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Abstract
Accurate estimation of error covariances (both background and observation) is crucial for ef-
ficient observation compression approaches in data assimilation of large-scale dynamical prob-
lems. We propose a new combination of a covariance tuning algorithm with existing PCA-type
data compression approaches, either observation- or information-based, with the aim of re-
ducing the computational cost of real-time updating at each assimilation step. Relying on a
local assumption of flow-independent error covariances, dynamical assimilation residuals are
used to adjust the covariance in each assimilation window. The estimated covariances then
contribute to better specify the principal components of either the observation dynamics or the
state-observation sensitivity. The proposed approaches are first validated on a shallow water
twin experiment with correlated and non-homogeneous observation error. Proper selection of
flow-independent assimilation windows, together with sampling density for background error
estimation, and sensitivity of the approaches to the observations error covariance knowledge,
are also discussed and illustrated with various numerical tests and results. The method is then
applied to a more challenging industrial hydrological model with real-world data and non-linear
transformation operator provided by an operational precipitation-flow simulation software.
Keywords: Data assimilation, Observation compression, Error covariance estimation,
Information entropy, Hydrological application

1. Introduction1

Data assimilation (DA) is applied in a wide range of industrial problems, such as numer-2

ical weather prediction (NWP) [1], hydrology, fire forecasting [2] or nuclear engineering [3].3

Recently, DA methods have also been used to COVID-19 pandemic analysis, including pre-4

dicting disease diffusion and proposing optimal vaccination strategies ([4]). DA algorithms are5

often used in dynamical systems for continuously updating state estimation/prediction. They6

have recently made their way to other fields such as biomedical applications [5] or quantitative7

economics [6]. These methods rely on a weighted combination of different sources of noisy infor-8

mation, including prior numerical estimation (also known as background states) and real-time9

observations, to improve field reconstruction or parameters calibration. DA methods are often10

used to deal with problems of large dimensions, especially in NWP [7], [8] (up to 109) or in geo-11

science [9], leading to computational difficulty for real-time updating, if not infeasible. Several12

strategies for optimizing the computational cost have been developed, including graph-based13

domain localization [10], observations selection [11], matrix decomposition [12] or reduced-order14

Kalman Filter [13]. It is also a common practice to combine DA algorithms with classical dy-15

namical system reduction techniques, such as the Proper Orthogonal Decomposition (POD) or16

the Empirical Interpolation Method (EIM e.g. [14]). Most of these methods rely on either pre-17

cise knowledge of state variables (e.g. modes in POD) or strong prior assumptions (e.g. cut-off18

radius in domain localization [15]). Meanwhile, with the increase of available observation preci-19

sion in DA applications, the observation data compression via low-rank approximation methods20
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has been continuously studied for alleviating the computational cost, especially in a sequential21

data assimilation chain. These methods, which consist of extracting principal information in22

observation data, have been widely applied in various branches of engineering, especially for23

high dimensional problems. An important advantage of observation compression, regarding24

other methods that directly reduce the state space dimension, is that no extra operation/-25

knowledge of the state dynamics is required, making the compression error more controllable26

and estimable. Two classical compression methods are discussed and implemented in this work:27

the POD-type projection by extracting principal components in the observation dynamic [16]28

and the information-based compression based on the information entropy analysis [8]. The29

latter aims to select the most impacting observations to the analyzed state by calculating the30

prior-posterior information entropy gap. Since the noises are introduced by prior errors in DA31

systems, the information entropy estimation relies on both background and observation error32

covariance matrices.33

34

For both observation- and information-based approaches, the data compression is carried out35

with a noise-normalized dataset [7], [8]. The knowledge of prior error covariances thus becomes36

crucial for applying these methods. However, the specification of these covariances, especially37

the background matrix, remains one of the most challenging problems in data assimilation due38

to the high dimension of the problem and limited prior data [17],[18]. Much attention was39

given to improving the error covariance specification in dynamical data assimilation models,40

particularly by the meteorological society. Several methods have been developed to this end,41

such as the NMC approach [19], the DI01 [20] iterative method and the Desroziers estimation42

[21]. In this paper, we focus on the latest. Unlike some other methods (e.g. [20], [18]), the43

Desroziers estimation does not depend on the specific structure of the error covariances, and44

it provides a non-parametric estimation of full covariances as output of the algorithm. Based45

on the residual analysis in variational assimilation, this approach has been widely applied in46

industrial problems, especially in NWP. Recent works of [22] prove its convergence in the ideal47

case. Another considerable strength of the Desroziers estimation is that dynamic residual data48

can be used for the covariance estimation. For this reason, a huge ensemble size is not required49

for high dimensional problems, unlike, for instance, in the NMC method.50

51

In this paper, based on the Desroziers estimation, we have introduced the concept of piece-52

wise covariance estimation for both observation- and information-based compression strategies.53

We apply the Desroziers method to estimate error covariances in a fixed time range, also known54

as the flow-independent window where the error covariances are supposed to be time-invariant.55

Therefore, the choice of the flow-independent window and the residual samplings play an es-56

sential role in this algorithm. The window size should be sufficiently long to gather enough57

time-variant sampling but not too long to consider the error covariances, especially the back-58

ground matrix, being constant.59

60

The observation- and information-based (with piecewise covariances estimation) data com-61

pression are first implemented in a twin experiment framework using 2D shallow water equations62

with a linear transformation operator. The observation covariance is supposed to be perfectly63

known a priori. The two approaches with different choices of flow-independent windows are64

compared in this model while changing the truncation parameter. Numerical results show that65

the observation-based (POD-type) compression is in general over-performed by the information-66

based approach and that a non-balanced sampling in piecewise covariance estimation results in67

a less optimal compression. We then apply these methods to a real-world hydrological model68

to improve river flow prediction/reanalysis by correcting historical daily precipitation measures69

[23]. Both the precipitation and the river flow data are spatially distributed. The physical70

simulation is performed using the operating MORDOR-TS software [24], developed by EDF71

and the study area is around the Tarn river, in the south of France. The precipitation-flow72
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simulation is carried out through conceptual watersheds modeling, which ensures its high com-73

putational efficiency. In this hydrological application, both the background and the observation74

matrices are estimated using the Desroziers method with daily observed flow data for around75

10 years (1990 to 2000). Results show that in this industrial application where both B and R76

are not well known, the performance of the information-based strategy is similar to the one of77

observation-based.78

79

The paper is organized as follows. In section 2, the principle and the notation of data80

assimilation are briefly introduced. We then introduce the observation- and information-based81

compression strategies in section 3. The applications of 2D shallow water twin experiments and82

an industrial hydrological model are shown respectively in section 5 and 6. We finish the paper83

with a discussion.84

2. Variational data assimilation85

The objective of data assimilation algorithms is to improve the estimation of some physical
fields or parameters x based on two sources of information: a prior simulation/forecast xb and
an observation vector y. The theoretical value of the current state is denoted by a vector xtrue,
also known as the true state. Variational DA algorithms aim to find an optimally weighted
compromise between the prior estimation xb and the observation y by minimising the cost
function J defined as

J(x) = 1
2(x− xb)TB−1(x− xb) + 1

2(y−H(x))TR−1(y−H(x)) (1)

= 1
2 ||x− xb||2B−1 + 1

2 ||y−H(x)||2R−1 (2)

where H denotes the transformation operator from the state space to one of the observations.
B and R are the associated error covariance matrices, i.e.

B = Cov(εb, εb), R = Cov(εy, εy), (3)

where

εb = xb − xtrue, εy = H(xtrue)− y. (4)

Thus the inverse of these covariance matrices (i.e. B−1,R−1) represents the weights of these
two information sources in the objective function. Prior errors εb, εy are supposed to be centered
Gaussian, characterised by the error covariance matrices, i.e.

εb ∼ N (0,B), εy ∼ N (0,R). (5)

The optimization problem of Eq. 1, so called three-dimensional variational (3D-Var) for-
mulation, is a general representation of variational assimilation while the model error is not
considered. The output of Eq. 1 is denoted as xa, i.e.

xa = argmin
x

(
J(x)

)
. (6)

If H can be approximated by some linear operator H, Eq. 6 can be solved via BLUE (Best
Linearized Unbiased Estimator) formulation,

xa = xb + K(y−Hxb) (7)
A = (I−KH)B (8)

where A = Cov(xa − xtrue) is the analyzed error covariance and the K matrix, given by

K = BHT (HBHT + R)−1 (9)
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is so called the Kalman gain matrix. In the rest of this paper, we denote H as the linearized86

transformation operator. The case when H is non-linear is more challenging for finding the87

minimum of Eq. 1, especially for high-dimensional problems. The resolution involves often gra-88

dient descent algorithms (relying on algorithms such as "L-BFGS-B" [25] and on adjoint-based89

[11] numerical techniques.90

91

Variational assimilation algorithms could be applied to dynamical systems through sequen-
tial applications using a transition operatorMtk→tk+1 (from time tk to tk+1), where

xtk+1 =Mtk→tk+1(xtk). (10)

The forecasting thus depends on the knowledge of transition operator Mtk→tk+1 and the cor-
rected state at the current time xa,tk . Typically, the current background state is often given by
the forecasting from the previous step, i.e.

xb,tk =Mtk−1→tk(xa,tk−1). (11)

Obviously, a more accurate reanalysis xa,tk−1 leads to a more reliable forecasting xb,tk . It92

is known that as long as the transformation operator H and the transition operator M are93

linear, the analysis based on the variational method and the Kalman filter results in the same94

forecasting [9], for dynamical (4D-Var) assimilation problems. Theoretically, the evolution of95

the B matrix could also be estimated thanks to the transition operator. However, in practice,96

the pefect knowledge ofM is often unavailable. Much attention is given to quantify the model97

error in assimilation, for example, in weak-constraint 4D-VAR [26]. Recent work of [27] involves98

deep learning techniques to improve the estimation ofMtk−1→tk .99

3. Observation data compression100

DA algorithms are often used to perform real-time corrections of dynamical systems with101

large dimensions, leading to an essential requirement of computational efficiency. In this work,102

we are interested in a low-rank approximations of the observation vector which can reduce the103

cost of real-time updating in DA algorithms.104

3.1. Observation-based compression (OC)105

The works of [28] and [29] are based on a PCA-type reduction of the observation dynamics.
More precisely, a set of nobs observation snapshots is represented by a matrix Y ∈ R[dim(y)×nobs]
where each column Y[:, .] represents an individual observation vector of dimension m at a fixed
time ti, i.e.

Y[:, i] = yt=ti . (12)

Thus Y describes the evolution of the observation vector y including observation error. We106

work with the error-normalized data R−1/2Y [7] whose empirical covariance C can be written107

and decomposed as108

C = 1
nobs − 1R−1/2YYTR−1/2 = L̃D̃L̃T (13)

where the columns of L̃ are the principal components and D̃ represents the associated eigen-
values in a decreasing order. This decomposition is known as the principal component analysis
(PCA) decomposition. We can construct a projection operator L̃q with minimum loss of in-
formation (represented by eigenvalues in the covariance matrix) by simply keeping the q first
columns in L̃. q is also known as the truncation parameter. In fact, this projection operator
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can also be obtained by a singular value decomposition (SVD), without computing the full
covariance matrix C, i.e.

R−1/2Y = L̃qΣ̃Ṽq
T (14)

where L̃q and Ṽq are orthogonal matrices, i.e. L̃q
T L̃q = Ṽq

T Ṽq = I and Σ̃Σ̃T = D̃ since all
eigenvalues are non negative. The assumption is made for the observation error covariances to
be constant (flow-independent), which is a common pratice in data assimilation (e.g [7]). For
each DA optimization, instead of updating with the full observation vector y, the correction is
made with the reduced observation

ỹq = L̃T

q R−1/2y. (15)

The new observation error covariance R̃ and the new state-observation transformation op-
erator H̃ can be written as

R̃q = L̃T

q R−1/2RR−1/2L̃q = Iq, H̃q = L̃T

q R−1/2 ◦ H. (16)

The DA algorithm can then be performed on (xb, ỹq,B, R̃q, H̃q) instead of (xb,y,B,R,H).109

This method could be seen as a classical POD approach applied to error-normalised observation110

data by extracting modes of higher variances against time. It is pointed out by [28] and [7]111

that performing PCA on noise-normalised observation data can improve the method efficiency112

and reduce the impact of observation error during the compression procedure.113

3.2. Information-based compression (IC)114

The observation-based data reduction retains the principal directions of the observation
dynamic. However, these directions are not necessarily the most impacting in state correction.
A continuous effort has been devoted to quantify and compute the sensitivity of the analysis
states to the observations (e.g. [11]), which leads to a more refined observation compression in
DA. More precisely, this sensitivity may be expressed by the influence matrix S [30], defined as

S = ∂H(xa)
∂xa

= KTHT . (17)

According to [8], the information given by the influence matrix can be roughly quantified via
two indicators, the degree of freedom for signal (DFS) which represents the prior-posterior
mutual information and the entropy reduction (ER) which represents the evolution of Shannon
information content, respectively defined as

DFS = E[(xa − xb)TB−1(xa − xb)] = Tr(S) (18)

ER = H(x)−H(x|y) = −1
2 ln

(
det(I− S)

)
(19)

where H is the entropy of a distribution, noted here H(x) for simplicity. Eqs. 18 and 19 are
derived for a centred Gaussian vector x. For both measures, we observe that observations
associated with the largest eigenvalues of S have the greatest information content. Using an
intermediate matrix M = R−1/2HB1/2, Eqs. 18-19 could be rewritten as

DFS = Tr(MMT (I + MMT )−1) (20)

ER = 1
2 ln

(
det(I + MMT )

)
. (21)

As stated in the work of [31], the observation projection operator which minimizes the infor-
mation loss is given by L̂qR−1/2, where L̂q is the matrix whose columns contain the eigenvectors
of MMT = R−1/2HBHTR−1/2. DA algorithms could then be performed with

ŷq = L̂
T

q R−1/2y, R̂q = Iq, Ĥq = L̂q

T

q R−1/2 ◦ H. (22)

5



We remind that, from the computational point of view, the only difference between the OC and115

IC is the way the low-rank projection Lq is obtained. For both approaches, the specification of116

error covariance matrices (either background or observation) is crucial to provide an efficient117

compression. On the other hand, data compression strategies can reduce the computational118

cost of covariance tuning methods, especially for multidimensional and multivariate problems.119

Therefore, the precise knowledge of HBHT and R is crucial for this method. However, as120

pointed out by [8], the condition number of the analysis covariance matrix A can be higher when121

using IC approach compared to performing DA with the full observation data set. Therefore,122

the risk of matrix ill-conditioning is worth monitoring when applying this compression method.123

124

3.3. Optimal truncation parameter for compression methods125

The determination of the truncated parameter q, i.e. number of modes kept in the reduced
space, is crucial in data compression. The choice of the threshold often depends on available
data [32]. Several criteria were considered, such as the information losing rate Eq and the
matrix conditioning a posteriori µq, defined as

Eq = ||Σ− φq||∞
||Σ||∞

= 1− σq−1

σq
(23)

µq = σ1

σq
(24)

where Σ is the diagonal matrices with all eigenvalues of the covariance matrix and σi,i=1..
represent the associated real eigenvalues in the decreasing order of absolute value. According
to the study of [33], an optimal choice of the truncation parameter can be obtained by combining
the two previous indicators, with an objective function f , defined as

f(σq) = Eq + µq = σqσq−1 + σ1

σ1σq
. (25)

Assuming ||σq−σ1|| >> ||σq−σq−1||, one could easily prove that Eq. 25 achieves the minimum126

when σq = √σ1. With this choice, we manage to both reduce the matrix ill-conditioning and127

remove less significant modes, as proved in real-world DA application[33]. Another advantage128

of this criteria is that the computation of the full spectrum of covariances is not required. By129

applying Lancozs-type methods [34], we can stop the algorithm when the current eigenvalue is130

inferior to √σ1.131

4. Piecewise estimation of error covariances132

The R matrix is required for both OC and IC approaches. Furthermore, the construction
of L̂

T

q in IC requires a precise knowledge of the matrix production HBHT . However, the
knowledge of both matrices often remains challenging in data assimilation [17]. Continuous
effort was devoted to improve the error covariances specification [35], [18]. A classical approach
based on residual analysis, and later a more complete version are respectively given by [36] and
[21]. They show that under the assumption of flow-independent error covariance, i.e. B and R
being invariant against time in a certain period, the following equations hold

R = E
[(

y−H(xa)
)(

y−H(xb)
)T ]

(26)

HBHT = E
[(

y−H(xb)
)(

y−H(xb)
)T ]
−R. (27)

Under these hypothesis, combining Eq. 26 and 27 leads to

HBHT = E
[(
H(xa)−H(xb)

)(
y−H(xb)

)T ]
. (28)
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In order to somewhat alleviate these strong hypotheses, a simple idea is to take the expectation133

operators in Eq. 26, 27 and 28 in assimilation windows where the flow-independent assumption134

stands, resulting in a piecewise estimation of both B and R. More precisely, a sequence of135

estimated background matrices BTi
could be computed via residual covariances, where Ti refer136

to flow-independent periods of B in a dynamical system. In other words, B is considered as137

invariant between t = Ti and t = Ti+1. The estimation of RTi
, if required, follows the same138

principle using Eq. 26. When the knowledge of R matrix is precise a priori, the estimation of139

Eq. 27 is privileged because of its lower computational cost since no evaluation of the analyzed140

state xa is required. According to [36], when the observation error is dominated by background141

error (i.e. Tr(R) << Tr(B)), HBHT can be estimated directly by E
[(

y−H(xb)
)(

y−H(xb)
)T ]

.142

By definition,

HBHT = E
[(
H(xtrue)−H(xb)

)(
H(xtrue)−H(xb)

)T ]
(29)

represents the background error covariances projected in the observation space.Therefore the143

information-based observation compression which is based on a PCA-type analysis, can also144

be interpreted as a projection of y along the directions where the background errors are most145

important. Recently, it was also reported in the literature (e.g. [37]) that the convergence146

(towards the exact observation matrix) of the iterative method can still be ensured when the147

background and observation error correlation length-scales are similar, which was contrary148

to what was previously thought [38]. Although this innovation-based covariance estimation149

approach has been widely applied in DA applications, some drawbacks have also been noticed.150

For example, the application of this method in real problems often requires post-processing151

of the R matrix. It is shown in [23] that the regularized matrix may converge to some other152

solution rather than the exact observation matrix.153

5. Shallow water twin experiments154

5.1. Experiments set up155

For evaluating the performance of different data compression approaches, we set up a twin156

experiment framework with a simplified 2D shallow water dynamical model which is frequently157

used for testing data assimilation algorithms ( (e.g [11], [18]). A cylinder of water is positioned158

in the middle of the study field of size 20mm × 20mm and released at the initial time t = 0s159

(i.e. with no initial speed), leading to a non-linear wave-propagation. The dynamics of the160

water level h (in mm), as well as horizontal and vertical velocity (in 0.1m/s) field (respectively161

denoted as u and v), is given by the non-conservative shallow water equations162

∂u

∂t
= −g ∂

∂x
(h)− bu (30)

∂v

∂t
= −g ∂

∂y
(h)− bv

∂h

∂t
= − ∂

∂x
(uh)− ∂

∂y
(vh)

ut=0 = 0
vt=0 = 0

where b = 0.1 is the viscous drag coefficient and the earth gravity constant g is thus scaled to
1. These equations are discretized in a 20×20 regular grid, solved by first-order finite difference
method with a time discretization δt = 10−4s. This resolution is considered as the reference
(i.e. the true state xtrue) latter when performing DA algorithms. The state variables in this DA
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modeling are the combination of the velocity fields {u}20×20 and {v}20×20. The evolution of the
reference (xtrue,t) state is illustrated in Fig. 1. Spatially correlated prior error is then generated
artificially for simulating the background state with a standard deviation σb,0 = 0.2, i.e.

xb,t=0 ∼ N (xtrue,t=0,Bt=0) where Bt=0 = σb,0
2corr(B). (31)

The background error correlation matrix corr(B) is set to be isotropic (rotational invariant),
following the second-order auto-aggressive (SOAR, also known as Balgovind) function,

φB(r) =
(

1 + r

LB

)
exp(− r

LB
), (32)

where r denotes the spatial distance and LB is the correlation scale length, fixed as LB = 4163

in this application. Being part of Matern kernels, the SOAR function is often used in DA for164

prior error correlation modeling [18],[3] thanks to its smoothness and good conditioning. The165

simulation of xb,t = [ub,t, vb,t] via the same discretization of Eq. 30 (except the initial conditions)166

is used as background states at time t in the DA modeling. For the knowledge of the exact1
167

background error covariance BE,t at different time, 103 background trajectories {xγ=1...1000
b,t } are168

independently generated via Eq. 31. This exact matrix, hidden for compression approaches,169

is seldomly used to evaluate the performance of DA algorithms with reduced observation. To170

simulate an industrial context, only 10 trajectories {xγ=1...10
b,t } are used in the piecewise esti-171

mation of HBHT of a flow-independent window, making the ensemble size (10) much smaller172

than the problem dimension (20× 20 = 400).173

The observations in these twin experiments are generated from the model equivalent based174

on the true states (i.e H(xtrue)), separately for the fields u and v, respectively denoted as yu175

and yv. For both fields, the observation yt = [yu,t,yv,t] at time t is the sum of ut and vt in a176

2× 2 cells area with an observation error εyt ,177

yu,i,j,t = utrue,2i,2j,t + utrue,2i+1,2j,t + utrue,2i,2j+1,t + utrue,2i+1,2j+1,t + εyu,i,j,t
(33)

and identical for yv,i,j,t. Thus y represents also the evolution of the velocity field u and v178

with a "coarser" measure as shown in Fig. 1 [g-h].179

In these experiments, we have set a non-homogeneous observation error covariance where the180

error deviation in the center (of radius 4) of the field is 4 times higher, compared to boundary181

observations as show in Fig. 3[a]. They are both of the same order of magnitude as σb,0,182

following also the SOAR function with a smaller scale length LR = 1, compared to background183

error correlation. The full error covariance R of observations y (after being converted to a 1D184

vector by concatenating rows of the original 2D grid model), supposed invariant against time,185

is illustrated in Fig. 3 [b]. The R matrix is supposed to be known in this application, thus186

only 10 observation trajectories {yγ=1...10
t } are generated to simulate an ensemble of small187

size while evaluating HBHT through Eq. 27. In this experiment, we make the choice to188

circumvent the difficulty by setting a temporal correlated εb,t, as the background noises are189

only added at the beginning of the simulation, and a temporal uncorrelated εy,t. In fact,190

temporally correlated background errors are difficult to handle for the Desroziers method since191

it treats the innovation quantities as independent samples for covariance estimation. These192

assumptions are realistic and widely adopted in DA problems since background simulations193

are often taken successively while observations are usually discrete. However, it is beneficial194

to have both time uncorrelated εb,t and εy,t for Desroziers-type estimation, as long as the error195

covariance could still be considered flow-independent [22].196

1Here, by the term “exact”, we refer to the covariance truly corresponding to the prior errors present in the
background state, no matter the level of optimality of the chosen assimilation scheme.
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Figure 1: Evolution of the shallow water model of h, u, v (true states) at different time steps (a-f) and the
error-free model equivalent H(xtrue) for observations (g-h).

Figure 2: Simple sketch illustrating the three IC sampling strategies. The two vertical blue lines indicate where
data assimilation experiments take place (as mentioned in Eq. 34).
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Figure 3: The observation error variance of yu and yv in the shallow water model[a] and the Balgovind error
covariances (R) after the observation vector (originally in a 2D grid) being converted to a 1D vector [b]

5.2. Numerical results for different compression strategies197

We then apply different strategies of observation compression and compare the performance198

of 3D-Var data assimilation using the reduced observation data. For each assimilation, only the199

current observation yt is used to correct the background state xb,t. Thanks to the 1000 back-200

ground trajectories {xγ=1...1000
b,t } simulated, the exact BE,t matrix can be empirically estimated201

at different time steps, allowing an accurate estimation of analysis error covariance At via Eq. 8202

since the R matrix is supposed to be known. The matrix trace Tr(A) then represents the sum203

of marginal analysis error, equivalent to the square of L2 norm, i.e E (||xa − xt||22), often used204

as an important indicator of DA schemes [18].205

Another objective of this experiment is to inspect the impact on the assimilation error given206

by different sampling densities, which is critical in information-based compression, as stated207

in the introduction. We display three sampling strategies for HBHT estimation with different208

assumed flow-independent periods [Ts, Tf],209

• IC small: Dense sampling in a small period, ∆t = 0.001s with Ts = 0.16s and Tf = 0.18s210

• IC large: Sparse sampling in a long period, ∆t = 0.1s with Ts = 0s and Tf = 2s211

• IC medium: Between IC small and IC large, with ∆t = 0.01s Ts = 0.1s and Tf = 0.3s,212

as shown in Fig. 2, where ∆t is the uniform time discretization between two snapshots. For
all these three strategies, the HBHT is estimated via 20 time steps (i.e Tf − Ts = 20∆t), each
with 10 background ({xγ=1...10

b,t }) and observation ({yγ=1...10
t }) states/residuals. To gain a robust

comparison, the posterior error variance Eposterior is averaged using Tr(At) at four different time,
included in all three assumed flow-independent windows,

Eposterior =
∑Tr(At)

4 for t ∈ {0.16, 0.165, 0.170, 0.175}. (34)

We illustrate in Fig. 4[d], the evolution of Eposterior against the truncation parameter q,213

varying from 0 to 200. In fact, when q = 200, all methods are equivalent since we work with the214

full observation data. From Fig. 4[d], we observe that all the information-based strategies with215

different sampling densities are always more optimal compared to the observation-based method216

for q ∈ (0, 200). We apply the stopping criteria as described in section 3.3, by calculating the217

eigenvalues of HBHT for the medium sampling strategy. We obtain the optimal truncation218

parameter qoptimal = 29. The distribution of these eigenvalues are shown by the right vertical219

axes in Fig. 4[d](numerical log scale is represented by the right vertical axis in matching color).220

With 29 modes, the assimilation correction is achieved from 53.3% to 69.8%, compared to the221

background model equivalent H(xb) as shown in table 1, which is compatible to the results222

obtained in [8] when LB > LR. Among the three sampling strategies, the one of "IC medium"223

10



owns the lowest output error variances, close to the optimal information-based compression224

where the HBHT is computed directly using BE,t. The latter, drawn with blue color in Fig. 4[d],225

stands for an optimal target for all information-based approaches since we suppose the exact226

background matrix is out of reach for data compression. As shown in this experiment, the choice227

of sampling strategy can significantly impact the compression optimality. If the samplings are228

too close, the residuals might not be uncorrelated, and if the samplings are too sparse, the229

flow independence of the B matrix could be threatened. We remind that the stopping criteria230

for the truncation parameter q varies for the different sampling strategies as shown in table 1.231

However, in this experiment the values of the optimal truncation parameters obtained do not232

qualitatively change the results as shown in Fig. 4[d].233

In Fig. 4[a,c], we display the evolution of the exact background error variances (i.e. Tr(BE,t))234

and error correlation (for fixed distances, r = 1 and r = 2) against time. The estimation of235

background error correlation in the 2D space, also based on BE,t, is calibrated using the same236

method shown in [18]. We observe that the error variances increase continuously for both u237

and v while the spatial error correlation tends to shrink, both being significantly time-variant238

between t = 0s and t = 1.4s. In order to illustrate the non-linear and turbulent nature of error239

propagation, we show in Fig. 4[b] the error evolution ||xb,t − xtrue,t||2 of a single background240

trajectory. Obviously, these facts lead to problem of flow independent assumption for the IC241

large approach (between 0s and 2s), conducing a less optimal compression strategy as shown in242

Fig. 4[d]. From this twin experiment, we notice the advantage of information-based compres-243

sion by selecting the most impacting observation components. The optimal sampling strategy244

may strongly depend on the characteristics (e.g chaosity, stability) of the dynamical system.245

246

Until now, we have shown that, in the idealised case where the observation matrix is known247

a priori and the transformation operator is time-invariant, the information-based approach248

exhibits advantageous performance compared to the observation-based approach. However, as249

pointed out by [8], IC approach can be sensitive to prior errors of covariance estimation. In250

order to investigate the impact of a potential misknowledge of matrix R, we present here two251

cases where the difference between the assumed/estimated matrix RA and the exact matrix R is252

voluntarily large. We explore two cases where the amplitude and the structure are misspecified,253

respectively:254

• (a): RA has the same correlation structure as R with an homogeneous marginal error255

variance (i.e. RA,i,i = 0.04 which is different to R (cf. Fig. 3(a)).)256

• (b): The correlation scale LRA is set to be 5 while LR = 1 as explained in section 5.1 with257

same marginal error variances.258

In both cases, the observation compression is implemented using RA while the observation259

matrix in the reduced space is set to be R−1/2
A R R−1/2

A instead of the identity matrix in Eq. 16260

and Eq. 22. The performance of these compression methods is illustrated in Fig. 5, respectively261

for case (a) and (b). The optimal IC solutions (same as the blue lines in Fig. 4(d)) are drawn262

in dashed blue lines for comparison purposes. Both OC and IC approaches exhibit less optimal263

performance compared to Fig. 4. Furthermore, as shown in Fig. 5(a), the IC method can be264

more sensitive to the mis-specification of the R matrix amplitude, leading in this case to larger265

output error variances while IC behaves better than OC for misspecified R matrix correlation266

length.267

OC IC large IC medium IC small IC optimal
qoptimal 22 48 29 25 78

Correction for q = 29 53.3% 61.5% 65.7% 62.7% 69.8%

Table 1: The ratio of background minus analysis innovation (||H(xb)−H(xa)||2) using compressed observation,
relative to the one obtained with full observation
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Figure 4: [a]: evolution of the exact background variance of u (Tr(Bu)) and v (Tr(Bv)) against time; [b]:
evolution of ||xb,t − xtrue,t||2 of a single background trajectory; [c]: evolution of average error correlation, of
fixed distances (r = 1 and r = 2) in the 2D space; [d]: analysis error variance Eposterior (left y-axis) and
eigenvalues of the estimated background error covariance in observation space (HBHT ) (right y-axis) of the
medium sampling strategy as a function of the truncation parameter for t ∈ [0.16s, 0.18s]. The vertical line
represents the stopping criteria of σq = √σ1;

6. Application to an operating hydrological model268

6.1. DA modelling for flow reanalysis/prediction269

The compression strategies introduced in previous sections are applied to a hydrological ap-270

plication using a precipitation-flow simulator MORDOR-TS developed by Électricté de France271

(EDF, the French electric utility company). This software is widely applied in operating hy-272

draulic/horological problems, e.g. [39], [24], [40]. Based on information on spatially distributed273

physical parameters, such as precipitation or temperature, it provides a simulation of river flow274

relying on conceptual watersheds modeling. For more details about MORDOR-TS, interested275

readers are referred to [24] and [23]. MORDOR-TS is used as a non-linear state-observation276

transformation operator in data assimilation. We concentrate on a study area in the south of277

France, around the Tarn river where 9 streamflow gauges positioned at different mesh outlets are278

available. The Tarn river, being known for its extreme variability of water-level values and high279

sensitivity to precipitations [23], is an ideal benchmark for comparing different DA strategies.280

Located downstream, the Tarn river outlet at Millau (hereby denoted as TM) is of particular281

interest in the hydrological study. As an example, we show in Fig. 6 the simulated and daily282

observed Tarn river discharges at Millau, for 3 months in 1990 with the averaged precipitation283

over 28 spatially distributed regions (see [23]). Significant impacts of precipitation on the river284

flow of TM is observed with a delay of 2 to 5 days. The objective of this DA modeling is to285

improve the river flow prediction and reanalysis (history matching) by performing corrections286

on the daily precipitation in the 28 regions. Other physical quantities (e.g temperature) are287
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Figure 5: Evolution of error variance when the observation matrix is mis-specified.

considered as invariant parameters in this study. The variational assimilation is performed288

using the ADAO [41] package of SALOME platform, also developed by EDF.289
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Figure 6: Example of simulation predicted by MORDOR-TS using daily precipitation, and observed Tarn
discharges at Millau for three months in 1990. Simultaneous observed precipitations are in red bars (with the
scale on the right vertical axis).

As mentioned in [23], performing DA correction on all precipitation inputs (i.e 28 regions)290

can probably introduce an over-parameterization and thus induces an overfitting, with a high291

risk to deteriorate flow forecasts. Therefore, we make the choice to proceed with uniform292

additional increments ξpt for all 28 regions, depending only on time t. Incremental variables293

ξr,j(j = 1..8) on the eight parameters which determine the initial (at t = 0) reservoir level294

is also added in the state space to adjust the river flow at the beginning of each assimilation295

window. These windows are fixed of 30 days, leading to an observation vector of dimension296

270 with 9 gauges. Temporal correlation is considered for both background and observation297

errors. The DA modelling is summarized in Table 2 and a more detailed description can be298

found in [23] and [40]. The main objective of this application stands for improving short-range299

flow forecasting by correcting historical precipitation. Since the impact of the precipitation on300

the river flow is only significant within 3 to 4 days (see [23] for details), we fix the prediction301

window to 3 days in this study.302

DA modelling state: x dim(x) Observations: y dim(y) invariant parameters

Incremental 3DVar ξpt
ξr,j

38 river flow Qq,t 270 temperature, etc

Table 2: Details of DA modelling where t = 0..29 is the time (days) relative to the beginning of the assim-
ilation window; q = 1..9 represents the 9 gauges where ξp

t , ξ
r,j represent respectively the increments of daily

precipitation and initial reservoir level.
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6.2. Observation compression303

Despite that MORDOR-TS is computationally efficient (it may take only a few CPU seconds304

to simulate a spatially distributed flow simulation of several years), the application of variational305

assimilation algorithms could be expensive, due to the non-linearity of the transformation306

operator. As shown in Table. 2, in this DA modeling, the dimension of the observation vector307

is much larger compared to the state dimension, promoting the utilization of observation data308

compression. We then implement DA algorithms in the hydrological model with compressed309

data using either OC or IC approaches. To make the compression strategies more general, in310

both cases the principal components are constructed using the daily observed flow data from311

1990 to 2000 in the 9 gauges. The objective of this study is to make an efficient use of the312

observation vector y with an optimal number of modes selected, which we expect to be much313

smaller than the full observation dimension (dim(y) = 270).314

A major hurdle of this application is that the a priori knowledge of both B and R is very
limited. As a remedy, we start as described in [23], by considering the background covariance
matrix B of Balgovind-type since we wish to model the existence of temporal correlation in the
precipitation data. Moreover, the initial R matrix is set to be diagonal. The DI01 algorithm
[20] is then applied several times to to come up with a reasonable approximation of the ratio
between Tr(B) and Tr(R) at the first stage. In a second stage, we then perform the estimation
of HBHT and R, relying on Desroziers formulation (respectively Eq. 26 and 28) using 3400
assimilation windows of 30 days from 1990 to 2000. By then, post-processing is required to
ensure the symmetric positive definiteness (SPD) of the R matrix. More precisely,

R ←− 1
2(1− µ)(R + RT ) + µC, (35)

where µ = 0.1 and C = Tr(R) × I. The Desroziers method is iterated twice, using the same315

data set, to ensure the stability of the estimated matrices. The algorithm outputs produced316

after the first and the second iterations are very similar as shown in [23]. We emphasize that317

the estimated R matrix is not only used for the observation compression but also in the DA318

algorithm in the full observation space. The HBHT matrix is obtained through Eq. 27, once319

the R matrix is specified. As a remark, even if the system considered here is not very large, the320

computational burden associated with the data assimilation of this nonlinear system (for which321

prior information is degraded) remains important because of a multi-stage tuning approach322

which combined several offline and online covariance tuning algorithms can be implemented to323

improve the reanalysis and the forecasting accuracy of this hydrological application. However,324

these methods are computationally expensive, especially when iterations are needed (e.g. [18]).325

With advanced data compression methods, the computational burden can be released, allowing326

more precise covariance tuning to improve the DA performance.327

6.3. DA with compressed data328

6.3.1. Averaged performance329

Extracting the principal components L̃ and L̂, respectively based on estimated HBHT and
R, we then apply the compression methodology described in sect.3. The objective is to compare
the assimilation output xa,compression and xa,full, obtained using either the compressed observation
ŷq, ỹq or the full observation vector y. More precisely, we are interested in the observation
minus analysis (O-A) innovation quantity for both flow reanalysis and forecast. Varying the
truncated parameter q, DA processes are performed respectively with (xb, ỹq,B, R̃q, H̃q) and
(xb, ŷq,B, R̂q, Ĥq) for 12 assimilation windows in 1993, each of 30 days starting at the first day
of every month. We draw the averaged compressed/full O-A innovation ratio ∇, defined as

∇ = ||y−H(xa,compression)||2
||y−H(xa,full)||2

, (36)
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in Fig. 7 for both reanalysis[a] and prediction[b] at TM. More particularly, ∇ = 100% means330

the reanalysis/prediction accuracy of the current solution is equivalent to the one obtained with331

the full observation vector.332
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Figure 7: Evolution of ∇, averaged using 12 assimilation windows, against the number of truncation parameter
q for reanalysis[a] and prediction[b] at TM.

We observe from Fig. 7 that the performance of these two approaches is similar to the333

reanalysis while the observation-based method is slightly more optimal on average for flow fore-334

casting. The evolution of the reconstruction error (Fig. 7[a]) is much smoother, compared to the335

prediction error ((Fig. 7[b])), both against the truncation parameter. In fact, the reconstruction336

error is estimated using assimilation windows of 30 days while prediction windows are solely of337

3 days. Therefore, the estimation of the prediction ratio has significantly more sampling noise.338

Furthermore, since both B and R are not well specified a priori, extra noise can be introduced339

while estimating the information entropy. For both methods, the assimilation results obtained340

using 15 to 20 modes (around 5% to 7.5% of total observation dimension) are close to the full341

rank solution in terms of both reanalysis and prediction. Without deteriorating the assimilation342

result, these compression strategies make the DA algorithm certainly more efficient, allowing343

more optimization iterations if needed.344

6.3.2. Performance in each DA window345

We draw the reconstructed river flow (i.e H(xa)) at TM of each of those 12 assimilation346

windows, for both corrections with compressed and full observation data in Fig. 8 where the347

yellow stars represent the daily observations. Based on the method described in Eq. 25, the348

optimal truncation parameter reads qoptima l = 22. Here, we display the results when q = 10349

in order to voluntary emphasize the difference between the two approaches as shown in Fig 7.350

A vertical line in each graph separates the reanalysis (left) and the prediction (right). We351

notice that the reconstructed curves issued from OC (blue) and IC (red) are similar in most352

cases, both being adequately close to the full rank assimilation (green), compared to the original353

simulation. Some exceptions can be found, for example, in the assimilation window of December354

1993 where the prediction is covered by a flood period. It seems that the information-based355

approach provides a better performance, especially for flow forecasting at that moment. In356

general, as demonstrated in [23], meteorological factors can impact the assimilation precision357

significantly. DA algorithms often perform better during drought periods (see Jun, July, August358

in Fig. 8) where the prior observation minus background (O-B) innovations are more consistent359

(i.e always being under-estimated or over-estimated). Contrarily, in flood periods where O-B360

innovations are usually more turbulent, more careful attention might be taken when performing361

compression methods.362
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Figure 8: The reconstructed and predicted river flow at TM for OC (obs) (q = 10), IC (info) (q = 10) and full
rank DA solutions of different months in 1993. The left side of the vertical line represents the flow reanalysis
while the right side represents the prediction
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7. Discussion363

Sequential data assimilation algorithms can be computationally challenging, especially for364

large scale systems such as NWP, remote sensing, or geophysical problems. Data compression365

techniques commonly used in DA problems have recently received increasing interest in reducing366

the computational burden. Much effort has been devoted to improving the algorithm efficiency367

without diminishing the accuracy of assimilation reconstruction and forecasting. Classical com-368

pression approaches consist of either extracting the principal vectors of observation dynamics or369

identifying the directions that contribute the most to the prior-posterior information gap. For370

both methods, the lack of precise knowledge on prior error covariances stands for an essential371

obstacle, as mentioned in several previous studies. Furthermore, the limited number of back-372

ground/observation trajectories often entails a poor empirical estimation. In this paper, we have373

introduced a concept of observation compression benefiting from existing piecewise covariance374

estimation, establishing a natural connection between the posterior error covariance diagnosis375

and data compression techniques. More precisely, we assume that the error covariances (both B376

and R) are flow-independent over some specific time periods, which allows an estimation based377

on time-variant residuals. Therefore, a much smaller number of background/observation trajec-378

tories are required for non-parametric covariance estimation. Different estimation formulations379

are possible depending on the prior knowledge of the R matrix. The choice of flow-independent380

windows, as well as the residual sampling densities, is essential in these approaches, especially381

for the HBHT estimation. When the samplings are either too dense or too sparse, the as-382

sumptions of covariance estimation approaches might be unsatisfied, leading to a less optimal383

observation compression. These aspects are numerically analyzed in the twin experiments of a384

2D shallow water model with non-linear dynamics with the perfect knowledge of the R. Nu-385

merical results show a significant advantage of the information-based compression in terms of386

assimilation accuracy, compared to the observation-based one. As for the industrial hydrologi-387

cal model, posterior covariance estimation which requires the knowledge of the analyzed states388

xa, is needed since the R matrix is not known a priori. In this application, both the OC and389

IC compression methods rely on the flow-independent estimation of R, showing competitive390

performance regarding the flow reanalysis and the forecasting accuracy. A meteorological effect391

is also briefly discussed in this hydrological application, which indicates that different numbers392

of modes should be chosen in different periods of the year regarding the hydrological proper-393

ties. Future work can be considered to improve the algorithm efficiency and flexibility under394

industrial conditions, for example, by using parametric covariance tuning methods or spatial395

localization techniques. Another important limitation of the current approach stands for the396

time invariance of the observations error covariance on some time-scale, limiting for instance397

the use of moving observation sensors. Indeed, if observation positions change, both the obser-398

vation matrix R and the transformation operator H can not be considered flow-independent,399

leading to difficulties when applying Desroziers-type methods. Future work can be considered400

to use interpolation approaches to construct a global observation set which includes all time-401

variant observation positions. Another perspective of this study could be to further examine402

the optimal choice of the sampling density while estimating the error covariances, for example,403

with the help of uncertainty quantification methods for dynamical systems.404
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