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Abstract. Assembly lines are the most widely used systems for industrial mass 

production. A main objective in such a system is to ensure a workload balanc-

ing among its workstations and optimize it at the operational level. However, 

this balancing is affected by various disturbances which induce delays and then 

generate additional costs and deteriorate the performance of the assembly line. 

To remedy the negative effects of such disturbances, methods allowing real-

time rebalancing are needed. The problem is known as the dynamic rebalancing 

of assembly lines. This work proposes a comparative study of three metaheuris-

tics performances in solving this problem, namely: Iterated Local Search, Ge-

netic Algorithm and Filters Beam Search-Ant Colony Optimization. The choice 

of these metaheuristics is motivated by their reputation for quickly and effi-

ciently solving assembly line balancing problems. An exact method, whose per-

formance is compared to the three selected metaheuristics, is also considered. 

The four approaches are applied to instances of industrial size and complexity 

known in the assembly line balancing literature. This benchmark data set guar-

antees coverage of almost all cases that an industrial could encounter. Obtained 

results showed the metaheuristics efficiency in solving large instances and that 

the exact method is recommended for small ones. Efficiency is measured here 

in terms of resolution speed (few seconds are required) and the quality of re-

turned rebalancing solution. A rebalancing solution is of good quality if its cy-

cle time is less than or equal to the initial line takt time. 

Keywords: Assembly, Assembly line, Line balancing, Dynamic rebalancing, 

Reconfiguration, Metaheuristics, Exact method, Disturbance, Uncertainty. 

1 Introduction 

At the operational level, the assembly process can be affected by various disruptions 

such as unscheduled shutdowns, breakdowns, repairs, stockouts, etc. These disturb-

ances cause delays which affect the initial balancing of the line by generating addi-

tional costs and deteriorating its performance. The objective is therefore to remedy the 

negative effects of these disturbances by techniques that allow real-time workload 
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rebalancing of all workstations. This problem is known as the dynamic rebalancing of 

assembly lines [1]. In this article, the seek for a line rebalancing is based on a reas-

signment of tasks to workstations to absorb, as possible, the delay induced at a given 

time. Operators are therefore assumed to be versatile and can easily adapt to changes 

in the assembly line. An industrial case, in the Trane company, which includes such a 

possibility is described in [2]. This study finds its application particularly at assembly 

lines level managed by a pull system. To synchronize the flows of these lines, it is 

important that all operate at a same rate defined by the Takt time (Tt), see Fig. 1 for an 

illustration. This will ensure balanced lines that meet customer demand. The takt time 

is the rate at which it is needed to complete the production process to meet customer 

demand, i.e. Tt = net available work time / customer demand. 

Fig. 1. Example of assembly lines dedicated to a family of products. 

Real-time rebalancing can only be possible with fast algorithms (a response time of 

few seconds). In this article, a rebalancing solution is said to be efficient if it is ob-

tained quickly (in a few seconds) and that the returned Cycle time (Ct) is less than or 

equal to the takt time. Cycle time is the time it takes to complete the production of 

one unit from start to finish, i.e. Ct = net available work time / number of units pro-

duced. Takt time is based on customer demand whereas cycle time is work process 

based [3].  

To identify methods that can efficiently solve the problem defined above, a litera-

ture review is carried out. Considered articles are only those dealing with balancing, 

rebalancing, and dynamic rebalancing of assembly lines. Most studies address the 

problem of initial balancing of assembly lines (long-term decision) [4, 5]. A decision 

that takes place at the design and implementation phase of the assembly line. A recent 

trend is to deal with the rebalancing problem [3, 6–9] to cope with the dimensional 

changes of the market due to seasonality and the life cycle of products for example 

and structural changes linked to line reconfiguration and layout (add or remove work-

stations, etc.). However, the problem of dynamic rebalancing of assembly lines is 

rarely studied as such [1, 10]. It is a real-time decision aid whose objective is to rem-

edy the various disturbances that affect the line. For these three problems, different 

formalizations based on mathematical programming are proposed to model them. To 

solve balancing and rebalancing problems, a wide variety of exact, heuristic and me-

taheuristic methods are proposed. But, for dynamic rebalancing we found mainly two 

approaches: ILS (Iterated Local Search) [1] and Communicating Automata approach-

es that are applied to small instances [11]. To identify the potential metaheuristics to 

be selected for our study, an additional work on the classification of the latter is car-

ried out by analysing the studies in [12–15]. Two main classifications exist : the one 
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based on [15]: Local Search Metaheuristics, Constructive Metaheuristics, Population-

based Metaheuristics and Hybrid Metaheuristics; the one based on [13]: Single-

Solution Metaheuristics (SSM) and Population Metaheuristics (PM). In addition, in 

this latter classification, in each category we distinguish between essentially construc-

tive metaheuristics (Primarily Constructive, PC) and evolutionary metaheuristics (Im-

provement Metaheuristics, IM). The combination of these two classifications made it 

possible to establish the classification of metaheuristics represented in Fig. 3. 

2 Problem Modeling and Solution Approaches 

The studied system is assembly lines. An assembly line is made up of workstations 

arranged sequentially. The workload of each workstation is defined as the sum of the 

operating times of the tasks assigned to it. An assembly line is perfectly balanced if 

the workloads of all stations are the same and equal to cycle time. It is said to be bal-

anced if the differences in workloads between the stations are as close as possible. If 

moreover the cycle time is less than or equal to the takt time, then such a line will 

satisfy the customer demand (see Fig. 2, top). A line is affected when disturbing ele-

ments occur at a time T0. In this case, the assembly line is partitioned into two parts: a 

fixed one containing completed tasks and a dynamic one containing the unrealized 

tasks that require dynamic balancing (Fig. 2, bottom). The objective is to find a dy-

namic reassignment of non-performed tasks to the corresponding workstations that 

allows balancing of the remaining work, respecting the precedence constraints among 

tasks and, as possible, absorbs the induced delay (i.e. ensure as possible the cycle time 

value to be less than or equal to the takt time). The mathematical program 𝐋𝐏𝐃𝐑 

models the problem described above [1]. 

Fig. 2. Illustration of balanced and disturbed line concepts. 

min max
𝑗∈𝐽∗

{Stj = ∑ (𝑡𝑖 + ∆𝑡𝑖) 𝑥𝑖𝑗

𝑖 ∈𝐼∗∪𝐴𝑗0

} (𝐋𝐏𝐃𝐑) 

𝐒𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨: 𝑥𝑖𝑗0
= 1, ∀ 𝑖 ∈ 𝐴𝑗0

\ 𝐼∗ (1) 

𝑥𝑖𝑗 = 0, ∀ 𝑖 ∈ 𝐴𝑗0
\ 𝐼∗, ∀ 𝑗 ∈ 𝐽∗\{𝑗0} (2) 
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∑ 𝑥𝑖𝑗

𝑗∈𝐽∗

= 1, ∀ 𝑖 ∈ 𝐼∗ (3) 

∑ 𝑗 𝑥𝑖′𝑗

𝑗∈𝐽∗

≤ ∑ 𝑗 𝑥𝑖𝑗

𝑗∈𝐽∗

, ∀ 𝑖 ∈ 𝐼∗, ∀ 𝑖′ ∈ 𝑃𝑖 (4) 

𝑥𝑖𝑗 ∈ {0,1}, ∀ 𝑖 ∈ 𝐼∗ ∪ 𝐴𝑗0
, ∀ 𝑗 ∈ 𝐽∗ (5) 

where, 𝑛: number of tasks, 𝑛 ∈ ℕ∗; 𝑚: number of workstations, 𝑚 ∈ ℕ∗; 𝐼: set of all 

tasks, 𝐼 = {1,2, … , 𝑛}; 𝐽: set of all workstations, 𝐽 = {1,2, … , 𝑚}; 𝑖: a single task, 𝑖 ∈
𝐼; 𝑗: a single workstation, 𝑗 ∈ 𝐽; 𝐼∗: set of tasks which need to be re-assigned for re-

balancing, 𝐼∗ ⊆ 𝐼. Note that task impacted by the disturbance at time T0 (denoted 𝑖0) 

is an element of 𝐼∗; 𝐽∗: set of workstations where tasks in 𝐼∗ can be reassigned, 𝐽∗ ⊆ 𝐽; 

𝑗0 denotes the workstation which is impacted by the disturbance at time T0 (𝑗0 ∈ 𝐽∗); 

(𝐴𝑗)𝑗∈𝐽: initial assignment of tasks to workstations 𝐽 (before the disturbance at time T0 

occurs); (𝐴𝑗)𝑗∈𝐽 forms a partition of 𝐼; (𝑃𝑖)𝑖∈𝐼: sets of all predecessors of tasks 𝐼; Tt: 

takt time, Tt > 0; Ct: cycle time, Ct > 0; 𝑡𝑖: processing time of a task 𝑖 ∈ 𝐼, 𝑡𝑖 > 0; 

∆𝑡𝑖: delay of a task 𝑖 ∈ 𝐼, ∆𝑡𝑖 ≥ 0; 𝑥𝑖𝑗: decision variable, 𝑥𝑖𝑗 = 1 if task 𝑖 ∈ 𝐼 is as-

signed to workstation 𝑗 ∈ 𝐽, 𝑥𝑖𝑗 = 0 otherwise. 

Fig. 3. Classification of metaheuristics and selection of used ones. 

To solve the 𝐋𝐏𝐃𝐑 problem, our choice is based on three metaheuristics, namely: 

Iterated Local Search (ILS), Genetic Algorithm (GA) and Filters Beam Search-Ant 

Colony Optimization (FBS-ACO), see Fig. 3. The choice of these metaheuristics is 

based on an analysis of the literature on balancing and rebalancing of assembly lines. 
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This analysis focused on metaheuristics whose effectiveness meets the criteria of 

speed and quality of cycle time minimization. The exact algorithm selected here is the 

default CPLEX Mixed Integer Programming (MIP) optimizer (based on branch & cut) 

[16]. No constructive metaheuristics are selected because of their penalizing computa-

tional time which increases significantly by increasing the number of tasks [17]. ILS 

is chosen based on its performance reported in [1]. GA is chosen among the popula-

tion algorithms because it is the most widely used and has proven its efficiency and 

speed in solving problems of balancing and rebalancing [6, 17]. Finally, for hybrid 

metaheuristics, FBS-ACO is chosen thanks to its verification of the two previous 

criteria. Indeed, FBS-ACO is an improved version of the ACO algorithm from which 

it inherited the efficiency, and the FBS filters have allowed a significant improvement 

in computation time [8]. Brief pseudocodes of the three metaheuristics are given here-

after. ILS consists in applying a local search to a unique solution and a disturbance 

mechanism in several iterations, see [1]; in GA, an individual in the population repre-

sents a solution. This algorithm consists of building populations by improving their 

individuals from one generation to another using mutation, crossover and selection, 

see [18, 19]; FBS-ACO consists of using the characteristics of ant colony algorithm to 

build a solution respecting the defined number of workstations. In addition, the appli-

cation of local and global evaluations of FBS makes it possible to select at each stage 

the next destination of an ant to build a feasible solution [18]. 

 

Algorithm 1: ILS 
Generate initial line balancing S0  

     S ← S0 
     S’’ ← S0 
     do 

 S’ ← LocalSearch(S’’) 
 if (Ct(S’) < Ct(S) ) then 
  S ← S’ 
 end if 
 S’’ ← Disturb(S’); 
while (IterCount<maxIter && Ct(S)  > Tt)  
 

Algorithm 2: GA 
Generate initial population considering the initial line balancing 
Compute fitness of initial population individuals 
Select the best individual 
while (IterCount<maxIter && Ctpopulation

(S)  > Tt) do 

 Apply elitism 
 Apply crossover 
 Apply mutation  
end 
Evaluate the best fitness of all generations 
Select the best among the best individuals 

 

https://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
https://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
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Algorithm 3: FBS-ACO 
Save the number of workstations of the initial line balancing 
Initialise pheromone quantity 
Generate initial Beam nodes  
for (𝑘 from 0 to Ants number) do 
 Assign fixed tasks of impacted workstation 𝑗0 
 Assign Beam node 𝑘 
 while (some tasks are not assigned || workstations number is reached) do 
  Identify candidates to be assigned using global evaluation 
  Select best task candidate using local evaluation 
  Update locally the pheromone   
 end 
 Update globally the pheromone 
end 

3 Numerical Experiments and Performance Comparison 

The exact method (default CPLEX MIP optimizer), ILS, GA and FBS-ACO metaheu-

ristics are implemented in Linux using C++ on a PC of 8Go RAM and 2.30 GHz 

CPU. Data set of 28 benchmark instances known in the assembly line balancing liter-

ature are used, see https://assembly-line-balancing.de/. Size and complexity of such 

instances guarantees coverage of almost all situations that an industrial could encoun-

ter. In addition, to cover most situations of line disturbances, we defined a design of 

experiments based on three main criteria, as follows: a disturbance can occur at the 

beginning or middle of the line; a disturbance can be low, average or high; task pro-

cessing times can be high, average (original values) or low. Values of delays and task 

processing times are generated after analysis of total initial balancing idle time, num-

ber of tasks, number of workstations and initial cycle time. To generate an initial bal-

ancing for each instance, we have used SALOME [20]. So, each approach has to 

solve 28 × 2 × 3 × 3 = 504 different instances. To simplify the understanding and 

analysis of the obtained results, we defined three categories of the 504 instances: 

category 1 composed of instances whose tasks number doesn’t exceed 50 (252 in-

stances); in category 2 tasks number is greater than 50 but doesn’t exceed 100 (198 

instances); in category 3 tasks number exceeds 100 (54 instances). Resolution time of 

the exact method is limited to one hour. 

The performance of each method is measured using the number of returned effi-

cient solutions (takt-time respected and speed of resolution). Note that a solution is 

inefficient if the returned cycle time is not less than or equal to the takt time or if the 

resolution time is large (case of the exact method in particular). Analysis of the results 

consists in finding the number of solved instances (efficient solutions) by each me-

taheuristic and identifying their characteristics. Instances for which a metaheuristic 

has not found an efficient solution doesn’t mean that really an efficient solution 

doesn’t exist unless, the exact method has failed to solve it efficiently. The results 

have shown that for some instances the delay can be absorbed immediately, without 

doing any effort. This is the case when the cycle time of the line considering the delay 
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is less than or equal to the takt time. It was the case for 73 instances (47 of categoty 1 

and 26 of category 2). For the remaining 431 instances, the delay can’t be absorbed 

initially, hence an efficient solution could be found using one of the four solution 

approaches. 

For exact method, analysis is based on instances of category 1 since it is the only 

one where all instances (205) are solved efficiently. Delay was not absorbed for 

79 instances and was absorbed for the remaining 126 instances. Most of the cases 

where delay is absorbed are characterised with low or average task times, see Table 1- 

exact method; 123 instances are solved in an average time of 0.56 seconds each. 

Table 1. Characteristics of solved instances and solution methods performances. 

ILS solved 93 instances out of 431, see characteristics in Table 1- ILS. GA solved 

84, Table 1- GA and FBS-ACO solved 176 instances, Table 1- FBS-ACO. To sum-

marize, GA is efficient when the number of tasks and workstations are low. ILS is 

efficient for small to medium sized instances and FBS-ACO is efficient when the 

delay occurs at the beginning of the line. Exact method is efficient for small sized 

instances (no more than 50 tasks). Among all efficiently solved instances only 17 are 

common to the four solution approaches. These 17 instances are used to compare 

performance of ILS, GA and FBS-ACO to the exact method. The ratio Ct/Tt is used 

as comparison criteria, see Fig. 4. It is seen that the three metaheuristics gave solu-

tions very close to the optimal ones. FBS-ACO and GA found the optimal solution for 

6 of the 17 instances and ILS found only 2. It is also shown that when the dimension 

of the assembly line increases, GA finds solution with good quality. However, for 

most instances, ILS gives an acceptable solution but not close to the optimum com-

pared to the other metaheuristics. 
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Fig. 4. Performance comparison of solution approaches based on Ct/Tt values.  

4 Conclusion and Recommendation 

In this study, a performance comparison of three metaheuristics (ILS, GA, FBS-ACO) 

and exact method for the dynamic line rebalancing problem is conducted. The me-

taheuristics generated satisfactory results compared to the exact method. Obtained 

results analysis allowed to identify the most suitable method to apply for each line 

disturbance situation. GA are efficient on small instances with an average number of 

workstations equal to four. ILS can be used for small to medium size instances. FBS-

ACO is more efficient for assembly lines that have many workstations. Finally, the 

exact method is very efficient for small instances (no more than fifty tasks). 

 As a future research development, we will investigate a fifth solution approach 

based on Artificial Intelligence techniques namely Machine Learning although FBS-

ACO already can be seen as an AI approach since it is multi-agent based inspired by 

the behavior of real ants. 
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