. In the

following, for the sake of simplicity, y is assumed to be a

scalar (p ¼ 1). In the case of a vectorial response (p[ 1),

the following derivations hold component-wise.

In uncertainty quantification, the deterministic input

vector x is replaced by the associated random variable x ¼
x1; . . .; xdð Þ and y ¼ MðxÞ is in turn a random variable. x is

defined over the probability space ðDx;F;PÞ and fx is its

joint PDF. We seek to quantify the uncertainty in y due to

uncertainty in x1; . . .; xd. We assume that the random input

variables are independent so as to comply with the

assumption required for the polynomial chaos expansion

theory. We also consider that the scalar output y is a second

order random variable, i.e, E y2
h i

\þ1.

Under the previous assumptions, the random variable y

can be expressed as a generalized polynomial chaos

expansion (Xiu and Karniadakis 2002; Soize and Ghanem

2004):

y ¼
X

a2Nd

cawaðxÞ; ð8Þ

where waðxÞ ¼
Qd

i¼1 wi;aiðxiÞ is a tensor product of uni-

variate orthonormal polynomials, i.e. E wi;jðxiÞwi;kðxiÞ

 �

¼
R

Dxi
wi;jðxiÞwi;kðxiÞfxiðxiÞdxi ¼ djk. ca is the deterministic

coefficient associated with wa. a ¼ ða1; :::; adÞ is the multi-

index vector with ai the degree of the univariate polyno-

mial wi;ai and cai ¼ y;wi
ai
ðxÞ

D E

¼
R

Dxi
wi;aiðxiÞMðxÞfxi

ðxiÞdxi.
Xiu and Karniadakis (2002) show the set of polynomials

that provides an optimal basis for the different continuous

probability distributions of the input variable x. It is

derived from the family of hyper-geometric orthogonal

polynomials known as the Askey scheme (Dongbin and

Karniadakis 2003). The optimality of these basis selections

derives from orthogonality with respect to weighting

functions that correspond to the PDFs of the continuous

distributions when placed in a standard form. For instance,

when xi is a standard uniform (resp. standard normal)

random variable, the corresponding basis comprises

orthonormal Legendre (resp. Hermite) polynomi-

als (Abramowitz et al. 1988).
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3.4.1 Truncated polynomial chaos expansion

In practice, it is not tractable to use an infinite series

expansion. An approximate representation is obtained with

a truncation:

MAðxÞ ¼
X

a2A
cawaðxÞ; ð9Þ

with A 2 Nd the truncation set of size m, i.e., cA ¼
cað Þa2A2 Rm and �AðxÞ ¼

P

a2NdnA cawaðxÞ the trunca-

tion-induced error. Blatman and Sudret (2011) introduced a

hyperbolic truncation scheme that selects all polynomials

satisfying the following criterion:

Ad;P
q ¼ a 2 Nd : kakq ¼

X

d

i¼1

aqi

 !1
q

�P

8

<

:

9

=

;

;

with P being the highest total polynomial degree and

0\q� 1 being the parameter determining the hyperbolic

truncation surface. To further reduce the number of can-

didate polynomials, one can additionally apply a low-rank

truncation scheme that reads (Sudret 2015):

Ad;P;r
q ¼ a 2 Nd : kak0 ¼

X

d

i¼1

1ai [ 0 � r; kakq �P

( )

;

where kak0 is the rank of the multivariate polynomial wa,

defined as the total number of non-zero components

ai; i ¼ 1; :::; d. In this study, the prescribed rank r is chosen

as a small integer value, e.g., r ¼ 2; 3 (Mai et al. 2016)

and the polynomial degree P is varied from 2 to 9, and the

value retained is the one that minimizes the prediction

error.

3.4.2 Estimation of coefficients

The computation of the coefficients ca in Eq. 9 can be

conducted by means of intrusive (i.e, Galerkin scheme) or

non-intrusive approaches (e.g., stochastic collocation,

projection, regression methods) (Blatman et al. 2007). In

this paper, we consider a standard regression method based

on the minimization of a mean squared learning error (-

Baudin et al. 2017). In practice, the coefficients are

obtained by minimizing an empirical mean over a learning

database:

ĉA ¼ argmin
cA2Rm

X

i2L
M xðiÞ
� �

�
X

a2A
cawa xðiÞ

� �

 !2

; ð10Þ

where xðiÞ; i 2 L
� 	

is a Design Of Experiment (DOE)

obtained with a random sampling of the input random

vector. For that purpose, the computational model M is

integrated for each point of the DOE, yielding the learning

output matrix Y. Equation 10 basically represents the

problem of estimating the parameters of a linear regression

model, for which the least squares solution reads

ĉA ¼ AT :A
� ��1

ATY, where A ¼ wj x
ðiÞ� �� �

i 2 L
1� j�m

is

the information matrix containing the evaluation of the

polynomial basis functions over the DOE. Hence, the

approximated output variable ŷ can be expressed as

follows:

ŷ ¼
X

a2A
ĉawaðxÞ: ð11Þ

At the prediction phase, only the PCE related to the class to

which the new observation belongs is evaluated (hard

evaluation).

3.5 Surrogate model validation metrics

In the present study, two standard metrics are used to

measure the quality of the rMPCE surrogate model at T: the

Q2 predictive coefficient and the

Root Mean Squared Error (RMSE). The validation is car-

ried out over an (input, output) validation database Dv of

size nv.

3.5.1 Predictive coefficient

At the kth mesh node, the Q2 predictive coefficient is

defined as:

Q2;k ¼ 1� MSEkðDvÞ
MSEkðDv;meanÞ ; ð12Þ

where MSEkðDvÞ ¼ nv
�1
Pnv

i¼1 y
ðnþiÞ
k � ŷðnþiÞ

k

� �2

and MSEkðDv;meanÞ ¼ n�1
v

Pnv
i¼1 y

ðnþiÞ
k � y

k

� �2

is the

MSE of the averaging model returning the mean of the

learning outputs whatever the input parameter value.

The global counterpart of MSEðDv;meanÞ is computed

spatially by averaging over the p elements of the output

vector:

MSEðDv;meanÞ ¼ p�1
X

p

k¼1

MSEkðDv;meanÞ:

Thus, the global counterpart of Q2 is:

Q2 ¼ 1� MSEðDvÞ
MSEðDv;meanÞ : ð13Þ

The predictive coefficient measures the performance of the

surrogate model with respect to the data average. When Q2

is lower than (resp. equal to) zero, the surrogate is worse

than (resp. equal to) the learning output values average.

When Q2 is equal to one, the surrogate interpolates the
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validation database. In practice, the surrogate is deemed

appropriate when Q2 is greater than 0.8. The predictive

coefficient is also found under the name of Nash-Sutcliffe

model efficiency coefficient in the hydrological literature,

where it assesses the predictive capacity of the simulated

discharge over a time window with respect to observed

discharges (Nash and Sutcliffe 1970).

3.5.2 Root Mean Squared Error

The RMSE is used to measure the accuracy of the model

and should be equal to 0 when the model is perfect. At the

kth given mesh node, it is defined as the square root of the

mean squared errors (MSE), measuring the squared dis-

tance between the surrogate model and the reference

model:

RMSEkðDvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSEkðDvÞ
p

: ð14Þ

Their global counterpart are:

MSEðDvÞ ¼ p�1
Pp

k¼1 MSEkðDvÞ
and RMSEðDvÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSEðDvÞ
p

.

3.6 Sensitivity analysis

Sensitivity analysis aims to investigate how the different

uncertain input variables x1; . . .; xd influence the output

variable y ¼ MðxÞ over the whole uncertain input space.

M either stands for the direct solver or for its surrogate.

The overall objective is to identify which input parameters

contribute the most to the uncertainty in the output and to

order them accordingly. For the sake of simplicity, we

focus on a mono-dimensional output variable y. The model

output uncertainty can be represented by its variance V½y�
to be explained on the basis of the uncertain input variables

and their interactions. This is the purpose of the Sobol

methodology (Sobol 1993; Saltelli 2010; Iooss and

Lemaı̂tre 2015; Razavi et al. 2021), valid when x1; . . .; xd
are independent and when y is a second-order random

variable, i.e, E y2
h i

\1. This technique decomposes the

total output variance V y
h i

into 2d � 1 elementary

contributions:

V y
h i

¼
X

i2Id
Vi þ

X

i; j 2 Id

j[ i

Vi;j þ . . .þ V1;2;...;d ¼
X

u�Id

Vu

where:

• Id ¼ f1; . . .; dg;
• Vi ¼ V E yjxi

h ih i

is the contribution of xi alone;

• Vi;j ¼ V E yjxi; xj
h ih i

� Vi � Vj is the contribution of

the xi in interaction with xj;

• and so on.

In practice, interest is focused on standardized versions of

these contributions:
X

i2Id
Si þ

X

i; j 2 Id

j[ i

Si;j þ . . .þ S1;2;...;d ¼
X

u�Id

Su

where Su ¼ Vu

V y½ � is the Sobol index related to the interaction

between the uncertain input variables xi; i 2 u. Su is the part

of V y
h i

explained by this interaction. All these indices add

up to 1 and, thus, represent proportions of output variance.

Most of the time, Sobol study is conducted on:

• the first-order indices, S1; . . .; Sd, where Si represents

the part of V½y� explained by xi only; and

• the total-order indices, ST1 ; . . .; S
T
d , where STi ¼

P

u � Id
u 3 i

Si gathers all contributions related to xi.

When the difference between Si and STi is significant, this

means that there are interactions between xi and other

uncertain input variables explaining V½y�. In this case, it is

common to look at the value of the second-order indices

Si;1; . . .; Si;d and so on. Conversely, STi � Si leads to the

conclusion that there is no interaction between xi and

another variable explaining V½y�. Consistently,
P

i Si ¼ 1

if there is no interaction between the input parameters.

4 Application to the study case

4.1 Strategy and experimental settings

The rMPCE strategy results at T are compared to those of a

classical PCE strategy. Different choices for dimension

reduction, clustering, and regression are investigated. For

this purpose, two databases are generated in this study with

an optimized Latin Hypercube Sampling (LHS) (Damblin

et al. 2013) for the uncertain input variables whom PDFs

are described in Table 1:

• a learning database of 1000 T2D evaluations to build

and fit the surrogate model; and

• a validation database of 500 T2D evaluations to

evaluate the accuracy of the surrogate model.
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4.2 Computational environment

CERFACS’s cluster, Nemo, has been used to run T2D

simulations. The Nemo cluster includes 6912 cores dis-

tributed in 288 compute nodes. The ECU power peak is

277 Tflop/s. The computational cost of T2D solver is

reduced thanks to the parallel computing (single simulation

lasts 6 min using 24 processors instead of 20 min using one

processor). GSA based on a large set of T2D simulations is

too costly. Hence the need for surrogate model

formulation.

The rMPCE surrogate model proposed in this study is

based on algorithms from different Python libraries. The

first step uses AE from Keras Tensorflow (Géron 2017)

with a graphics processing unit (GPU) support Python

package to reduce the dimension of the output space. The

second step of this algorithm involves clustering and

classifying data using a GMM and SVM algorithms from

the Scikit-Learn library (Pedregosa et al. 2011). In the final

step, the algorithm constructs a local regression model

within the cluster; for this purpose, PCE of the Open-

TURNS library (Baudin et al. 2017) is used.

The meta-model learning stage (see Algorithm 1) is

moderately costly: the tuning of the AE parameters takes

about 3 h and the construction of the PCE takes about 15

min. The computational cost of the prediction stage is then

drastically reduced, e.g., predicting 500 simulations takes

470 s.

4.3 Results

4.3.1 Output dimension reduction

Dimension reduction results for PCA and AE are presented

in Fig. 5. The size of the latent space ~p is plotted along the

x-axis, the left y-axis represents the RMSE (quadratic error

between initial and reconstructed water level field) in

meters for PCA (solid blue line) and AE (dotted blue line),

and the right y-axis represents the cumulated explained

variance for the PCA. Different neural network architec-

tures were tested in order to minimize the RMSE metric.

The resulting neural network is compiled with mean

squared error loss and Adam optimizer (Zhang 2018) with

0.001 learning rate and the default Keras parameters. The

number of training epochs is set to 200 while the batch size

for the training cycle is set to 50. The size of the input is set

to 41,416 neurons corresponding to the number of features

in the database.

For PCA, the RMSE decreases exponentially from 9 to

3.82 centimeters as the number of principal components in

the latent space increases from 1 to 50. For 26 components,

98% of the variance of the water depth is explained and the

RMSE is about 4 centimeters. For a small number of

components, AE leads to a larger RMSE than PCA: 27

centimeters against 9 centimeters for a single component.

Beyond 24 components, AE leads to a smaller RMSE than

PCA: 1.27 centimeter against 3.82 centimeters for 50

components. A latent space spanned over 37 components

offers a good compromise between accuracy and compu-

tational cost for both methods. Despite the fact that AE is

relatively expensive compared to PCA (2 h against 3 min),

it allows to account for non-linearities in areas with strong

gradient bathymetry, mainly in ditches and downstream of

dikes. Indeed, the maximum absolute error for water depth

reconstructed from the PCA displayed in Fig. 6 reaches 3

meters in a mesh node located in a ditch for a selected

simulation, while the maximum absolute error for water

depth reconstructed from AE remains smaller than 1 cen-

timeter. Therefore, in the following, dimension reduction is

achieved using the more accurate AE technique.

4.3.2 Clustering and classification

Figure 7 displays the silhouette criterion defined in Eq. 2

for both k-means (top panels) and GMM (bottom panels)

clustering methods, setting the number of clusters to K ¼
2; 3; 4 (from left to right). The silhouette criterion skðiÞ is

plotted along the x-axis for each observation i. The

observation labels are indicated along the y-axis and

arranged by the color-coded cluster number. The red ver-

tical line indicates the average silhouette criterion com-

puted among all observations and all clusters. This

figure displays the quality of the clustering as well as the

size of the resulting clusters. When K ¼ 2 and K ¼ 4, the

size of the clusters are heterogeneous with silhouette values

skðiÞ smaller than the mean value. K ¼ 3 provides homo-

geneous clusters with satisfying silhouette values for all

clusters. In the following, the three classes resulting from

the GMM classification are kept.

A hydraulic analysis of the clusters shows that the first

cluster gathers medium-flow simulations where the flow

submerges the dikes and barely propagates in the flood-

plain. The second cluster characterizes high-flow simula-

tions where the flow significantly propagates in the

floodplain and the third cluster characterizes low flow

simulations where the flow is confined in the river bed.

The first (top panels) and second AE modes (bottom

panels) for each cluster (with K ¼ 3) are shown in Fig. 8.

In cluster 1, the first mode represents the mean flow

dynamics while the second mode represents the flow

obstacles. In cluster 2, the first mode corresponds to the

maximum extent of the water while the second mode

highlights the influence areas of upstream and downstream

boundary conditions. In cluster 3, the first mode could be
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interpreted as the maximum flow extent and the second

mode as a versus upstream-downstream flow.

4.3.3 Regression

Figure 9 displays the predictive coefficient when the flood

occurs, computed between the validation database and a

classical PCE prediction on the left panel and between the

validation database and the rMPCE prediction on the right

panel. The areas where Q2 is close to 0 are indicated in

yellow and it clearly appears that rMPCE provides a far

more predictive surrogate than classical PCE.

The classical PCE poorly predicts 6625 nodes (Q2\0:8)

out of the 41,416 mesh nodes, mostly located in the

floodplain where the response in water depth to change in

friction and in inflow is non-linear (Fig. 9 left panel). The

rMPCE leads to a significant improvement for 90% of

Fig. 5 Evolution of the RMSE

computed between the real

water depth (learning database)

and the one reconstructed with

the PCA inverse method in solid

blue line and the AE decoder in

dashed blue line, and of the

reconstructed output variance

for the PCA in solid red line,

according to the latent space

dimension ~p

Fig. 6 Spatialized maximum

absolute error computed

between a simulated water

depth (one simulation from the

learning database) and its

reconstruction using PCA

inverse method with 37

principal components. In zoom,

the bathymetry profile along the

horizontal section including the

point with the maximum

reconstruction error

Stochastic Environmental Research and Risk Assessment

123



Fig. 7 Silhouette plot for various clusters of the output learning variable resulting from k-means (top pannels) and GMM (bottom panels)

clustering methods setting the number of clusters to K = 2,3,4 (from left to right)

Fig. 8 First two modes in each of the three resulting GMM classes (learning database)
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these poorly predicted nodes (564 nodes remain with

Q2\0:8) as illustrated in Fig. 9 (right panel).

Given these two maps, the contribution of the rMPCE

strategy is significant for a good prediction of the water

height in the floodplain where human and economic stakes

are predominant. A zoom on the diagnostic of the rMPCE

strategy for poorly predicted nodes (Q2\0:8) raises the

contribution of the loop on the polynomial degree P to

quality prediction improvement. The Q2 resulting from

setting the same P for the different classes in rMPCE

(uniform rMPCE) is plotted as a dotted blue line in Fig. 10.

P equal to 4 for the local PCEs of the three classes returns a

value of Q2 equal to 0.64, which is physically unsatisfac-

tory. P greater than 4 leads to an over-fitting of the model

to the learning data and a lower value leads to an under-

fitting.

The Q2 resulting from the polynomial degree opti-

mization loop (varying the polynomial degree P between 2

and 9) for PCE in each of the three classes is plotted as a

dashed red line. The first class, mostly defined by medium

flows, requires a P equal to 5 in order to approximate

properly the water depth while the second class, charac-

terized by high flows, requires a P equal to 4 and the third

class, corresponding to low flows, requires a P equal to 3.

This suggests that the physics in the first class is complex

and requires to increase P, whereas the physics in the third

class is rather simple as the optimal P for this class is equal

to 3. Thus, the PCE polynomial degree optimization loop

allows obtaining a good approximation of the modes rep-

resenting the water depth following dynamics within each

class.

4.3.4 Sensitivity analysis

The variance-based GSA in this study is based on Saltelli’s

method for the estimation of Sobol indices using the

rMPCE surrogate model. The main goal of GSA is to rank

the uncertain parameters according to their influence on the

variance of the QoI, here, the water depth 2D field. Fig-

ure 11 displays the first-order (left panels) and total order

(right panels) Sobol indices for the four Strickler friction

coefficients and discharge (from top to bottom) at time T.

Analysis of the first order Sobol indices reveals the large

influence of the discharge as this uncertain variable

explains about 80% of the water depth variance on the

overall domain. The Strickler friction coefficient associated

to the floodplain area influences by 9% the water depth

variance upstream and in some dyked areas. The influence

of the Strickler coefficients associated with the river bed

remains weak or slightly significant in a few places; for

example, Ks;4 influences the water depth variance by 82%

locally in a dyked zone downstream of the river.

Fig. 9 Spatialized predictive

coefficient computed between

the validation database and the

surrogate prediction at T:
classical PCE (left) and rMPCE

(right)

Fig. 10 Evolution of the predictive coefficient Q2 of rMPCE (solid

red line) in which the polynomial degree has been optimized within

each class and of uniform rMPCE (solid blue line with cross marker),

resulting from setting the same polynomial degree for the different

classes
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Fig. 11 Sobol indices of the

hydraulic input variables

estimated using Saltelli’s

method based on rMPCE for the

simulated water depth at time T
= 95,000 s. First-order indices

are plotted on the left panels and

total order on the right panels

for Ks;1 (floodplain), Ks;2

(upstream river bed), Ks;3

(middle river bed), Ks;4

(downstream river bed), and

Q (upstream forcing) from top

to bottom
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The analysis of the total Sobol indices indicates that

while the friction coefficients have a low first order Sobol

index, they are not negligible as they have a significant

influence through their interactions with other variables.

Yet, the discharge remains by far the most influencing

variable when it interacts with the other variables as shown

in the right-bottom plot. It should be noted that the GSA

results depend on the hypothesis on the input random

variables distributions. For instance, the significant influ-

ence of the floodplain Strickler friction coefficient com-

pared to that of the river bed coefficients may be due to the

large uncertainty translated by the large range of Ks;1’s

uniform distribution.

5 Conclusions, limitations, and future
research

5.1 Conclusions

In this paper, an rMPCE surrogate model is used to conduct

a GSA in order to rank the sources of uncertainty with a

variance-based sensitivity analysis in the presence of non-

linearities and at a parsimonious computational cost. The

rMPCE strategy is based on a mixture of a polynomial

chaos expansions implemented in a reduced output space

and into clusters where non-linearities between input and

output remain small. It is used to approximate the 2D water

depth simulated using the T2D numerical solver. The

uncertain input space contains five scalars and the uncer-

tain output space is a 2D discretized field of large dimen-

sion (about 41,000 mesh nodes). This strategy is illustrated

when the flood front enters the floodplain, causing non-

linearities between inflow, friction and the water field,

especially in regions of strong bathymetry gradient.

The first step of the rMPCE strategy involves com-

pressing the water depth data. To this end, the PCA and AE

methods were compared. PCA is a simple linear transfor-

mation on the input space to directions of maximum vari-

ation while AE is an advanced technique that minimizes

the reconstruction loss. The AE technique yielded more

accurate results as it was able to deal with non-linearities in

the output field.

The second step of the rMPCE strategy involves

grouping the reduced data with similar patterns into clas-

ses. After comparing the silhouette coefficient derived from

the k-means and GMM methods, three classes were con-

sidered based on the GMM, leading to three different

hydraulic behaviors. The third step consists of defining the

boundaries between these classes within the input space

using the SVM algorithm. It appears that the boundaries

were mostly driven by the discharge variable.

The last step of the rMPCE strategy is to construct a

local optimized PCE within each class. It was shown that

the resulting surrogate model simulates properly the water

depth over the study area and improves the prediction by

90% compared to the one given by a classical PCE. Indeed,

PCE was successful in predicting water depth for over 83%

of the grid points, mostly in the river bed. However, it fails

to predict water depth in the floodplains where non-lin-

earities occur. In these regions, rMPCE was able to deal

with non-linearities and provide good prediction for 98%

of the grid points.

Sobol indices were then estimated using the rMPCE

surrogate model. It was shown that the water depth over the

considered study area is predominantly controlled by the

upstream discharge except for the left bank side of the

upstream which is influenced by the Strickler friction

coefficient of the floodplain. The total Sobol indices of the

three Strickler friction coefficients related to the river bed

indicate that despite the fact that those variables have a low

first-order Sobol index in all domain, they are not negli-

gible as they influence the water depth through interactions

with the other variables. It has also been emphasized that

those results depend on the description of the input vari-

ables PDF.

5.2 Limitations

In practice, tuning the AE hyper-parameters, such as the

number of layers and the number of neurons per layer,

remains difficult (van der Maaten et al. 2007). One way to

overcome this limitation is to consider an existing archi-

tecture that was proven successful for a similar problem, or

training the AE directly from the PCA response given that

the AE may be considered as a non-linear extension of

PCA, or using pre-training methods allowing for a layer-

by-layer learning (Makhzani and Frey 2015).

Due to time constraints, the model has not been tested

for the case where all time steps are taken into account in

one batch. Eventually, this could reduce the non-linearities

present, in particular for the dimension reduction step.

The assumption for the description of the PDF for the

Strickler coefficients could be revisited. An ensemble of

coupled sediment-hydrology simulations could be gener-

ated in order to investigate how the topography evolves

with the flow and consequently the friction evolves.

The assumption of independence of the input variables,

Strickler’s friction coefficient and upstream discharge, can

be reviewed. In this sense, a sensitivity analysis could be

conducted by considering the Shapely indices (Iooss and

Prieur 2017).
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5.3 Future research

As a perspective, first, the proposed surrogate modeling

strategy should be applied to all time steps of the hydraulic

simulation and to the computation of the time-varying

Sobol indices. Also, numerical improvement could be

reached with the analytical computation of Sobol indices

from the local polynomial coefficients instead of their

stochastic estimation with the Saltelli method with the

rMPCE surrogate as implemented here. Additionally, the

mixture strategy could also be revisited with kernel based-

clustering methods that could take into account the non-

linearities, an adaptive re-sampling in clusters with a small

predictive coefficient, and a weighted sum of the predic-

tions from the local models using frequentist model aver-

aging or Bayesian model averaging. A local mesh

refinement in areas where the predictive coefficient of

rMPCE remains small could be investigated. This would

lead to further improvement relying on multi-fidelity

approaches.

Another perspective would be to improve the rMPCE to

simulate the hydraulic state on another time window than

the one used for training in order to better meet the needs

of data assimilation, typically when we go from one

assimilation cycle to another. In this sense, a possible

approach would be to combine rMPCE with NARX (Mai

et al. 2016) to simulate the dynamics from one time step to

another.

A major perspective for this work is to extend the

uncertain input space. To begin with, the input space could

include time-varying upstream forcing in order to simulate

realistic flood events. It could also include a spatially

refined friction field, potentially resulting from calibration

with a densified, remotely sensed observation network. In

both cases, the dimension of the input space should also be

reduced, for instance, using the dimension reduction tech-

niques applied here for the output space dimension

reduction.

Finally, the resulting surrogate model can be used in the

context of data assimilation. Indeed, the computation of the

Sobol indices allows the identification of variables that

should be included in the control vector. Then, the surro-

gate model could be used in place of the direct numerical

solver for a low-cost stochastic estimation of the back-

ground covariance matrix in ensemble-based data assimi-

lation algorithms. The assimilation of in-situ and remote-

sensing water level data with a parsimonious ensemble-

based algorithm paves the way for the improvement of

forecasted water depth and discharge in an operational

framework.
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