
HAL Id: hal-03334813
https://hal.science/hal-03334813v1

Submitted on 26 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Communicating finite-state machines, first-order logic,
and star-free propositional dynamic logic

Benedikt Bollig, Marie Fortin, Paul Gastin

To cite this version:
Benedikt Bollig, Marie Fortin, Paul Gastin. Communicating finite-state machines, first-order logic,
and star-free propositional dynamic logic. Journal of Computer and System Sciences, 2021, 115,
pp.22-53. �10.1016/j.jcss.2020.06.006�. �hal-03334813�

https://hal.science/hal-03334813v1
https://hal.archives-ouvertes.fr

Communicating Finite-State Machines, First-Order Logic, and Star-Free
Propositional Dynamic LogicI

Benedikt Bollig, Marie Fortin, Paul Gastin

LSV, CNRS & ENS Paris-Saclay, Université Paris-Saclay, Cachan, France

Abstract

Message sequence charts (MSCs) naturally arise as executions of communicating finite-state machines (CFMs), in
which finite-state processes exchange messages through unbounded FIFO channels. We study the first-order logic
of MSCs, featuring Lamport’s happened-before relation. To this end, we introduce a star-free version of proposi-
tional dynamic logic (PDL) with loop and converse. Our main results state that (i) every first-order sentence can be
transformed into an equivalent star-free PDL sentence (and conversely), and (ii) every star-free PDL sentence can
be translated into an equivalent CFM. This answers an open question and settles the exact relation between CFMs
and fragments of monadic second-order logic. As a byproduct, we show that first-order logic over MSCs has the
three-variable property.

Keywords:
communicating finite-state machines, first-order logic, happened-before relation, propositional dynamic logic

1. Introduction

The study of logic-automata connections has ever played a key role in computer science, relating concepts that are
a priori very different. Its motivation is at least twofold. First, automata may serve as a tool to decide logical theories.
Beginning with the work of Büchi, Elgot, and Trakhtenbrot, who established in the early 60s the expressive equiva-
lence of monadic second-order (MSO) logic and finite automata [Büc60, Elg61, Tra62], the “automata-theoretic” ap-
proach to logic has been successfully applied, for example, to MSO logic on trees [TW68], temporal logics [VW86],
and first-order logic with two variables over words with an equivalence relation (aka data words) [BDM+11]. Second,
automata serve as models of various kind of state-based systems. Against this background, Büchi-like theorems lay
the foundation of synthesis, i.e., the process of transforming high-level specifications (represented as logic formu-
las) into faithful system models. In this paper, we provide a Büchi theorem for communicating finite-state machines
(CFMs), which are a classical model of concurrent message-passing systems.

1.1. Context and Known Results
Let us give a brief account of what was already known on the relation between logic and automata (without claim

of completeness).

Finite automata. As mentioned above, Büchi, Elgot, and Trakhtenbrot proved that finite automata over words are
expressively equivalent to MSO logic [Büc60, Elg61, Tra62]. Finite automata can be considered as single finite-state
processes and, therefore, serve as a model of sequential systems. Their executions are words, which, seen as a logical
structure, consist of a set of positions (also referred to as events) that carry letters from a finite alphabet and are linearly
ordered by some binary relation ≤. The simple MSO (even first-order) formula ∀x.

(
a(x) =⇒ ∃y.(x ≤ y ∧ b(y))

)
says

that every “request” a is eventually followed by an “acknowledgment” b. In fact, Büchi’s theorem allows one to turn

IPartly supported by ANR FREDDA (ANR-17-CE40-0013) and ReLaX, UMI2000 (CNRS, ENS Paris-Saclay, Univ. Bordeaux, CMI, IMSc).
Email addresses: bollig@lsv.fr (Benedikt Bollig), fortin@lsv.fr (Marie Fortin), gastin@lsv.fr (Paul Gastin)

Preprint submitted to Journal of Computer and System Sciences January 11, 2021

any logical MSO specification into a finite automaton. The latter can then be considered correct by construction.
Though the situation quickly becomes more intricate when we turn to other automata models, Büchi theorems have
been established for expressive generalizations of finite automata that also constitute natural system models. In the
following, we will discuss some of them.

Data automata. Data automata accept (in the context of system models, we may also say generate) words that, in
addition to the linear order ≤ and its direct-successor relation, are equipped with an equivalence relation ∼ [BDM+11].
Positions (events) that belong to the same equivalence class may be considered as being executed by one and the same
process, while ≤ reflects a sort of global control. It is, therefore, convenient to also include a predicate that connects
successive events in an equivalence class. Bojańczyk et al. showed that data automata are expressively equivalent to
existential MSO logic with two first-order variables [BDM+11]. A typical formula is ¬∃x.∃y.(x , y ∧ x ∼ y), which
says that every equivalence class is a singleton. It should be noted that data automata scan a word twice and, therefore,
can hardly be seen as a system model. However, they are expressively equivalent to class-memory automata, which
distinguish between a global control (modeling, e.g., a shared variable) and a local control for every process [BS10].

Asynchronous automata. Unlike finite automata and data automata, asynchronous automata are models of con-
current shared-memory systems, with a finite number of processes. In his influential paper [Lam78], Lamport pos-
tulated that events in an execution of a distributed system are partially ordered by what is commonly referred to as
the happened-before or causal-precedence relation, a fundamental concept in distributed computing [AW04, Ray13,
Lyn96, Tel01]. In fact, executions of asynchronous automata are Mazurkiewicz traces [DR95], where the relation
≤ is no longer a total, but a partial order. Thus, there may be parallel events x and y, for which neither x ≤ y nor
y ≤ x holds. A typical logical specification is the mutual exclusion property, which can be expressed in MSO logic as
¬∃x.∃y.(CS(x) ∧ CS(y) ∧ x ‖ y) where the parallel operator x ‖ y is defined as ¬(x ≤ y) ∧ ¬(y ≤ x). The formula says
that there are no two events x and y that access a critical section simultaneously. Asynchronous automata are closed
under complementation [Zie87] so that the inductive approach to translating formulas into automata can be applied to
obtain a Büchi theorem [Tho90]. Note that complementability is also the key ingredient for MSO characterizations
of nested-word automata [AM09] and branching automata running over series-parallel posets (aka N-free posets)
[Kus00, Bed15].

Communicating finite-state machines. The situation is quite different in the realm of communicating finite-state
machines (CFMs), aka communicating automata or message-passing automata, where a fixed number of finite-
state processes communicate by exchanging messages through unbounded FIFO channels [BZ83]. A CFM ac-
cepts/generates message-sequence charts (MSCs), which are similar to UML’s sequence diagrams [Ara98] and stan-
dardised by the International Telecommunication Union [IT99]. MSCs are equipped with Lamport’s happened-before
relation ≤: an event e happens before an event f if, and only if, there is a “message flow” path from e to f [Lam78].
Additional binary predicates connect (i) the emission of a message with its reception, and (ii) successive events exe-
cuted by one and the same process. Unfortunately, the class of MSC languages accepted by CFMs is not closed under
complementation [BL06] so that an inductive translation of MSO logic into automata must fail (in fact, CFMs are
strictly less expressive than MSO logic).

There have been several attempts to overcome this problem. When channels are bounded, closure under comple-
mentation is recovered so that CFMs are expressively equivalent to MSO logic [HMK+05, Kus03, GKM06, GKM07].
Note that, however, the corresponding proofs are much more intricate than in the case of finite automata. In the un-
bounded case, since MSO logic is too expressive, first-order (FO) logic is moving into focus. Actually, FO logic can
be considered, in many ways, a reference specification language. Apart from being a natural concept in itself, it plays
a key role in automated theorem proving and is central in the verification of reactive systems. Over words, FO logic
even enjoys manifold characterizations: It defines exactly the star-free languages and coincides with recognizability
by aperiodic monoids or natural subclasses of finite (Büchi, respectively) automata (cf. [DG08, Tho97] for overviews).
Moreover, linear-time temporal logics are usually measured against their expressive power with respect to FO logic.
For example, LTL is considered the yardstick temporal logic not least due to Kamp’s famous theorem, stating that
LTL and FO logic are expressively equivalent [Kam68].

While FO logic on words is well understood, a lot remains to be said once message-passing concurrency enters
into the picture. Actually, algebraic and automata-theoretic approaches that work for words, trees, or Mazurkiewicz

2

traces do not carry over. On the positive side, it was shown that CFMs with unbounded channels capture FO logic
(and, therefore, are expressively equivalent to existential MSO logic) when dropping the happened-before relation ≤
[BL06] or when restricting to two first-order variables [BFG18]. Both results rely on normal forms of FO logic, due to
Hanf [Han65] and Scott [GO99], respectively. Hanf’s normal form is a boolean combination of statements of the form
“neighborhood N of radius d occurs at least k times”, where the neighborhood of an event e is an isomorphism type
of the substructure induced by the elements that have distance at most d from e. Hanf’s result requires structures of
bounded degree so that the number of possible neighborhoods is actually finite. However, MSCs with the happened-
before relation are structures of unbounded degree: Due to the happened-before relation ≤, all events on a given
process have distance at most 1 from each other. To evaluate Scott’s normal form, on the other hand, it is sufficient to
determine the type of every event e (the type describing all events for every possible relationship with e), which can
be accomplished by a CFM. However, the normal form only applies to two-variable logic, while we consider full FO
logic, which, already over one process, is strictly more expressive.

It should be noted that distributed automata can also be used as acceptors of the underlying (graph) architecture.
In that case, logical characterizations have been obtained in terms of MSO and modal logics [Kuu13, HJK+15, Rei15,
Rei17]. However, in our framework, the architecture is fixed and we rather reason about the set of executions of a
CFM.

1.2. Contribution

Until now, the following central problem remained open:

Can every first-order sentence, with happened-before relation and arbitrarily many
variables, be transformed into an equivalent communicating finite-state machine,
without any channel bounds?

In this paper, we answer the question positively. To do so, we make a detour through a variant of propositional
dynamic logic (PDL) with loop and converse [FL79, Str81], which is another fundamental logic, with applications in
artificial intelligence and verification [HM92, DL94, LL05, Lan06, GLL09]. Actually, we introduce star-free PDL,
which serves as an interface between FO logic and CFMs. That is, there are two main tasks to accomplish:

(i) Translate every FO sentence into a star-free PDL sentence.

(ii) Translate every star-free PDL sentence into a CFM.

Both parts constitute results of own interest. In particular, step (i) implies that, over MSCs, FO logic has the
three-variable property, i.e., every FO sentence over MSCs can be rewritten into one that uses only three different
variable names. Note that this is already interesting in the special case of words, where it follows from Kamp’s
theorem [Kam68]. It is also noteworthy that star-free PDL is a two-dimensional temporal logic in the sense of Gabbay
et al. [Gab81, GHR94]. Since every star-free PDL sentence is equivalent to some FO sentence, we actually provide a
(higher-dimensional) temporal logic over MSCs that is expressively complete for FO logic.1 While step (i) is based
on purely logical considerations, step (ii) builds on new automata constructions that allow us to cope with the loop
operator of PDL.

Combining (i) and (ii) yields the translation from FO logic to CFMs. It follows that CFMs are expressively
equivalent to existential MSO logic. Moreover, we can derive self-contained proofs of several results on channel-
bounded CFMs whose original proofs refer to involved constructions for Mazurkiewicz traces (cf. Section 5). In fact,
we also extend these results to infinite MSCs.

1.3. Outline

In Section 2, we recall basic notions such as MSCs, FO logic, and CFMs. We also give a brief overview of what
was already known on the relation between logic and CFMs. Section 3 presents star-free PDL and shows that it
captures FO logic over MSCs. In Section 4, we establish the translation of star-free PDL into CFMs. As corollaries,

1It is open whether there is an equivalent one-dimensional one.

3

we obtain the translation of FO sentences into CFMs and the equivalence between CFMs and existential MSO logic.
Several applications of our results are presented in Section 5. In particular, we obtain known results on CFMs with
existentially bounded channels as a corollary. As a reference, an overview of previously known facts is presented in
Section 2.4. We conclude in Section 6.

A preliminary version of this paper has been presented at the 29th International Conference on Concurrency
Theory (CONCUR’18) and is accessible at http://drops.dagstuhl.de/opus/frontdoor.php?source_opus=
9545. There, we considered finite MSCs. The present paper generalizes our results to infinite MSCs, which require
several technical adjustments. Moreover, we provide full proofs as well as an application to channel-bounded CFMs.

2. Preliminaries

We consider message-passing systems in which processes communicate through unbounded FIFO channels. We
fix a nonempty finite set of processes P and a nonempty finite set of labels Σ. For all p, q ∈ P such that p , q, there is
a channel (p, q) that allows p to send messages to q. The set of channels is denoted Ch.

In the following, we define message sequence charts, which represent executions of a message-passing system,
and logics to reason about them. Then, we recall the definition of communicating finite-state machines and state one
of our main results.

2.1. Message Sequence Charts

A message sequence chart (MSC) (over P and Σ) is a graph M = (E,→,C, loc, λ) with nonempty, finite or
countably infinite set E of nodes, also called events, edge relations →,C ⊆ E × E, and node-labeling functions
loc : E → P and λ : E → Σ. An example MSC over P = {p1, p2, p3} and Σ = { , ,�} is depicted in Figure 1. A node
e ∈ E is an event that is executed by process loc(e) ∈ P. In particular, Ep := {e ∈ E | loc(e) = p} is the set of events
located on p. Note that Ep can be finite or infinite. The label λ(e) ∈ Σ may provide more information about e such as
the message that is sent/received at e or “enter critical section” or “output some value”.

Edges describe causal dependencies between events:

• The relation → contains process edges. They connect successive events executed by the same process, that
is, we actually have → ⊆

⋃
p∈P(Ep × Ep). Every process p is sequential so that → ∩ (Ep × Ep) must be the

direct-successor relation of some total order on Ep. We let ≤proc := →∗ and <proc := →+, and we require that
every event e ∈ E has a “finite past”, i.e., { f ∈ E | f ≤proc e} is finite.

• The relation C contains message edges. If eC f , then e is a send event and f is the corresponding receive event.
In particular, (loc(e), loc(f)) ∈ Ch. Each event is part of at most one message edge. An event that is neither a
send nor a receive event is called internal. Moreover, for all (p, q) ∈ Ch and (e, f), (e′, f ′) ∈ C ∩ (Ep × Eq), we
have e ≤proc e′ iff f ≤proc f ′ (which guarantees a FIFO behavior).

We require that→∪C be acyclic (intuitively, messages cannot travel backwards in time). The associated partial order
is denoted ≤ := (→∪C)∗ with strict part < = (→∪C)+. Actually, MSCs correspond to the space-time diagrams from
Lamport’s seminal paper [Lam78] when we assume a single FIFO channel between each pair of processes, and ≤ is
commonly referred to as the happened-before relation.

We do not distinguish isomorphic MSCs. Let MSC(P,Σ) denote the set of MSCs over P and Σ. An MSC is finite
if its set of events E is finite. We denote the set of finite MSCs by MSCfin(P,Σ).

It is worth noting that, when P is a singleton, an MSC with events e1 → e2 → e3 → . . . can be identified with the
(finite or infinite) word λ(e1)λ(e2)λ(e3) . . . over Σ.

Example 1. Consider the (infinite) MSC from Figure 1 over P = {p1, p2, p3} and Σ = { , ,�}. We have Ep1 = {ei |

i ∈ N}, Ep2 = { f0, . . . , f5}, Ep3 = {gi | i ∈ N}. The process relation is given by ei → ei+1 and gi → gi+1 for all i ∈ N,
as well as fi → fi+1 for all i ∈ {0, . . . , 4}. Concerning the message relation, we have e1 C f0, e4 C g5, etc. Moreover,
e2 ≤ f3, but neither e2 ≤ f1 nor f1 ≤ e2.

4

http://drops.dagstuhl.de/opus/frontdoor.php?source_opus=9545
http://drops.dagstuhl.de/opus/frontdoor.php?source_opus=9545

e0

g0

e1

f0

e2

g1

f1

g2

e3

f2

f3

g3

e4

g5

e5

f4

f5

g4

e6

g6

e7

g7

e8

g8

p3

p2

p1

. . .

. . .

Figure 1: An (infinite) message sequence chart (MSC).

2.2. MSO Logic and Its Fragments
Next, we give an account of monadic second-order (MSO) logic and its fragments. Note that we restrict our

attention to MSO logic interpreted over MSCs. We fix an infinite supply Vevent = {x, y, . . .} of first-order variables,
which range over events of an MSC, and an infinite supply Vset = {X,Y, . . .} of second-order variables, ranging over
sets of events. The syntax of MSO (P and Σ are fixed) is given as follows:

Φ ::= p(x) | a(x) | x = y | x→ y | x C y | x ≤ y | x ∈ X | Φ ∨ Φ | ¬Φ | ∃x.Φ | ∃X.Φ

where p ∈ P, a ∈ Σ, x, y ∈ Vevent, and X ∈ Vset. We use the standard abbreviations to also include implication =⇒,
conjunction ∧, and universal quantification ∀. Moreover, the relation x ≤proc y can be defined by x ≤ y ∧

∨
p∈P p(x) ∧

p(y). We write Free(Φ) for the set of free variables of Φ.
Let M = (E,→,C, loc, λ) be an MSC. An interpretation (for M) is a mapping ν : Vevent∪Vset → E∪2E assigning

to each x ∈ Vevent an event ν(x) ∈ E, and to each X ∈ Vset a set of events ν(X) ⊆ E. We write M, ν |= Φ if M satisfies
Φ when the free variables of Φ are interpreted according to ν. Hereby, satisfaction is defined in the usual manner.
In fact, whether M, ν |= Φ holds or not only depends on the interpretation of variables that occur free in Φ. Thus,
we may restrict ν to any set of variables that contains at least all free variables. For example, for Φ(x, y) = (x C y),
we have M, [x 7→ e, y 7→ f] |= Φ(x, y) iff e C f . For a sentence Φ ∈ MSO (without free variables), we define
L(Φ) := {M ∈MSC(P,Σ) | M |= Φ}.

We say that two formulas Φ and Φ′ are equivalent, written Φ ≡ Φ′, if, for all MSCs M = (E,→,C, loc, λ) and
interpretations ν : Vevent ∪Vset → E ∪ 2E , we have M, ν |= Φ iff M, ν |= Φ′.

Let us identify two important fragments of MSO logic: First-order (FO) formulas do not make use of second-order
quantification (however, they may contain formulas x ∈ X). Moreover, existential MSO (EMSO) formulas are of the
form ∃X1 . . .∃Xn.Φ with Φ ∈ FO.

Let F be MSO or EMSO or FO and let R ⊆ {→,C,≤}. We obtain the logic F [R] by restricting F to formulas that
do not make use of {→,C,≤} \ R. Note that F = F [→,C,≤]. Moreover, we let L(F [R]) := {L(Φ) | Φ ∈ F [R] is a
sentence}.

As the reflexive transitive closure of an MSO-definable binary relation is MSO-definable, MSO and MSO[→,C]
have the same expressive power: L(MSO[→,C,≤]) = L(MSO[→,C]). However, MSO[≤] (without the message
relation) is strictly weaker than MSO [BL06]. In fact, over totally ordered MSCs, MSO[≤] only has the expressive
power of MSO logic over ordinary words, and hence of finite automata, when restricting to valid linear extensions of
MSCs. This allows one to apply a classical pumping argument to finite automata to show the result.

Example 2. Let us start with an easy formula saying that an MSC is infinite. This can be expressed in FO[→] by
Φ =

∨
p∈P ∃x p(x) ∧ ∀x∃y(p(x) =⇒ x→ y). Thus, L(Φ) = MSC(P,Σ) \MSCfin(P,Σ).

Example 3. We now give an FO[≤] formula that allows us to recover, at some event f , the most recent event e that
happened in the past on, say, process p. More precisely, we define the predicate latestp(x, y) as x ≤ y ∧ p(x) ∧
∀z

(
(z ≤ y ∧ p(z)) =⇒ z ≤ x

)
. We are interested in the MSC language where process q always maintains the latest

information that it can have about p. Thus, it is defined by

Φlatest
p,q = ∀x∀y.

(latestp(x, y) ∧ q(y)
)

=⇒
∨
a∈Σ

(
a(x) ∧ a(y)

) ∈ FO[≤] .

5

For example, for P = {p1, p2, p3} and Σ = { , ,�}, the MSC M from Figure 1 is contained in L(Φlatest
p1,p3

). In particular,
M, [x 7→ e5, y 7→ g5] |= latestp1 (x, y) and λ(e5) = λ(g5) = .

2.3. Communicating Finite-State Machines

In a communicating finite-state machine, each process p ∈ P can perform internal actions of the form 〈a〉, where
a ∈ Σ, or send/receive messages from a finite set of messages Msg. A send action 〈a, !qm〉 of process p writes message
m ∈ Msg to channel (p, q), and performs a ∈ Σ. A receive action 〈a, ?qm〉 reads message m from channel (q, p).
Accordingly, we let Actp(Msg) := {〈a〉 | a ∈ Σ} ∪ {〈a, !qm〉 | a ∈ Σ, m ∈ Msg, q ∈ P \ {p}} ∪ {〈a, ?qm〉 | a ∈ Σ, m ∈ Msg,
q ∈ P \ {p}} denote the set of possible actions of process p.

Definition 1. A communicating finite-state machine (CFM) over P and Σ is a tuple A = ((Ap)p∈P,Msg,Acc) con-
sisting of a finite set of messages Msg and a finite-state transition system Ap = (S p, ιp,∆p) for each process p, with
finite set of states S p, initial state ιp ∈ S p, and transition relation ∆p ⊆ S p × Actp(Msg) × S p. Moreover, we have
an acceptance condition Acc, which is a positive Boolean combination of atomic conditions 〈p, s〉 or 〈p, s〉∞, where
p ∈ P and s ∈ S p.

Intuitively, 〈p, s〉 requires that process p terminates in state s (and, thus, executes only finitely many events), while
〈p, s〉∞ requires that process p enters state s infinitely often (which implies that p executes infinitely many events).
This kind of “mixed” acceptance condition is quite convenient. Using positive Boolean combinations of acceptance
conditions for infinite words was originally proposed in [EL87]. Other, syntactically different acceptance criteria have
been adopted in the literature, like Büchi or Muller conditions [Kus03, BK08]. However, it is easily seen that they are
all expressively equivalent.

Given a transition t = (s, α, s′) ∈ ∆p, we let source(t) = s and target(t) = s′ denote the source and target states of t.
In addition, if α = 〈a〉, then t is an internal transition and we let label(t) = a. If α = 〈a, !qm〉, then t is a send transition
and we let label(t) = a, msg(t) = m, and receiver(t) = q. Finally, if α = 〈a, ?qm〉, then t is a receive transition with
label(t) = a, msg(t) = m, and sender(t) = q.

A run ρ of A on an MSC M = (E,→,C, loc, λ) ∈ MSC(P,Σ) is a mapping associating with each event e ∈ Ep a
transition ρ(e) ∈ ∆p, and satisfying the following conditions:

1. for all events e ∈ E, we have label(ρ(e)) = λ(e),

2. for all→-minimal events e ∈ E, we have source(ρ(e)) = ιp, where p = loc(e),

3. for all process edges (e, f) ∈ →, we have target(ρ(e)) = source(ρ(f)),

4. for all internal events e ∈ E, ρ(e) is an internal transition, and

5. for all message edges e C f , ρ(e) and ρ(f) are respectively send and receive transitions such that msg(ρ(e)) =

msg(ρ(f)), receiver(ρ(e)) = loc(f), and sender(ρ(f)) = loc(e).

We say that ρ is accepting if it satisfies the acceptance condition Acc, written ρ |= Acc. The relation ρ |= Acc is
defined inductively. Disjunction and conjunction are interpreted as usual. Moreover, we let ρ |= 〈p, s〉 if either Ep = ∅

and s = ιp, or Ep is a nonempty finite set and s = target(ρ(e)), where e is the last event of Ep. Finally, ρ |= 〈p, s〉∞ if
s = target(ρ(e)) for infinitely many events e ∈ Ep (which implies that Ep is infinite).

The language L(A) of A is the set of MSCs M such that there exists an accepting run of A on M. Moreover,
L(CFM) := {L(A) | A is a CFM}. Recall that, for these definitions, we have fixed P and Σ.

Following [HMK+05, GKM07, Kus03], we call a CFMA = ((Ap)p∈P,Msg,Acc) deterministic if, for all processes
p and transitions t1 = (s1, α1, s′1) and t2 = (s2, α2, s′2) of Ap such that s1 = s2 and label(t1) = label(t2), the following
hold:

• If t1 and t2 are internal transitions, then s′1 = s′2.

• If t1 and t2 are send transitions such that receiver(t1) = receiver(t2), then s′1 = s′2 and msg(t1) = msg(t2).

• If t1 and t2 are receive transitions such that sender(t1) = sender(t2) and msg(t1) = msg(t2), then s′1 = s′2.

6

Example 4. Consider the simple (deterministic) CFMA depicted in Figure 2. The set of processes is P = {p1, p2, p3}.
Moreover, we have Σ = { , ,�} and Msg = { , }. Process p1 sends messages to p2 and p3. Each message can be
either or , and the message sent is made “visible” in terms of Σ. Process p2 simply forwards every message it
receives to p3. In any case, the action is �. Finally, p3 receives and “outputs” messages from p1 and p2 in any
order. Note that, in this example, there are no local transitions, i.e., every transition is either sending or receiving. As
acceptance condition, we take Acc = 〈p1, sp1〉∞, which says that p1 executes infinitely many events.

The CFM A can be seen as a first (naı̈ve) attempt to solve the problem described in Example 3 by the formula
Φlatest

p1,p3
if we restrict to messages sent from pi to p j with i < j. Unfortunately, the protocol implemented by A is

erroneous: For the MSC M in Figure 1, we have M ∈ L(Φlatest
p1,p3

), but M < L(A). In A, at g2 and g5, process p3

should announce , but it outputs . It turns out that it is very difficult to come up with a CFM Alatest
p1,p3

such that
L(Alatest

p1,p3
) = L(Φlatest

p1,p3
) (even to show that such a CFM exists at all). This is already a challenging problem in the more

specialized setting of Mazurkiewicz traces. However, we obtain Alatest
p1,p3

as a corollary of our logical characterization
of CFMs, which we present in the following.

sp1

p1p1

〈 , !p2 〉

〈 , !p3 〉

〈 , !p2 〉

〈 , !p3 〉

s0
p2

p2p2

s1
p2

s2
p2

〈�, ?p1 〉

〈�, !p3 〉

〈�, ?p1 〉

〈�, !p3 〉

sp3

p3p3

〈 , ?p1 〉

〈 , ?p2 〉

〈 , ?p1 〉

〈 , ?p2 〉

Figure 2: A communicating finite-state machine.

As we have demonstrated in the previous example, it is a worthwhile task to translate (simple) logical specifications
like Φlatest

p,q into (complicated) machine models, preferably automatically. However, coming up with automata models
directly can be very difficult. One of our main results (Theorem 3) states that every FO formula can be translated
into a CFM. Our proof goes via an intermediate logic, namely star-free propositional dynamic logic (PDLsf), which is
introduced in the next section and shown to be expressively equivalent to FO[→,C,≤]. Then, in Section 4, we show
how to translate PDLsf formulas into equivalent CFMs.

2.4. An Overview of Known Results

Let us give a brief account of what was already known on the relation between logic and CFMs. Note that we do
not rely on any of these results.

Fact 1 ([Büc60, Elg61, Tra62]). Suppose |P| = 1 (i.e., CFMs are essentially finite automata). We have L(MSO) =

L(CFM).

This classical result is known as the Büchi-Elgot-Trakhtenbrot theorem. It was first generalized to CFMs with
universally bounded channels (Fact 2). See Section 5.1 for the formal definition of existentially and universally
bounded MSCs. Intuitively, a language L of MSCs is universally B-bounded if all linearizations of all MSCs in L can
be executed with channel capacity B. We denote by MSC∀B(P,Σ) the set of MSCs in MSC(P,Σ) which are universally
B-bounded. Moreover, MSCfin

∀B(P,Σ) := MSC∀B(P,Σ) ∩MSCfin(P,Σ).

Fact 2 ([HMK+05]). For all B ∈ N and L ⊆MSCfin
∀B(P,Σ), the following are equivalent:

1. L = L(A) for some CFMA;

2. L = L(A) for some deterministic CFMA;

3. L = L(Φ) for some MSO formula Φ.

Moreover, there is a deterministic CFMA such that L(A) = MSCfin
∀B(P,Σ).

Kuske generalized the theorem to infinite universally bounded MSCs, while using a different proof technique.

7

Fact 3 ([Kus03]). For all B ∈ N and L ⊆MSC∀B(P,Σ), the following are equivalent:

1. L = L(A) for some CFMA;

2. L = L(A) for some deterministic CFMA;

3. L = L(Φ) for some MSO formula Φ.

In the case of finite MSCs, the logical characterization was lifted to existentially bounded MSCs by Genest et
al. (cf. Fact 8). We denote by MSC∃B(P,Σ) the set of MSCs in MSC(P,Σ) which are existentially B-bounded, i.e.,
for which some linearization can be executed with channel capacity B. We also let MSCfin

∃B(P,Σ) := MSC∃B(P,Σ) ∩
MSCfin(P,Σ).

Fact 4 ([GKM06]). For all B ∈ N and L ⊆MSCfin
∃B(P,Σ), the following are equivalent:

1. L = L(A) for some CFMA;

2. L = L(Φ) for some MSO formula Φ.

Moreover, there is a CFMA such that L(A) = MSCfin
∃B(P,Σ).

On the other hand, it turns out that deterministic CFMs are now strictly weaker:

Fact 5 ([GKM06]). CFMs are inherently non-deterministic: There is a CFM A such that L(A) ⊆ MSCfin
∃B(P,Σ) and,

for all deterministic CFMsA′, we have L(A) , L(A′).

The proofs of Facts 2, 3, and 4 reduce message-passing systems to finite-state shared-memory systems so that
involved results from Mazurkiewicz trace theory [DR95] can be applied. This generic approach is no longer applicable
when the restriction on the channel capacity is dropped. In fact, in general, CFMs do not capture MSO logic:

Fact 6 ([BL06, BFG18]). For all L ⊆MSCfin(P,Σ), the following are equivalent:

1. L = L(A) for some CFMA;

2. L = L(Φ) for some sentence Φ ∈ EMSO[→,C];

3. L = L(Φ) for some sentence Φ ∈ EMSO2[→,C,≤].

However, MSO is strictly more expressive than CFMs: There is an MSO sentence Φ such that L(Φ) ⊆ MSCfin(P,Σ)
and, for all CFMsA, we have L(Φ) , L(A).

The characterizations from Fact 6 were given for finite MSCs. Over infinite MSCs, EMSO[→,C] is strictly
weaker than CFMs as it cannot express that there are infinitely many events to satisfy some property. Actually, this
is already true for one process, i.e., finite automata and words. However, CFMs can be characterized by the logic
EMSO∞[→,C], extending EMSO[→,C] by the quantifier ∃∞x.Φ, which requires that there be infinitely many events
x such that Φ holds.

Fact 7 ([BK08]). For all L ⊆MSC(P,Σ), the following are equivalent:

1. L = L(A) for some CFMA;

2. L = L(Φ) for some sentence Φ ∈ EMSO∞[→,C].

Note that one of our main results (Theorem 4) is the equivalence of CFMs and EMSO[→,C,≤], which properly
generalizes Facts 6 and 7. Moreover, we will show in Section 5 how to obtain Fact 4 as a corollary, while generalizing
it to infinite MSCs.

3. Star-Free Propositional Dynamic Logic

In this section, we introduce a star-free version of propositional dynamic logic and show that it is expressively
equivalent to FO[→,C,≤]. This is the second main result of the paper. Then, in Section 4, we show how to translate
star-free PDL formulas into CFMs.

8

Table 1: The semantics of PDLsf.

M |= Eϕ if M, e |= ϕ for some event e ∈ E

M |= ¬ξ if M 6|= ξ M |= ξ1 ∨ ξ2 if M |= ξ1 or M |= ξ2

M, e |= p if loc(e) = p M, e |= 〈π〉ϕ if ∃ f ∈ JπKM(e) : M, f |= ϕ

M, e |= a if λ(e) = a M, e |= Loop(π) if (e, e) ∈ JπKM

M, e |= ¬ϕ if M, e 6|= ϕ M, e |= ϕ1 ∨ ϕ2 if M, e |= ϕ1 or M, e |= ϕ2

J→KM := {(e, f) ∈ E × E | e→ f } JCp,qKM := {(e, f) ∈ Ep × Eq | e C f }

J←KM := {(f , e) ∈ E × E | e→ f } JC−1
p,qKM := {(f , e) ∈ Eq × Ep | e C f }

Jjumpp,rKM := Ep × Er J{ϕ}?KM := {(e, e) | e ∈ E : M, e |= ϕ}

J
ϕ
−→KM := {(e, f) ∈ E × E | e <proc f and ∀g ∈ E: e <proc g <proc f =⇒ M, g |= ϕ}

J
ϕ
←−KM := {(e, f) ∈ E × E | f <proc e and ∀g ∈ E: f <proc g <proc e =⇒ M, g |= ϕ}

Jπ1 · π2KM := {(e, g) ∈ E × E | ∃ f ∈ E : (e, f) ∈ Jπ1KM ∧ (f , g) ∈ Jπ2KM}

Jπ1 ∪ π2KM := Jπ1KM ∪ Jπ2KM JπcKM := (E × E) \ JπKM

Jπ1 ∩ π2KM := Jπ1KM ∩ Jπ2KM

3.1. Syntax and Semantics
Originally, propositional dynamic logic (PDL) has been used to reason about program schemas and transition

systems [FL79]. Since then, PDL and its extension with intersection and converse have developed a rich theory with
applications in artificial intelligence and verification [HM92, DL94, LL05, Lan06, GLL09]. It has also been applied
in the context of MSCs [BKM10, Men13].

Here, we introduce a star-free version of PDL, denoted PDLsf. It will serve as an “interface” between FO logic
and CFMs. The syntax of PDLsf and its fragment PDLsf[Loop] is given by the following grammar:

PDLsf = PDLsf[Loop,∪,∩, c]

PDLsf[Loop]

Sentence ξ ::= Eϕ | ξ ∨ ξ | ¬ξ

Event formula ϕ ::= p | a | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ | Loop(π)

Path formula π ::=→ | ← | Cp,q | C−1
p,q |

ϕ
−→ |

ϕ
←− | jumpp,r | {ϕ}? | π · π π ∪ π | π ∩ π | πc

where p, r ∈ P, q ∈ P \ {p}, and a ∈ Σ. We refer to ξ as a sentence, to ϕ as an event formula, and to π as a path
formula. We name the logic star-free because we use the operators (∪,∩, c, ·) of star-free regular expressions instead
of the regular-expression operators (∪, ·, ∗) of classical PDL. However, the formula

ϕ
−→, whose semantics is explained

below, can be seen as a restricted use of the construct π∗.
A sentence ξ is evaluated with respect to an MSC M = (E,→,C, loc, λ). An event formula ϕ is evaluated with

respect to M and an event e ∈ E. Finally, a path formula π is evaluated over two events. In other words, it defines
a binary relation JπKM ⊆ E × E. We often write M, e, f |= π to denote (e, f) ∈ JπKM . Moreover, for e ∈ E,
we let JπKM(e) := { f ∈ E | (e, f) ∈ JπKM}. When M is clear from the context, we may write JπK instead of
JπKM . The semantics of sentences, event formulas, and path formulas is given in Table 1. For a sentence ξ, we let
L(ξ) := {M ∈MSC(P,Σ) | M |= ξ}.

We use the standard abbreviations for sentences and event formulas such as implication and conjunction. More-
over, we let true := p∨¬p (for some arbitrary process p ∈ P) and false := ¬true. Finally, we define the event formula

9

〈π〉 := 〈π〉 true, and the path formulas
+
−→ :=

true
−−−→ and

∗
−→ :=

+
−→ ∪ {true}?.

The size of a PDLsf formula is defined by mutual induction. We let |Eϕ| = |ϕ| + 1, |¬ξ| = |ξ| + 1, and |ξ1 ∨ ξ2| =

|ξ1| + |ξ2| + 1. For p ∈ P and a ∈ Σ, |p| = |a| = 1. Moreover, |¬ϕ| = |ϕ| + 1, |〈π〉ϕ| = |π| + |ϕ| + 1, |Loop(π)| = |π| + 1,
and |ϕ1 ∨ ϕ2| = |ϕ1| + |ϕ2| + 1. If π ∈ {→,←,Cp,q,C−1

p,q | (p, q) ∈ Ch} ∪ {jumpp,q | p, q ∈ P}, we let |π| = 1. Moreover,

|{ϕ}?| = |
ϕ
−→| = |

ϕ
←−| = |ϕ| + 1 and |πc| = |π| + 1. Finally, |π1 op π2| = |π1| + |π2| + 1 for all op ∈ {∪,∩, · }.

The usual temporal logic modalities can be expressed easily. For instance, 〈→〉ϕ means that the next event on the
same process satisfies ϕ, and 〈

ϕ
−→〉ψ corresponds to the strict until X(ϕ U ψ). The corresponding past modalities can

be written similarly. See Section 5.2 for more modalities.

Example 5. Consider again the MSC M from Figure 1. For the path formula π = C−1
p1,p3
→Cp1,p2→Cp2,p3→, we

have M, g5 |= Loop(π). Moreover, (e2, e5) ∈ J−→KM but (e2, e6) < J−→KM . To give an example of an event formula,
note that we have M, e0 |= 〈

+
−→〉¬ 〈

+
−→〉¬ (as we eventually see only). Finally, since Ep1 is infinite, we also have

M |= ¬E(p1 ∧ ¬ 〈→〉).

Note that there are some redundancies in the logic. For example (letting ≡ denote logical equivalence),→ ≡
false
−−−→,

π1 ∩ π2 ≡ (πc
1 ∪ π

c
2)c, and Loop(π) ≡ 〈{true}? ∩ π〉. Some of them are necessary to define certain subclasses of

PDLsf. For every R ⊆ {Loop,∪,∩, c}, we let PDLsf[R] denote the fragment of PDLsf that does not make use of
{Loop,∪,∩, c} \ R. In particular, PDLsf = PDLsf[Loop,∪,∩, c]. Syntactically,

∗
−→ is not contained in PDLsf[Loop]

since union is not permitted.
Given a PDLsf[Loop] path formula π, we denote by Comp(π) the set of pairs (p, q) ∈ P × P such that there may

be a π-path from some event on process p to some event on process q. Formally, we let Comp(→) = Comp(←) =

Comp(
ϕ
−→) = Comp(

ϕ
←−) = Comp({ϕ}?) = id, where id = {(p, p) | p ∈ P}; Comp(Cp,q) = Comp(C−1

q,p) = {(p, q)};
Comp(jumpp,r) = {(p, r)}; and Comp(π1 · π2) = Comp(π2) ◦ Comp(π1) = {(p, r) | ∃q : (p, q) ∈ Comp(π1), (q, r) ∈
Comp(π2)}.

Notice that, for all path formulas π ∈ PDLsf[Loop], the relation Comp(π) is either empty or a singleton {(p, q)}
or the identity id. Moreover, M, e, f |= π implies (loc(e), loc(f)) ∈ Comp(π). Therefore, all events in JπK(e) are on
the same process, and if this set is nonempty (i.e., if M, e |= 〈π〉), then minJπK(e) is well-defined. We also define
maxJπK(e) ∈ JπK(e) ∪ {∞}, with the convention maxJπK(e) = ∞ if JπK(e) is infinite. We extend ≤ and ≤proc to E ∪ {∞}
by setting e ≤ ∞ and e ≤proc ∞ for all e ∈ E ∪ {∞}.

Example 6. Consider π =
+
−→Cp1,p2→Cp2,p3→. We have Comp(π) = {(p1, p3)}. Moreover, given the MSC from

Figure 1, minJπK(e2) = g4 and maxJπK(e2) = g5. On the other hand, maxJ−→ ·Cp1,p3K(e5) = ∞.

Remark 1. The logic PDLsf[∪] over MSCs is analogous to Conditional XPath [Mar05].2 Formulas from Conditional
XPath are interpreted over ordered unranked trees. Therefore, rather than atomic formulas → and Cp,q as well as
their inverse operators, there are tailored formulas allowing one to move to a child or the parent of a given node, or to
go to its immediate left/right sibling. However, while Marx showed that Conditional XPath is expressively complete
for FO logic over ordered unranked trees, our expressive completeness result over MSCs crucially relies on the Loop
modality, which is not contained in PDLsf[∪] and not provided by Conditional XPath.

3.2. From PDLsf to FO3

Let FO3[→,C,≤] be the set of formulas from FO[→,C,≤] that use at most three different first-order variables
(however, a variable can be quantified and reused several times in a formula). The main result of this section is
that, for formulas with zero or one free variable, the logics FO[→,C,≤], FO3[→,C,≤], PDLsf, and PDLsf[Loop] are
expressively equivalent.

2Thanks to Sylvain Schmitz for pointing this out.

10

Consider FO[→,C,≤] formulas Φ0, Φ1(x), and Φ2(x, y) with respectively zero, one, and two free variables (hence,
Φ0 is a sentence). Consider also some PDLsf sentence ξ, event formula ϕ, and path formula π. The respective formulas
are equivalent, written Φ0 ≡ ξ, Φ1(x) ≡ ϕ, and Φ2(x, y) ≡ π, if, for all MSCs M and all events e, f in M, we have

M |= Φ0 iff M |= ξ

M, [x 7→ e] |= Φ1(x) iff M, e |= ϕ

M, [x 7→ e, y 7→ f] |= Φ2(x, y) iff M, e, f |= π

We start with a simple observation, which can be shown easily by induction:

Proposition 1. Every PDLsf formula is equivalent to some FO3[→,C,≤] formula. More precisely, for every PDLsf

sentence ξ, event formula ϕ, and path formula π, there exist some FO3[→,C,≤] sentence ξ̃, formula ϕ̃(x) with one
free variable, and formula π̃(x, y) with two free variables, respectively, such that, ξ ≡ ξ̃, ϕ ≡ ϕ̃(x), and π ≡ π̃(x, y).

The main result of this section is a strong converse of Proposition 1: Every FO[→,C,≤] formula with at most
two free variables is equivalent to some PDLsf formula. This is formally stated and proved in Section 3.5. We first
investigate in the next section some basic properties of PDLsf. Then, we show in Section 3.4 that the complement of
a PDLsf[Loop] formula is equivalent to a finite union of PDLsf[Loop] formulas. This is crucial to deal with negation
in the translation from FO to PDLsf. The other main difficulty is existential quantification, which is dealt with in
Section 3.5.

3.3. Basic Properties of PDLsf

First, the converse of a PDLsf formula is definable in PDLsf (easy induction on π).

Lemma 1. Let R ⊆ {Loop,∪,∩, c} and π ∈ PDLsf[R] be a path formula. There exists π−1 ∈ PDLsf[R] such that, for
all MSCs M, Jπ−1KM = JπK−1

M = {(f , e) | (e, f) ∈ JπKM}.

A second observation is that unions in PDLsf[Loop,∪] path formulas can always be pulled to the front of the
formula.

Lemma 2. Every PDLsf[Loop,∪] path formula is equivalent to a finite union of PDLsf[Loop] path formulas, and
every PDLsf[Loop,∪] event formula is equivalent to some PDLsf[Loop] event formula.

Proof. This is easy to prove by induction on PDLsf[Loop,∪] formulas, using the following identities: if (πi)1≤i≤n and
(π′j)1≤ j≤m are PDLsf[Loop] path formulas, then(⋃

i πi
)
·
(⋃

j π
′
j
)
≡

⋃
i, j πi · π j , Loop(

⋃
i πi) ≡

∨
i Loop(πi) , 〈

⋃
i πi〉ϕ ≡

∨
i 〈πi〉ϕ .

The next lemma shows that all PDLsf[Loop] path formulas are, in some sense, monotone.

Lemma 3 (monotonicity). Let π ∈ PDLsf[Loop] be a path formula, M be an MSC, and e, f , e′ be events of M such
that M, e, e′ |= π, and M, f |= 〈π〉 (ie., M, f , g |= π for some event g in M).

(a) If e ≤proc f , then there exists f ′ such that e′ ≤proc f ′ and M, f , f ′ |= π.

(b) If f ≤proc e, then there exists f ′ such that f ′ ≤proc e′ and M, f , f ′ |= π.

Proof. We only show (a). Part (b) is similar.
We prove by induction on π that, for all event formulas ψ ∈ PDLsf[Loop], the property holds for π · {ψ}?.

• If π = {ϕ}?, then e′ = e, and we can take f ′ = f .

• If π = jumpp,q, we take f ′ = e′.

• If π = Cp,q, then e C e′ and there exists f ′ such that M, f , f ′ |= Cp,q · {ψ}?. In particular, f C f ′. Since the
channels are FIFO, we have e′ ≤proc f ′.

11

• The cases π = C−1
p,q, π =→, and π =← are similar.

• Suppose π =
ϕ
−→. If f <proc e′, we take f ′ = e′. Otherwise, we let f ′ be any event such that M, f , f ′ |=

ϕ
−→.

We then have e′ ≤proc f <proc f ′. Similarly, if π =
ϕ
←−, then either there exists e ≤proc f ′ <proc f such that

M, f , f ′ |=
ϕ
←− ·{ψ}?, or M, f , e′ |=

ϕ
←−.

• Suppose π = π1 · π2. There exists e1 such that M, e, e1 |= π1 and M, e1, e′ |= π2 · {ψ}?. In particular, M, e, e1 |=

π1 · {〈π2〉ψ}?. By induction hypothesis on π1, there exists f1 such that e1 ≤proc f1 and M, f , f1 |= π1 · {〈π2〉ψ}?.
By induction hypothesis on π2, there exists f ′ such that M, f1, f ′ |= π2 · {ψ}? and e′ ≤proc f ′.

A crucial consequence of Lemma 3 is that, for all path formulas π ∈ PDLsf[Loop] and events e in some MSC,
JπK(e) contains precisely the events that lie in the interval between minJπK(e) and maxJπK(e) and that satisfy 〈π−1〉.

Lemma 4. Let π be a PDLsf[Loop] path formula. For all MSCs M and events e such that M, e |= 〈π〉, we have

JπK(e) = { f ∈ E | minJπK(e) ≤proc f ≤proc maxJπK(e) ∧ M, f |= 〈π−1〉} .

Proof. The left-to-right inclusion is trivial. For the right-to-left inclusion, we show by induction on π that, for all
events e and f1 ≤proc f ≤proc f2 such that M, e, f1 |= π, M, e, f2 |= π, and M, f |= 〈π−1〉, we have M, e, f |= π.

All cases apart from concatenation are immediate. So assume π = π1 · π2. There exist g1, g2, g such that M, e, gi |=

π1, M, gi, fi |= π2, M, g, f |= π2, and M, g |= 〈π−1
1 〉. We distinguish three cases, illustrated in Figure 3.

e

g1

f1 f ′1f

g ≤proc

π1

π2

≤proc ≤proc

π2 π2
π2

Case 1.

e

g2

f2f ′2 f

g≤proc

π1

π2

≤proc≤proc

π2
π2

π2

Case 2.

e

g1 g2

f1 f2

g

f≤proc ≤proc

π1 π1

π2 π2
π2

≤proc ≤proc

π1

Case 3.

Figure 3: Proof of Lemma 4.

1. If g ≤proc g1, then by Lemma 3(a) applied to π2, g, f , g1, there exists f ′1 ≥proc f such that M, g1, f ′1 |= π2. By
induction hypothesis on π2, we then have M, g1, f |= π2, hence M, e, f |= π1 · π2.

2. Similarly, if g2 ≤proc g, then by applying Lemma 3(b) to π2, g2, g, f , we find f ′2 ≤proc f such that M, g2, f ′2 |= π2.
Using the induction hypothesis on π2, we obtain M, g2, f |= π2, hence M, e, f |= π1 · π2.

3. Otherwise, we have g1 ≤proc g ≤proc g2. By induction hypothesis on π1, we get M, e, g |= π1, hence M, e, f |=
π1 · π2.

3.4. Characterizing the Complement of a Path Formula
Using Lemma 4, we can give a characterization of JπcK(e) (when π ∈ PDLsf[Loop]) that also relies on intervals

delimited by minJπK(e) and maxJπK(e). More precisely, JπcK(e) is the union of the following sets (see Figure 4):

(i) the interval of all events to the left of minJπK(e),

(ii) the interval of all events to the right of maxJπK(e) (assuming maxJπK(e) , ∞),

(iii) the set of events located between minJπK(e) and maxJπK(e) and satisfying ¬ 〈π−1〉,

(iv) all events located on other processes than minJπK(e).

This description of JπcK(e) can be used to rewrite πc as a union of PDLsf[Loop] formulas. In a first step, we show
that, if π is a PDLsf[Loop] formula, then the relation {(e,minJπK(e)) | e ∈ E} can also be expressed in PDLsf[Loop].

12

(i)

(iii)

(ii)

e

〈π−1〉 〈π−1〉 〈π−1〉 〈π−1〉

min π max π

Figure 4: Characterization of JπcK(e) for π ∈ PDLsf[Loop].

Lemma 5. Let R = ∅ or R = {Loop}. For every path formula π ∈ PDLsf[R], there exists a PDLsf[R] path formula
min π of size O(|π|2) such that, for all MSCs M and events e, f , we have M, e, f |= min π iff f = minJπK(e).

Proof. Let us first observe that, for all PDLsf[Loop] path formulas π1 and π2, for all MSCs M and events e of M such
that Jπ1 · π2K(e) , ∅, we have

minJπ1 · π2K(e) = minJπ2K(minJπ1 · {〈π2〉}?K(e)) . (1)

Indeed, if Jπ1 · π2K(e) , ∅, then f = minJπ1 · {〈π2〉}?K(e) and g = minJπ2K(f) are well-defined (and reciprocally).
Clearly, M, e, g |= π1 · π2. To prove minimality, let f ′, g′ such that M, e, f ′ |= π1 and M, f ′, g′ |= π2 (cf. Figure 5). We
have f ≤proc f ′, hence, by Lemma 3(b), there exists g′′ ≤proc g′ such that M, f , g′′ |= π2. Then g ≤proc g′′ ≤proc g′.

e

minJπ1 · {〈π2〉}?K(e) = f

minJπ2K(f) = g

f ′

g′g′′≤proc ≤proc

≤proc

π1

π2π2

Figure 5: Proof of Lemma 5.

We can now give the definition of min π. Since concatenation of paths is associative, we view π as a nonempty
sequence of atomic steps and we construct min π by induction on the length of π. Without loss of generality, we
assume that the last atomic step of the path formula is {true}?. Hence, the basis of the induction is when π = {true}?,
in which case we let min π = {true}?.

For the inductive case, assume that π = r · π′ with r an atomic path formula. Inspired by Equation (1), we define
inductively min π = r̂ ·min π′, where r̂ is a path formula such that, for all events e and f with M, e, f |= r · {〈π′〉}?, we
have M, e, f |= r̂ if and only if f = minJr · {〈π′〉}?K(e). For an atomic path formula r, we define

r̂ =

r if r ∈ {{ϕ}?,→,←,Cp,q,C−1

p,q | (p, q) ∈ Ch}

jumpp,q · {¬ 〈
+
←− · π′〉}? if r = jumpp,q

ϕ
←− ·{¬ϕ ∨ ¬ 〈

ϕ
←− · π′〉}? if r =

ϕ
←−

ϕ∧¬ 〈π′〉
−−−−−−→ if r =

ϕ
−→ .

Notice that M, e, f |= r̂ does not imply M, f |= 〈π′〉. We could enforce this by appending a test {〈π′〉}? at the end of r̂,
but this would be redundant due to the right context of r̂ in min π = r̂ ·min π′. Finally, note that r̂ is of size O(|π|). We
deduce immediately that min π is of size O(|π|2).

Moreover, we associate with every path formula π ∈ PDLsf[Loop] a formula max π in PDLsf[Loop]. Note that, for
finite MSCs, we could define max π similarly to min π. However, for infinite MSCs, we cannot use the same definition
since we may have maxJπ1 · π2K(e) = f but maxJπ1 · {〈π2〉 }?K(e) = ∞.

Lemma 6. Let R = ∅ or R = {Loop}. For every path formula π ∈ PDLsf[R], there exists a PDLsf[R] path formula
max π of size O(|π|2) such that, for all MSCs M and events e, f , we have M, e, f |= max π iff f = maxJπK(e).

13

In particular, if maxJπK(e) = ∞, then no event in M will satisfy max π. So we have maxJπK(e) = ∞ iff M, e |=
〈π〉 ∧¬ 〈max π〉.

Proof. As in Lemma 5, we view π as a nonempty sequence of atomic steps. If π = r ·π′ with r an atomic path formula,
we will define inductively max π = r̂ ·max π′, where r̂ is a path formula of size O(|π|).

• Without loss of generality, we assume that the last atomic step of the path formula is {true}?. Hence, the basis
of the induction is when π = {true}?, in which case we let max π = {true}?.

• If π = r · π1, where r ∈ {{ϕ}?,→,←,Cp,q,C−1
p,q | (p, q) ∈ Ch}, we let

max π = r ·max π1 .

• If π = jumpp,q · π1, we let

max π = jumpp,q · {〈π1〉 ¬ 〈
+
−→ · π−1

1 〉}? ·max π1 .

To prove the correctness, let M be an MSC, and e, f events of M.

First, assume that f = maxJjumpp,q · π1K(e). Let g such that M, e, g |= jumpp,q and M, g, f |= π1 (see Figure 6a).

We must have f = maxJπ1K(g), hence M, g, f |= max π1. Suppose that M, g 6|= 〈π1〉 ¬ 〈
+
−→ · π−1

1 〉. Then, in

particular, M, f |= 〈
+
−→ · π−1

1 〉, i.e., there exist f ′ >proc f and g′ such that M, g′, f ′ |= π1. Since loc(f ′) = loc(f),
we also have loc(g′) = loc(g) = q. Hence M, e, g′ |= jumpp,q and M, e, f ′ |= π, which contradicts the maximality
of f .

e

g

f

g′

f ′maxJπK(e) =

jumpp,q

π1

+

jumpp,q

π1

(a) f = maxJπK(e).

e

g

f f ′f ′′

|= 〈π1〉 ¬ 〈
+
−→ · π−1

1 〉

jumpp,q

max π1

+

jumpp,q · π1

π1

∗

(b) M, e, f |= max π.

Figure 6: Proof of Lemma 6 where π = jumpp,q · π1.

Conversely, assume that M, e, f |= max π. Let g such that M, e, g |= jumpp,q, M, g |= 〈π1〉 ¬ 〈
+
−→ · π−1

1 〉, and
M, g, f |= max π1 (see Figure 6b). Clearly, M, e, f |= jumpp,q · π1. Suppose that f is not maximal, i.e., that there
exists f ′ >proc f such that M, e, f ′ |= π. Then, for all f ′′ such that M, g, f ′′ |= π1, we have f ′′ ≤proc f <proc f ′

(by induction hypothesis), hence M, f ′′ |= 〈
+
−→ · π−1

1 〉. This contradicts the fact that M, g |= 〈π1〉 ¬ 〈
+
−→ · π−1

1 〉.

• If π =
ϕ
←− · π1, we let

max π =
ϕ∧¬ 〈π1〉
←−−−−−− ·max π1 .

Let M be an MSC, and e, f events of M. Assume that f = maxJπK(e) and let g be such that M, e, g |=
ϕ
←−

and M, g, f |= π1. We must have f = maxJπ1K(g). Let g′ be maximal with M, e, g′ |=
ϕ
←− · {〈π1〉}?. We have

M, e, g′ |=
ϕ∧¬ 〈π1〉
←−−−−−− and g ≤proc g′. We deduce from Lemma 3(a) that f = maxJπ1K(g′).

Conversely, assume that M, e, f |= max π and let g be such that M, e, g |=
ϕ∧¬ 〈π1〉
←−−−−−− and M, g, f |= max π1. We

have M, e, f |= π. Let f ′, g′ be such that M, e, f ′ |= π, M, e, g′ |=
ϕ
←−, and M, g′, f ′ |= π1. We have g′ ≤proc g and

using Lemma 3(a) we deduce that f ′ ≤proc f . Therefore, f = maxJπK(e).

14

e g g′

f f ′

π1

ϕ

ϕ

+

π1

+

(a) f = maxJπK(e) and J
ϕ
−→K(e) infinite.

e g

f f ′f ′′

max π1
ϕ

+

π1

ϕ

∗

π1

(b) M, e, f |= max π.

Figure 7: Proof of Lemma 6 where π =
ϕ
−→ · π1.

• If π =
ϕ
−→ · π1, we let

max π =
ϕ
−→ · {ψ1 ∨ ψ2}? ·max π1 , where

ψ1 = ¬ϕ ∨ ¬ 〈
ϕ
−→ · π1〉

ψ2 = 〈π1〉 ¬ 〈
+
−→ · π−1

1 〉 .

Let M be an MSC, and e, f events of M.

Assume that f = maxJπK(e), and that J
ϕ
−→K(e) is finite. Then, J

ϕ
−→ · {〈π1〉}?K(e) is also finite and non-empty.

Let g = maxJ
ϕ
−→ · {〈π1〉}?K(e). We have M, g |= ψ1. In addition, since JπK(e) is finite, Jπ1K(g) must be finite,

and by Lemma 3(a), we get maxJπ1K(g) = f . Hence M, e, f |= max π. Now, assume that J
ϕ
−→K(e) is infinite.

Let g be any event such that M, e, g |=
ϕ
−→ and M, g, f |= π1. By maximality of f , we have M, g, f |= max π1

(see Figure 7a). Suppose towards a contradiction that M, f |= 〈
+
−→ · π−1

1 〉. Then, there exist f ′ >proc f and g′

such that M, g′, f ′ |= π1. By Lemma 3(a), g′ >proc g >proc e. Since J
ϕ
−→K(e) is infinite, we have M, e, g′ |=

ϕ
−→,

and thus M, e, f ′ |= π, which contradicts the maximality of f . Hence, M, f |= ¬ 〈
+
−→ · π−1

1 〉, M, g |= ψ2, and
M, e, f |= max π.

Conversely, assume that M, e, f |= max π. Let g such that M, e, g |=
ϕ
−→, M, g |= ψ1 ∨ ψ2, and M, g, f |= max π1.

If g |= ψ1, we have g = maxJ
ϕ
−→ · {〈π1〉}?K(e). By Lemma 3(a), we conclude that f = maxJπK(e). Now, suppose

that M, g |= ψ2, and that there exists f ′ >proc f such that M, e, f ′ |= π (see Figure 7b). For all f ′′ such

that M, g, f ′′ |= π1, we have f ′′ ≤proc f <proc f ′, hence M, f ′′ |= 〈
+
−→ · π−1

1 〉. This contradicts the fact that

M, g |= 〈π1〉 ¬ 〈
+
−→ · π−1

1 〉.

We are now ready to prove that any Boolean combination of PDLsf[Loop] formulas is equivalent to a positive one,
i.e., one that does not use complement.

Lemma 7. For all path formulas π ∈ PDLsf[Loop], there exist PDLsf[Loop] path formulas (πi)1≤i≤|P|2+3 such that
πc ≡

⋃
1≤i≤|P|2+3 πi.

Proof. We show πc ≡ σ, where

σ = (min π ·
+
←−) ∪ (max π ·

+
−→) ∪ (π ·

+
−→ · {¬ 〈π−1〉}?) ∪

⋃
(p,q)∈P2

{¬ 〈π〉 q}? · jumpp,q .

Let M = (E,→,C, loc, λ) be an MSC and e, f ∈ E. We write p = loc(e), q = loc(f). Let us show that
M, e, f |= πc iff M, e, f |= σ. If M, e |= ¬ 〈π〉 q, then both M, e, f |= πc and M, e, f |= σ hold. In the following, we
assume that M, e |= 〈π〉 q, and thus that minJπK(e) ∈ Eq and maxJπK(e) ∈ Eq ∪ {∞}. Again, if f <proc minJπK(e) or
maxJπK(e) <proc f , then both M, e, f |= πc and M, e, f |= σ hold. And if minJπK(e) ≤proc f ≤proc maxJπK(e), then, by
Lemma 4, we have M, e, f |= πc iff M, f |= ¬ 〈π−1〉, iff M, e, f |= σ.

15

3.5. From FO to PDLsf

We will now show that every FO[→,C,≤] formula with at most two free variables can be translated into an
equivalent PDLsf formula, as stated in Theorem 1 below. As we proceed by induction, we actually need a more
general statement, which takes into account arbitrarily many free variables. In the following proposition, π̃(x, y) refers
to the FO formula obtained from π due to Proposition 1. To obtain a formula π̃(x, x) with one free variable, we first
construct π̃(x, y) according to Proposition 1 and then replace y by x.

Proposition 2. Every formula Φ ∈ FO[→,C,≤] with at least one free variable is equivalent to a positive Boolean
combination of formulas of the form π̃(x, y), where π ∈ PDLsf[Loop] and x, y ∈ Free(Φ).

Proof. In the following, we will simply write π(x, y) for π̃(x, y).
The proof is by induction. For convenience, we assume that Φ is in prenex normal form. If Φ is quantifier free,

then it is a Boolean combination of atomic formulas. For x, y ∈ Vevent, atomic formulas are translated as follows:

p(x) ≡ {p}?(x, x) x→ y ≡ →(x, y) x = y ≡ {true}?(x, y)

a(x) ≡ {a}?(x, x) x C y ≡
∨

(p,q)∈Ch

Cp,q(x, y)

Moreover, x ≤ y is equivalent to the disjunction of the formulas
(
π ·Cp1,p2 ·

+
−→ ·Cp2,p3 · · ·

+
−→ ·Cpm−1,pm · π

′
)
(x, y), where

1 ≤ m ≤ |P|, p1, . . . , pm ∈ P are such that pi , p j for all 1 ≤ i < j ≤ m, and π, π′ ∈ {
+
−→, {true}?}.

Universal quantification. We have ∀x.Ψ ≡ ¬∃x.¬Ψ. Negation can be eliminated thanks to Lemma 7. Hence, this
case reduces to existential quantification.

Existential quantification. Suppose that Φ = ∃x.Ψ. If x is not free in Ψ, then Φ ≡ Ψ and we are done by induction.
Otherwise, assume that Free(Ψ) = {x1, . . . , xn} with n > 1, and that x = xn. By induction, Ψ is equivalent to a positive
Boolean combination of formulas of the form π(y, z) with y, z ∈ Free(Ψ). Bringing Ψ into disjunctive normal form, we
obtain a finite disjunction of formulas of the form

∧
j π j(y j, z j), where y j = xi1 and z j = xi2 for some i1 ≤ i2. This step

may cause an exponential blow-up so that the overall construction is nonelementary (which is unavoidable [Sto74]).
Note that the variable ordering can be guaranteed by replacing π j with π−1

j whenever needed.
Now, Φ = ∃xn.Ψ is equivalent to a finite disjunction of formulas of the form∧

j∈I

π j(y j, z j) ∧ ∃xn.
(∧

j∈J

π j(y j, xn) ∧
∧
j∈J′

π j(xn, xn)
)

︸ ︷︷ ︸
=: Υ

for three finite, pairwise disjoint index sets I, J, J′ such that y j, z j ∈ {x1, . . . , xn−1} for all j ∈ I, and y j ∈ {x1, . . . , xn−1}

for all j ∈ J. Notice that Free(Υ) ⊆ {x1, . . . , xn−1}. If J = ∅, then3

Υ ≡
∨

p,q∈P

(
jumpp,q · {

∧
j∈J′

Loop(π j)}? · jumpq,p

)
(x1, x1) .

So assume J , ∅. We define below a formula Υ′ and prove that it is equivalent to Υ. Intuitively, by Lemma 4,
we know that Υ holds iff the intersection of the intervals [minJπ jK(y j),maxJπ jK(y j)] contains some event satisfying
ψ =

∧
j∈J 〈π

−1
j 〉 ∧

∧
j∈J′ Loop(π j). The formula Υ′ identifies some πk such that minJπkK(yk) is maximal (first line),

some π` such that maxJπ`K(y`) is minimal (second line), and tests that there exists an event xn satisfying ψ between

3In this case, Υ is a sentence whereas x1 is free in the right hand side. Notice that ≡ does not require the two formulas to have the same free
variables.

16

y j

min π j max π j

y`

min π`

max π`

yk
min πk

max πk

xn

Figure 8: Proof of Claim 1.

the two (third line). This is illustrated in Figure 8.

Υ′ :=
∨
k,`∈J

∧

j∈J((min π j) ·
∗
−→ · (min πk)−1)(y j, yk)

∧
∧

j∈J

(
{〈π j〉 ∧¬ 〈max π j〉}?(y j, y j) ∨ ((max π`) ·

∗
−→ · (max π j)−1)(y`, y j)

)
∧ (πk · {ψ}? · π−1

`)(yk, y`)

Claim 1. We have Free(Υ′) = Free(Υ) ⊆ {x1, . . . , xn−1} and Υ ≡ Υ′.

Proof. Assume M, ν |= Υ. There exists e ∈ E such that M, ν(y j), e |= π j for all j ∈ J, and M, e |= Loop(π j) for all j ∈ J′.
In particular, all minJπ jK(ν(y j)) and maxJπ jK(ν(y j)) ∈ E∪{∞} for j ∈ J are well-defined and on process loc(e) or equal
to ∞. Let k ∈ J such that minJπkK(ν(yk)) is maximal, i.e., minJπ jK(ν(y j)) ≤proc minJπkK(ν(yk)) for all j ∈ J. Then, for
all j ∈ J, we have M, ν(y j), ν(yk) |= (min π j) ·

∗
−→ · (min πk)−1. Similarly, let ` ∈ J such that maxJπ`K(ν(y`)) ∈ E ∪ {∞}

is minimal. Then, for all j ∈ J, either M, ν(y j), ν(y j) |= {〈π j〉 ∧¬ 〈max π j〉}? (i.e., maxJπ jK(ν(y j)) = ∞), or else
M, ν(y`), ν(y j) |= (max π`) ·

∗
−→ · (max π j)−1. In addition, we have M, e |= ψ, M, ν(yk), e |= πk, and M, ν(y`), e |= π`.

Hence, M, ν(yk), ν(y`) |= πk · {ψ}? · π−1
` . So we have M, ν |= Υ′.

Conversely, assume M, ν |= Υ′. Let k, ` ∈ J such that the corresponding sub-formula is satisfied. There exists
e ∈ E such that M, ν(yk), e |= πk, M, e |= ψ, and M, e, ν(y`) |= π−1

` . Note that we have minJπkK(ν(yk)) ≤proc e ≤proc

maxJπ`K(ν(y`)). For all j ∈ J′, we have M, e |= Loop(π j), i.e., M, ν[xn 7→ e] |= π j(xn, xn). Now, let j ∈ J. We
have M, ν(y j), ν(yk) |= (min π j) ·

∗
−→ · (min πk)−1, hence minJπ jK(ν(y j)) ≤proc minJπkK(ν(yk)) ≤proc e. Similarly, e ≤proc

maxJπ`K(ν(y`)) ≤proc maxJπ jK(ν(y j)) ∈ E ∪ {∞}. In addition, since M, e |= ψ, we have M, e |= 〈π−1
j 〉. Applying

Lemma 4, we get M, ν(y j), e |= π j, i.e., M, ν[xn 7→ e] |= π j(y j, xn). Hence, M, ν |= Υ. (Claim 1)

We conclude that Υ is equivalent to some positive Boolean combination of formulas π(x, y), with π ∈ PDLsf[Loop]
and x, y ∈ {x1, . . . , xn−1} = Free(Φ). Therefore, so is Φ. Note that, due to

∗
−→, the formulas (min π j) ·

∗
−→ · (min πk)−1

and (max π`) ·
∗
−→ · (max π j)−1 are in PDLsf[Loop,∪] instead of PDLsf[Loop]. By Lemma 2, these can be transformed

into finite unions of PDLsf[Loop] path formulas.

We are now able to prove the main result relating FO[→,C,≤] and PDLsf[Loop].

Theorem 1. Every FO[→,C,≤] formula with at most two free variables is equivalent to some PDLsf formula. More
precisely, for every FO[→,C,≤] sentence Φ0, formula Φ1(x) with one free variable, and formula Φ2(x, y) with two free
variables, there exist some PDLsf[Loop] sentence ξ, PDLsf[Loop] event formula ϕ, and PDLsf[Loop] path formulas
πi j, respectively, such that, Φ0 ≡ ξ, Φ1(x) ≡ ϕ, and Φ2(x, y) ≡

⋃
i
⋂

j πi j.

Proof. Let Φ2(x1, x2) be an FO[→,C,≤] formula with two free variables. We apply Proposition 2 to Φ2(x1, x2) and
obtain a positive Boolean combination of path formulas π(y, z) with y, z ∈ {x1, x2}. Next, we replace formula π(x1, x1)
by

∨
p,q({Loop(π)}? · jumpp,q)(x1, x2). Similarly, π(x2, x2) is replaced by

∨
p,q(jumpp,q · {Loop(π)}?)(x1, x2). Also,

π(x2, x1) is replaced by π−1(x1, x2). Finally, we transform it into disjunctive normal form: we obtain Φ1(x1, x2) ≡∨
i
∧

j πi j(x1, x2), which concludes the proof in the case of two free variables.

17

Next, let Φ1(x) be an FO[→,C,≤] formula with one free variable. As above, applying Proposition 2 to Φ1(x),
we obtain PDLsf[Loop] path formulas πi j such that Φ1(x) ≡

∨
i
∧

j πi j(x, x). Now, M, [x 7→ e] |= πi j(x, x) iff M, e |=
Loop(πi j). Hence, Φ(x) ≡

∨
i
∧

j Loop(πi j).
Finally, an FO[→,C,≤] sentence Φ0 is a Boolean combination of formulas of the form ∃x.Φ1(x). Applying the

theorem to Φ1(x), we obtain an equivalent PDLsf[Loop] event formula ϕ. Then, we take ξ = Eϕ, which is trivially
equivalent to ∃x.Φ1(x).

From Theorem 1 and Proposition 1, we deduce that FO has the three variable property:

Corollary 1. L(FO[→,C,≤]) = L(FO3[→,C,≤]).

4. From PDLsf[Loop] to CFMs

In this section, we show that, from a PDLsf[Loop] sentence, we can effectively construct an equivalent CFM of
exponential size (Theorem 2). Together with Theorem 1, this implies that every FO sentence can be translated to an
equivalent CFM (Theorem 3).

In the inductive translation of PDLsf[Loop] formulas into CFMs, event formulas will be evaluated by MSC trans-
ducers. An MSC transducer for an event formula ϕ produces a truth value at every event on the given MSC. More
precisely, it outputs 1 when ϕ holds at the current event, and 0 otherwise. We introduce MSC transducers formally
in the next section. Then, we present the actual translation of PDLsf[Loop] event formulas into MSC transducers in
Section 4.2. We concluce in Section 4.3 with the translation of sentences, PDLsf[Loop] or FO, into CFMs.

4.1. Letter-to-letter MSC Transducers

Let Γ be a nonempty finite output alphabet. A (nondeterministic) letter-to-letter MSC transducer (or simply,
transducer)A over P and from Σ to Γ is a CFM over P and Σ × Γ. The transducerA accepts the relation

JAK = {
(
(E,→,C, loc, λ), (E,→,C, loc, γ)

)
| (E,→,C, loc, λ × γ) ∈ L(A)} .

Transducers are closed under product and composition, using standard constructions:

Lemma 8. Let A be a transducer from Σ to Γ, and A′ a transducer from Σ to Γ′. There exists a transducer A ×A′

from Σ to Γ × Γ′ such that

JA×A′K =
{(

(E,→,C, loc, λ), (E,→,C, loc, γ × γ′)
)
|(

(E,→,C, loc, λ), (E,→,C, loc, γ)
)
∈ JAK,(

(E,→,C, loc, λ), (E,→,C, loc, γ′)
)
∈ JA′K

}
.

Lemma 9. Let A be a transducer from Σ to Γ, and A′ a transducer from Γ to Γ′. There exists a transducer A′ ◦ A
from Σ to Γ′ such that

JA′ ◦ AK = JA′K ◦ JAK = {(M,M′′) | ∃M′ ∈MSC(P,Γ) : (M,M′) ∈ JAK, (M′,M′′) ∈ JA′K} .

4.2. Translation of PDLsf[Loop] Event Formulas into MSC Transducers

For a PDLsf[Loop] event formula ϕ and an MSC M = (E,→,C, loc, λ) over P and Σ, we define an MSC Mϕ =

(E,→,C, loc, γ) over P and {0, 1}, by setting γ(e) = 1 if M, e |= ϕ, and γ(e) = 0 otherwise.
The goal of this section is to show that (Proposition 3), from any PDLsf[Loop] event formula ϕ, we can construct

an MSC transducerAϕ of exponential size which is equivalent to ϕ, that is, JAϕK = {(M,Mϕ) | M ∈MSC(P,Σ)}.
We start with the case of formulas from PDLsf[∅], i.e., without Loop. Lemma 10 actually follows from [BKM10,

Theorem 4.16] since PDLsf[∅] is a restricted fragment of the (loop-free) logic studied in [BKM10]. For completeness,
we provide a proof of the following simpler lemma.

Lemma 10. Let ϕ be a PDLsf[∅] event formula. There exists a transducerAϕ with 2O(|ϕ|) states per process such that
JAϕK = {(M,Mϕ) | M ∈MSC(P,Σ)}.

18

Proof. Any PDLsf[∅] event formula is equivalent to some linear-size formula ϕ over the syntax

ϕ ::= p | a | ϕ ∨ ϕ | ¬ϕ | 〈Cp,q〉ϕ | 〈C
−1
p,q〉ϕ | 〈

ϕ
−→〉ϕ | 〈

ϕ
←−〉ϕ | 〈jumpp,q〉ϕ

Indeed, we have 〈π1 · π2〉ϕ ≡ 〈π1〉 (〈π2〉ϕ), and 〈{ϕ}?〉ψ ≡ ϕ ∧ ψ. Notice that→ ≡
false
−−−→ and← ≡

false
←−−−.

We defineAϕ by induction on ϕ, by composition of the transducers for the atomic formulas ϕ = p with p ∈ P, or
ϕ = a with a ∈ Σ, and of transducers B∨, B¬, BCp,q , BC−1

p,q
, Bjumpp,q

, BXU, and BYS corresponding to each construct of
the logic. These transducers are defined in Figure 9. For instance, the transducer B¬ from {0, 1} to {0, 1} outputs the
negation of the bit read and B∨ from {0, 1}2 to {0, 1} outputs the disjunction of the two bits read. The transducer BCp,q

from {0, 1} to {0, 1} outputs 1 at an event e iff e is a send event from p to q and the corresponding receive event f is
labeled 1. The transducers BC−1

p,q
and Bjumpp,q

are defined similarly. The deterministic transducer BYS from {0, 1}2 to
{0, 1} corresponds to the strict since modality. On each process, it outputs 1 at some event e if there is g <proc e, where
the second bit is 1 and for all g <proc f <proc e the first bit at f is 1. The transducer BXU corresponds to the reverse
strict until modality. We then let

Aϕ1∨ϕ2 = B∨ ◦ (Aϕ1 ×Aϕ2) A¬ϕ = B¬ ◦ Aϕ

A〈Cp,q〉ϕ = BCp,q ◦ Aϕ A〈C−1
p,q〉ϕ

= BC−1
p,q
◦ Aϕ

A
〈
ϕ1
−−→〉ϕ2

= BXU ◦ (Aϕ1 ×Aϕ2) A〈jumpp,q〉ϕ = Bjumpp,q
◦ Aϕ

A
〈

ϕ1
←−−〉ϕ2

= BYS ◦ (Aϕ1 ×Aϕ2) .

This concludes the proof of Lemma 10.

Next, we look at a single loop where the path π ∈ PDLsf[∅] is functional. We call a path formula π ∈ PDLsf

functional if, for all MSCs M and events e in M, JπK(e) is either empty or a singleton. Abusing notation, when
JπK(e) , ∅, we simply write JπK(e) = e′ instead of JπK(e) = {e′}.

We say that a functional path formula π ∈ PDLsf is monotone if, for all MSCs M and events e, f such that
JπK(e) , ∅, JπK(f) , ∅, and e ≤proc f , we have JπK(e) ≤proc JπK(f).

Notice that, for all path formulas π ∈ PDLsf[Loop], the path formulas min π and max π are functional. Moreover,
as a direct consequence of Lemma 3(a), we obtain:

Lemma 11. All functional PDLsf[Loop] path formulas are monotone.

Lemma 12. Let π be a PDLsf[∅] functional path formula, and ϕ = Loop(π). There exists a transducerAϕ with 2O(|ϕ|)

states per process such that JAϕK = {(M,Mϕ) | M ∈MSC(P,Σ)}.

Proof. We can assume that Comp(π) ⊆ id. We define Aϕ as the composition of three transducers that will guess
and check the evaluation of ϕ. More precisely, Aϕ will be obtained as an inverse projection α−1, followed by the
intersection with some MSC language K, followed by a projection β.

We first enrich the labeling of the MSC with a color from Θ = { , , , }. Intuitively, colors and will
correspond to a guess that the formula ϕ is satisfied, and colors and to a guess that the formula is not satisfied. We
will construct a CFM that enforces a coloring that, at every event, correctly reflects the truth value of ϕ. We require
that labels from { , } alternate on a process (Condition 1. below) and that, moreover, for every event e with a color
from { , }, there exist a π-successor and a π−1-successor that both have the same color (Condition 2.). This will
then ensure that an event with color from { , } satisfies ϕ. Moreover, for every { , }-colored event e that has both
a π-successor f and a π−1-successor f ′, the colors of e, f , and f ′ should not coincide (again, Condition 2.). This, in
turn, ensures that e does not satisfy ϕ. Let us formalize these ideas.

Consider the projection α : MSC(P,Σ × Θ) → MSC(P,Σ) which erases the color from the labeling. The inverse
projection α−1 can be realized with a transducerA, i.e., JAK = {(α(M′),M′) | M′ ∈MSC(P,Σ × Θ)}.

Define the projection β : MSC(P,Σ × Θ) → MSC(P, {0, 1}) by β((E,→,C, loc, λ × θ)) = (E,→,C, loc, γ), where
γ(e) = 1 if θ(e) ∈ { , }, and γ(e) = 0 otherwise. The projection β can be realized with a transducer A′′, i.e.,
JA′′K = {(M′, β(M′)) | M′ ∈MSC(P,Σ × Θ)}.

Finally, consider the language K ⊆ MSC(P,Σ × Θ) of MSCs M′ = (E,→,C, loc, λ × θ) satisfying the following
two conditions:

19

spp

〈−/1,−〉

sqq , p

〈−/0,−〉

Ap

Acc = >

spp

〈a/1,−〉
〈b/0,−〉, b , a

Aa

Acc = >

spp

〈1/0,−〉
〈0/1,−〉

B¬

Acc = >

spp

〈(−, 1)/1,−〉
〈(1,−)/1,−〉
〈(0, 0)/0,−〉

B∨

Acc = >

spp

〈−/1, !q1〉
〈−/0, !q0〉
〈−/0, α〉, α , !qm

sqq

〈1/0, ?p1〉
〈0/0, ?p0〉
〈−/0, α〉, α , ?p−

srr < {p, q} 〈−/0,−〉

BCp,q

Acc = >

spp

〈1/0, !q1〉
〈0/0, !q0〉
〈−/0, α〉, α , !q−

sqq

〈−/1, ?p1〉
〈−/0, ?p0〉
〈−/0, α〉, α , ?p−

srr < {p, q} 〈−/0,−〉

BC−1
p,q

Acc = >

spp

s0
p

s1
p

〈−/0,−〉

〈−/1,−〉

〈−/0,−〉

〈−/1,−〉

s0
qq s1

q

〈0/0,−〉

〈1/0,−〉

〈−/0,−〉

srr < {p, q}

〈−/0,−〉

Acc = 〈p, sp〉 ∨
∨

i=1,2(〈p, si
p〉 ∨ 〈p, s

i
p〉∞) ∧ (〈q, si

q〉 ∨ 〈q, s
i
q〉∞)

Bjumpp,q

spp s′p

〈(−, 0)/0,−〉

〈(−, 1)/0,−〉

〈(0, 0)/1,−〉

〈(1, 0)/1,−〉
〈(−, 1)/1,−〉

BYS

Acc = >

s0
pp s1

p

s2
p

s3
p

〈(−,−)/1,−〉

〈(−,−)/1,−〉

〈(−,−)/0,−〉

〈(−, 1)/1,−〉

〈(1, 0)/1,−〉

〈(−, 0)/0,−〉

〈(−, 1)/1,−〉

〈(1, 0)/1,−〉

〈(−, 1)/0,−〉

〈(0, 0)/1,−〉

〈(0, 0)/1,−〉

BXU

Acc =
∧

p∈P〈p, s0
p〉 ∨ 〈p, s

3
p〉 ∨ 〈p, s

1
p〉∞ ∨ 〈p, s

3
p〉∞

Figure 9: Transducers used to define Aϕ. In a transition labeled 〈a/b, α〉, a is the input letter, b is the output letter, and α is either empty or a read
or write action. Notice that in BCp,q , the automaton for process q has no transitions reading 〈c/0, ?pd〉, with c , d, hence a wrong guess by process
p cannot lead to an accepting run. The acceptance condition > means true and is always satisfied.

20

π π

π
π

π

ππ
π

π
π π π

Figure 10: Proof of Claim 2: 2-coloring of E0 in Graph G.

1. Colors and alternate on each process p ∈ P: if e1 < e2 < e3 < · · · are the events in Ep ∩ θ
−1({ , }), then

θ(ei) = if i is odd, and θ(ei) = if i is even.
2. For all e ∈ E, θ(e) ∈ { , } iff there exist f , f ′ ∈ E such that M, e, f |= π, M, e, f ′ |= π−1, and θ(e) = θ(f) = θ(f ′).

The first property is trivial to check with a CFM. Using Lemma 10, we show that the second property can also be
checked with a CFM. First, from π we construct a PDLsf[∅] event formula ψ over P and Σ × Θ such that, for all
M′ = (E,→,C, loc, λ× θ) ∈MSC(P,Σ×Θ) and events e ∈ E, we have M′, e |= ψ iff the following holds: θ(e) ∈ { , }
iff there are f , f ′ ∈ E such that θ(e) = θ(f) = θ(f ′), α(M′), e, f |= π, and α(M′), e, f ′ |= π−1. Namely, we define

ψ = (∨)⇐⇒
∨

col∈{ , , , }

col ∧ 〈π̂〉 col ∧ 〈π̂−1〉 col

where the state formula col from { , , , } is an abbreviation for
∨

a∈Σ(a, col) and π̂ is obtained from π by replacing
state formulas a by

∨
col∈Θ(a, col). Now, the language for the second condition is {M′ ∈ MSC(P,Σ × Θ) | every event

of M′ψ is labeled with 1}, for which we can easily give a CFM using the transducer Aψ from Σ × Θ to {0, 1} given by
Lemma 10.

We deduce that there is a transducer A′ such that JA′K = {(M′,M′) | M′ ∈ K}. We let Aϕ = A′′ ◦ A′ ◦ A.
Notice that JAϕK = {(α(M′), β(M′)) | M′ ∈ K}. From the following two claims, we deduce immediately that JAϕK =

{(M,Mϕ) | M ∈MSC(P,Σ)}.

Claim 2. For all M ∈MSC(P,Σ), there exists M′ ∈ K with α(M′) = M.

Proof of Claim 2. Let M = (E,→,C, loc, λ) ∈MSC(P,Σ). Let E1 = {e ∈ E | M, e |= ϕ} and E0 = E \E1. Consider the
graph G = (E, {(e, f) | M, e, f |= π}). Since π is functional, every vertex has outdegree at most 1, and, by Lemma 11,
there are no cycles except for self-loops. So the restriction of G to E0 is a forest, and there exists a 2-coloring
χ : E0 → { , } such that, for all e, f ∈ E0 with M, e, f |= π, we have χ(e) , χ(f). This is illustrated in Figure 10.
Moreover, there exists θ : E → Θ such that θ(e) = χ(e) for e ∈ E0, and θ(e) ∈ { , } for e ∈ E1 is such that Condition 1
of the definition of K is satisfied. It is easy to see that Condition 2 is also satisfied. Indeed, if θ(e) ∈ { , }, then e ∈ E1,
M, e, e |= π, and M, e, e |= π−1. Now, if θ(e) < { , }, then e ∈ E0 and either M, e 6|= 〈π〉 or, by definition of θ, we have
θ(e) , θ(f) for the unique f such that M, e, f |= π. (Claim 2)

Claim 3. For all M′ ∈ K, we have β(M′) = Mϕ, where M = α(M′).

Proof of Claim 3. Let M′ = (E,→,C, loc, λ × θ) ∈ K and M = α(M′). Suppose towards a contradiction that Mϕ ,
β(M′) = (E,→,C, loc, γ).

First, we show that, for all e ∈ E, γ(e) = 0 implies M, e 6|= ϕ. So assume γ(e) = 0. Then, we have θ(e) ∈ { , }.
Take any f , f ′ ∈ E such that M, e, f |= π and M, e, f ′ |= π−1 (if there are no such events, we have M, e 6|= ϕ). Due to
Condition 2., θ(e) = θ(f) = θ(f ′) does not hold, which implies M, e 6|= ϕ.

So there exists f ∈ E such that γ(f) = 1 and M, f 6|= ϕ. Notice that θ(f) ∈ { , }. Let f ′ be the unique event such
that M, f , f ′ |= π. Such an event exists by Condition 2., and is unique since π is functional.

Suppose f ′ <proc f . Let f0 = f , f1 = f ′, and for all i ∈ N, let fi+1 be the unique event such that M, fi, fi+1 |= π.
Note that, for all i, θ(fi+1) = θ(fi) ∈ { , }. By Condition 1., there exists g0 such that f0 >proc g0 >proc f1 and
θ(f0) , θ(g0) ∈ { , }. For an illustration, see Figure 11. Again, for all i ∈ N, let gi+1 be the unique event such that
M, gi, gi+1 |= π. Note that all f0, f1, . . . have the same color, in { , }, and all g0, g1, . . . carry the complementary color.
Thus, fi , g j for all i, j ∈ N. But, by Lemma 11, this implies f0 >proc g0 >proc f1 >proc g1 >proc · · · , which contradicts
the fact that the past of f0 is finite.

21

· · ·

f0f1f2 g0g1g2

π
ππππ

Figure 11: Proof of Claim 3.

Similarly, suppose f <proc f ′. Let f0 = f ′, f1 = f , and for all i ∈ N, let fi+1 be some event such that M, fi, fi+1 |=

π−1 and θ(fi+1) = θ(fi) ∈ { , }. Let us show that f0 >proc f1 >proc f2 >proc · · · , by contradiction. Assume that
fi ≤proc fi+1 for some minimal i ≥ 1. Since π is functional, we have JπK(fi) = { fi−1}, and JπK(fi+1) = { fi}. Then, by
Lemma 11, fi−1 ≤proc fi, which contradicts the minimality of i. (Claim 3)

This concludes the proof of Lemma 12.

The general case is more complicated. We first show how to rewrite an arbitrary loop formula using loops on paths
of the form π or π ·

+
−→ where π is functional. Intuitively, this means that loop formulas will only be used to perform

the following test. Given an event e such that there exists a (unique) e′ with M, e, e′ |= π, and e′ is on the same process
as e, which one of the following is true: e′ <proc e, e′ = e, or e <proc e′? Indeed, we have M, e |= Loop(π ·

+
−→) iff

e′ <proc e.

Lemma 13. For all PDLsf[Loop] path formulas π,

Loop(π) ≡ Loop(min π) ∨
(
〈π−1〉 ∧ Loop((min π) ·

+
−→) ∧ ¬Loop((max π) ·

+
−→)

)
.

Proof. The result essentially follows from Lemma 4, saying that JπK(e) is exactly the set of events in the interval from
minJπK(e) to maxJπK(e) that satisfy 〈π−1〉.

First, if we have M, e |= Loop(π) and M, e 6|= Loop(min π), then minJπK(e) <proc e ≤proc maxJπK(e) and M, e |=

〈π−1〉, hence M, e |= 〈π−1〉 ∧ Loop((min π) ·
+
−→) ∧ ¬Loop((max π) ·

+
−→).

Conversely, if we have M, e |= Loop(min π), then M, e |= Loop(π), and if M, e |= 〈π−1〉 ∧ Loop((min π) ·
+
−→) ∧

¬Loop((max π) ·
+
−→), then M, e |= 〈π−1〉 and minJπK(e) <proc e ≤proc maxJπK(e). By Lemma 4, this implies M, e, e |= π.

Hence, M, e |= Loop(π).

Finally, we are ready to prove the general case, translating PDLsf[Loop] event formulas to MSC transducers:

Proposition 3. For every PDLsf[Loop] event formula ϕ, there exists a transducer Aϕ with 2O(|ϕ|2) states per process
such that JAϕK = {(M,Mϕ) | M ∈MSC(P,Σ)}.

Proof. We proceed by induction on the number of loop subformulas in ϕ. The base case is stated in Lemma 10. Let
ψ = Loop(π′) be a subformula of ϕ such that π′ contains no loop subformulas and Comp(π′) ⊆ id. We will show
below that there exists a transducerAψ with 2O(|ψ|2) states per process such that JAψK = {(M,Mψ) | M ∈ MSC(P,Σ)}.
Suppose that we have constructed Aψ. Consider the formula ϕ′ over Σ × {0, 1} obtained from ϕ by replacing ψ by∨

a∈Σ(a, 1), and all event formulas a, with a ∈ Σ, by (a, 0) ∨ (a, 1). It contains fewer Loop operators than ϕ, so by
induction hypothesis, we have a transducerAϕ′ for ϕ′. We then letAϕ = Aϕ′ ◦(AId×Aψ), whereAId is the transducer
for the identity relation.

Thus, all we need to prove is that we can construct such a transducerAψ. We first apply Lemma 13. We construct

transducers of size 2O(|π′ |2) for the formulas Loop(min π′), 〈π′−1〉, Loop((min π′) ·
+
−→) and Loop((max π′) ·

+
−→), and

define Aψ as the expected composition of these transducers. Recall that both min π′ and max π′ are functional, and
of size O(|π′|2). Using Lemmas 12 and 10, we already have transducers for Loop(min π′) and 〈π′−1〉.

So it suffices to show that for any functional path formula π ∈ PDLsf[Loop], there exists a transducer of size 2O(|π|)

for the formula ψ = Loop(π ·
+
−→). We assume that Comp(π) ⊆ id.

We start with some easy remarks. Let p ∈ P be some process and e ∈ Ep. A necessary condition for M, e |= ψ is
that M, e |= 〈π〉, and since π is functional, that M, e 6|= Loop(π).

22

We let Eπ
p be the set of events e ∈ Ep satisfying 〈π〉. For all e ∈ Eπ

p, we let e′ ∈ Ep be the unique event such that
M, e, e′ |= π. The transducer Aψ will establish, for each e ∈ Eπ

p, whether e′ <proc e, e′ = e, or e <proc e′, and it will
output 1 if e′ <proc e, and 0 otherwise. The case e′ = e means M, e |= Loop(π) and can be checked with the help of
Lemma 12. So the difficulty is to distinguish between e′ <proc e and e <proc e′ when M, e |= 〈π〉 ∧¬Loop(π).

Claim 4. Let ψ = Loop(π ·
+
−→) and let f be the minimal event in Eπ

p (assuming this set is nonempty). Then, M, f |= ψ

iff M, f |= Loop(min (
+
←− · π−1)).

Proof of Claim 4. The right to left implication holds without any hypothesis. Conversely, let f ′ = JπK(f) and assume
that f ′

+
−→ f . Then, M, f , f |=

+
←− · π−1, and g = Jmin (

+
←− · π−1)K(f) is well-defined and g ≤proc f . This is illustrated in

Figure 12. Moreover, M, g |= 〈π〉 and by minimality of f in Eπ
p, we conclude that g = f . (Claim 4)

ff ′ g =

min (
+
←− · π−1)

+

π

Figure 12: Proof of Claim 4.

Claim 5. Let e, f be consecutive events in Eπ
p, i.e., e, f ∈ Eπ

p and M, e, f |=
¬ 〈π〉
−−−→.

1. If M, e |= ψ, then [M, f |= ψ iff M, f 6|= Loop(π) ∨ Loop(min (
+
−→ · π−1))].

2. If M, e 6|= ψ, then [M, f |= ψ iff M, f |= Loop(max (π ·
¬ 〈π〉
−−−→))].

Proof of Claim 5. We show the two statements.

1. Assume that M, e |= ψ. The left-to-right implication holds without any hypothesis. Conversely, assume that
M, f 6|= ψ. If M, f |= Loop(π), we are done. Otherwise, let e′ = JπK(e) and f ′ = JπK(f). We have e′ <proc e and

f <proc f ′. Moreover, M, f |= 〈
+
−→ · π−1〉, hence g = Jmin (

+
−→ · π−1)K(f) is well-defined and g ≤proc f . Notice

that g ∈ Eπ
p, and f <proc g′ = JπK(g). If g <proc f (see Figure 13), we get g ≤proc e, and using Lemma 11, we

obtain g′ ≤proc e′ <proc e <proc f , a contradiction. Therefore, g = f and M, f |= Loop(min (
+
−→ · π−1)).

f f ′ee′
ψ ¬ψ

g
g′

+¬ 〈π〉+

π

π

π

min (
+
−→ · π−1)

Figure 13: Proof of Claim 5(1.).

2. Assume that M, e 6|= ψ. The right-to-left implication holds easily since Jmax (π ·
¬ 〈π〉
−−−→)K ⊆ Jπ ·

+
−→K. Conversely,

assume that M, f |= ψ. Let e′ = JπK(e) and f ′ = JπK(f). We have e ≤proc e′ and f ′ <proc f (see Figure 14).

From Lemma 11 we get e′ ≤proc f ′ and since e, f are consecutive in Eπ
p, we obtain M, f ′, f |=

¬ 〈π〉
−−−→. Therefore,

M, f |= Loop(π ·
¬ 〈π〉
−−−→) ≡ Loop(max (π ·

¬ 〈π〉
−−−→)).

This concludes the proof of the claim. (Claim 5).

23

e e′ f ′ f
ψ ¬ψ

¬ 〈π〉

∗∗ ¬ 〈π〉

π π

Figure 14: Proof of Claim 5(2.).

To conclude the proof of Proposition 3, let us consider the five formulas ϕ1 = 〈π〉, ϕ2 = Loop(π), ϕ3 =

Loop(min (
+
←− · π−1)), ϕ4 = Loop(min (

+
−→ · π−1)), and ϕ5 = Loop(max (π ·

¬ 〈π〉
−−−→)). We can easily see that ϕ1 ∧ ¬ϕ2 ∧

¬ϕ4 is a necessary condition for ψ = Loop(π ·
+
−→). Also, both ϕ3 and ϕ5 are sufficient conditions for ψ. The only case

which is not covered is when M, f |= ϕ1 ∧ ¬ϕ2 ∧ ¬ϕ3 ∧ ¬ϕ4 ∧ ¬ϕ5. In this case, from Claims 4 and 5, we see that
M, f |= ψ iff f is not minimal in Eπ

p and M, e |= ψ, where e is the predecessor of f in Eπ
p.

By Lemmas 10 and 12, we already have transducers Aϕi for i ∈ {1, 2, 3, 4, 5}. We let Aψ = A ◦ (Aϕ1 × Aϕ2 ×

Aϕ3 ×Aϕ4 ×Aϕ5), where, at an event f labeled (b1, b2, b3, b4, b5), the transducerA outputs 1 if b3 = 1 or b5 = 1 or if
(b1, b2, b3, b4, b5) = (1, 0, 0, 0, 0) and the output was 1 at the last event e on the same process satisfying ϕ1 (to do so,
each process keeps in its state the output at the last event where b1 was 1), and 0 otherwise.

4.3. Translation of PDLsf[Loop] and FO Sentences into CFMs.

Wrapping-up, we obtain our main results as corollaries. First the translation of PDLsf[Loop] sentences to CFMs:

Theorem 2. For every PDLsf[Loop] sentence ξ, there exists a CFM Aξ with 2O(|ξ|2) states per process such that
L(Aξ) = L(ξ).

Proof. Given an event formula ϕ, we can construct Aϕ according to Proposition 3. From Aϕ, it is easy to build
CFMs for the sentences Eϕ and ¬Eϕ. Closure of L(CFM) under union and intersection takes care of disjunction and
conjunction.

By Theorem 1, every FO[→,C,≤] sentence Φ is equivalent to some PDLsf[Loop] sentence ξ, for which there is
an equivalent CFMAξ by Theorem 2. Therefore, we obtain:

Theorem 3. L(FO[→,C,≤]) ⊆ L(CFM).

The translation is effective, but inherently non-elementary, already when |P| = 1 [Sto74].
It is standard to prove L(CFM) ⊆ L(EMSO[→,C]): The formula guesses an assignment of transitions to events

in terms of existentially quantified second-order variables (one for each transition) and then checks, in its first-order
kernel, that the assignment is indeed an (accepting) run. As, moreover, the class L(CFM) is closed under projection,
we obtain the following logical characterization of CFMs as a corollary:

Theorem 4. L(EMSO[→,C,≤]) = L(CFM).

5. Applications

5.1. Existentially bounded MSCs

Though the translation of EMSO/FO formulas into CFMs is interesting on its own, it allows us to obtain some
difficult results for bounded CFMs as corollaries. In fact, we even extend known results to infinite MSCs.

Bounded MSCs. The first logical characterizations of communicating finite-state machines were obtained for classes
of bounded MSCs. Intuitively, this corresponds to restricting the channel capacity. Bounded MSCs are defined in
terms of linearizations. A linearization of a given MSC M = (E,→,C, loc, λ) is a total order � ⊆ E × E extending
≤ and of order type at most ω, i.e., ≤ ⊆ � and {e | e � f } is finite for all f ∈ E. For B ∈ N, we call � B-bounded
if, for all g ∈ E and (p, q) ∈ Ch, |{(e, f) ∈ C ∩ (Ep × Eq) | e � g ≺ f }| ≤ B. In other words, the number of
pending messages in (p, q) never exceeds B if we follow the linearization defined by �. There are (at least) two
natural definitions of bounded MSCs: We call M ∃B-bounded if M has some B-bounded linearization. Accordingly,

24

it is ∀B-bounded if all its linearizations are B-bounded. The set of ∃B-bounded MSCs is denoted by MSC∃B(P,Σ),
the set of ∀B-bounded MSCs by MSC∀B(P,Σ). Moreover, we let MSCfin

∃B(P,Σ) := MSC∃B(P,Σ) ∩MSCfin(P,Σ) and
MSCfin

∀B(P,Σ) := MSC∀B(P,Σ) ∩MSCfin(P,Σ).

Example 7. The MSC from Figure 1 is ∃1-bounded, but it is not ∀B-bounded, no matter what B is.

In this subsection, we will consider only ∃B-bounded MSCs. We show the following results. First, for a given
channel bound B, the set MSC∃B(P,Σ) is FO[→,C,≤]-definable (essentially due to [LM04]). By Theorem 4, we
obtain [GKM06, Proposition 5.14] stating that this set is recognized by some CFM. Second, we obtain [GKM06,
Proposition 5.3], a Büchi-Elgot-Trakhtenbrot theorem for existentially bounded MSCs, as a corollary of Theorem 4
in combination with a linearization normal form from [TW02].

Known results. Let M = (E,→,C, loc, λ) be some finite or infinite MSC. Given e ∈ E, we write type(e) = p if e is an
internal event on process p, type(e) = p!q if e is a write on channel (p, q), and type(e) = q?p if e is a read from channel
(p, q). We associate with the linearization � a word M� over the alphabet Σlin = Σ × (P ∪ {p!q, q?p | (p, q) ∈ Ch}).
Namely, if the linearization is e1 ≺ e2 ≺ e3 ≺ · · · , we let M� = a1a2a3 · · · where ai = (λ × type)(ei). Note that M can
be retrieved from M�. We let LinB(M) = {M� | � is a B-bounded linearization of M} ⊆ Σ∗lin ∪ Σωlin.

Fact 8 ([GKM06, Theorem 4.1]). Let B ∈ N and L ⊆MSCfin
∃B(P,Σ). The following are equivalent:

1. L = L(A) for some CFMA.

2. L = L(Φ) for some MSO formula Φ.

3. LinB(L) is a regular language (of finite words).

The proof given in [GKM06] relies on the theory of Mazurkiewicz traces. Another major part of the proof is the
construction of a CFM recognizing the set MSCfin

∃B(P,Σ) of finite ∃B-bounded MSCs [GKM06, Proposition 5.14]. We
show below that this CFM, or more generally, a CFM for the set MSC∃B(P,Σ) of finite or infinite ∃B-bounded MSCs,
can in fact be obtained as a simple application of Theorem 4. Moreover, we give an alternative proof of (3) =⇒ (1)
(Section 5 in [GKM06]), and again extend the result to infinite MSCs.

As mentioned before, the implication (1) =⇒ (2) follows from a standard translation of CFMs into EMSO. Finally,
(2) =⇒ (3) is also easy to prove: the channel bound can be used to translate the MSO sentence Φ into an MSO sentence
over Σlin-labeled words, defining LinB(L).

A CFM for Existentially Bounded MSCs. The set MSC∃B(P,Σ) of ∃B-bounded MSCs is in fact FO[C,→,≤]-
definable, and thus, we can apply Theorem 4 to construct a CFMA∃B recognizing MSC∃B(P,Σ). We describe below
a formula defining MSC∃B(P,Σ).

Let us first recall a characterization of ∃B-bounded MSCs. Let M = (E,→,C, loc, λ) be an MSC. We define a
relation revB ⊆ E × E which consists of the set of pairs (f , g) such that f is a receive event from some channel (p, q)
with corresponding send event e C f , and g is the B-th send on channel (p, q) after event e. The relation revB is
illustrated in Figure 15 (represented by the dashed edges) for B = 1 and an ∃1-bounded MSC. It can be defined by the
PDLsf[∪] path formula

revB =
⋃
p,q

C−1
p,q ·

(¬ 〈Cp,q〉

−−−−−−→ ·{〈Cp,q〉}?
)B
.

For completeness, let us also give a corresponding FO[→,C,≤] formula:

revB(x, y) := ∃z0, z1, . . . , zB. z0 C x ∧ zB = y ∧
∧

1≤i≤B

∃xi. zi C xi ∧ x ≤proc xi

∧
∧

0≤i<B

zi <proc zi+1 ∧ ¬(∃z′, x′. zi <proc z′ <proc zi+1 ∧ z′ C x′ ∧ x ≤proc x′) .

Fact 9 ([LM04]). M is ∃B-bounded if and only if the relation (< ∪ revB) is acyclic.

25

e

f

p1

p2

p3

p4

↑Be

↑B f

g

Figure 15: The relation revB for B = 1, and the sets ↑Be and ↑B f .

In fact, a linearization � of M is B-bounded iff it contains revB. Indeed, assume that revB ⊆ � and that � is not
B-bounded. Then, we find e0 ≺ e1 ≺ · · · ≺ eB � g ≺ f0 ≺ f1 ≺ · · · ≺ fB with (ei, fi) ∈ Cp,q ∩ Ep × Eq. Without
loss of generality, we can assume that there are no other writes on channel (p, q) between ei and ei+1. This implies
(f0, eB) ∈ revB, a contradiction. Conversely, if revB * � then we find (f0, eB) ∈ revB with eB ≺ f0. We deduce that
e0 ≺ e1 ≺ · · · ≺ eB ≺ f0 ≺ f1 ≺ · · · ≺ fB with (ei, fi) ∈ C ∩ Ep × Eq and the linearization is not B-bounded.

Note that, if (<∪revB) contains a cycle, then it contains one of size at most 2|P|. More precisely, M is ∃B-bounded
if and only if it satisfies the PDLsf[Loop,∪] formula ξ∃B = ¬E Loop(ltB), where

ltB =
⋃

2≤n≤|P|

(
(C ∪ revB) ·

+
−→

)n C =
⋃
p,q

Cp,q .

Again, let us determine an equivalent FO[→,C,≤] formula:

Φ∃B =
∧

2≤n≤2|P|

¬
(
∃x0, . . . , xn. x0 = xn ∧

∧
0≤i<n

xi < xi+1 ∨ revB(xi, xi+1)
)
.

Applying Theorem 4 we obtain

Corollary 2. Given B > 0, we can construct a CFM A∃B recognizing the set MSC∃B(P,Σ) of ∃B-bounded finite or
infinite MSCs.

FO-definable Linearizations for Existentially Bounded MSCs. We will make use of canonical linearizations of
certain MSCs, which we adapt from [TW02, Definition 13] where the definition was given for traces. It is based on
the following lemma. Though it is stated for a special case in [TW02], the proof can be taken almost verbatim. We
only provide the proof for completeness.

Lemma 14 ([TW02, Lemma 14]). Let (E,≤) be a partially ordered set, and @ ⊆ E × E a strict well-founded total
order. For e, f ∈ E, we write e ‖ f when e 6≤ f and f 6≤ e, and we let ↑e = { f ∈ E | e ≤ f }. Then the relation
≺ ⊆ E × E defined by

e ≺ f ⇐⇒

 e < f

∨ e ‖ f ∧ min@(↑e \ ↑ f) @ min@(↑ f \ ↑e)

is a strict linear order extending <.

Proof. Notice that, for all e , f , we have either e ≺ f or f ≺ e, but not both. Indeed, for all e , f , we have
↑e \ ↑ f ∩ ↑ f \ ↑e = ∅, and if e ‖ f , then the two sets are nonempty as e ∈ ↑e \ ↑ f and f ∈ ↑ f \ ↑e.

It remains to show that ≺ is transitive. Let e1, e2, e3 ∈ E such that e1 ≺ e2 ≺ e3. Note that e1, e2, e3 are pairwise
distinct. For distinct i, j ∈ {1, 2, 3}, if ↑ei \ ↑e j , ∅, we let ei j = min@ ↑ei \ ↑e j.

To prove e1 ≺ e3, we distinguish several cases.

26

Case e1 < e2 < e3: As < is transitive, we get e1 < e3.

Case e1 < e2 ‖ e3: This implies e3 6≤ e1. If e1 < e3, we are done. So suppose e1 ‖ e3. Since e2 ≺ e3, we have
e23 @ e32. From ↑e2 ⊆ ↑e1, we deduce ↑e2 \ ↑e3 ⊆ ↑e1 \ ↑e3. Thus, e13 v e23. Similarly, e32 v e31. We obtain
e13 v e23 @ e32 v e31.

Case e1 ‖ e2 < e3: This case is very similar to the previous one.

Case e1 ‖ e2 ‖ e3: Since e1 ≺ e2 ≺ e3, we have e12 @ e21 and e23 @ e32. Suppose e1 6≤ e3 (otherwise, we are done).
We have e3 6≤ e1, since e3 < e1 implies e32 v e12 @ e21 v e23, a contradiction.

So we can assume e1 ‖ e3. It remains to show e13 @ e31. First, one shows that

e13 v e12 . (2)

If e12 < ↑e3, then (2) is immediate. So suppose e12 ∈ ↑e3, i.e., e12 ∈ ↑e3 \ ↑e2. Then,

e23 @ e32 v e12 . (3)

Let us consider two cases. If e23 < ↑e1 then e21 v e23. By (3), we obtain e21 @ e12, which contradicts e1 ≺ e2.
Hence e23 ∈ ↑e1 and we get e13 v e23. We deduce that (2) holds.

To conclude the proof, we distinguish once more two cases:

Case e31 ∈ ↑e2: Then, e12 @ e21 v e31. Applying (2), we obtain e13 @ e31.

Case e31 < ↑e2: Then, e23 @ e32 v e31. If e23 ∈ ↑e1, then e13 v e23 @ e31 and we are done. If e23 < ↑e1, then
e21 v e23, which implies e12 @ e31. By (2), we obtain e13 @ e31.

This concludes the proof of Lemma 14.

We now define a canonical linear order on the events of an ∃B-bounded MSC M = (E,→,C, loc, λ). We fix
some strict total order @ on P, and extend it to E as follows: e @ f if e <proc f or loc(e) @ loc(f). Clearly, @ is
well-founded and a strict linear order on E. We apply Lemma 14 with @ and ≤B = (≤∪ revB)∗ which is a partial order
when the MSC M is ∃B-bounded. We obtain a linear order �B of M extending both < and revB.

Example 8. Consider the MSC M in Figure 15 and suppose p1 @ p2 @ p3 @ p4. We have min@(↑e \ ↑ f) = g and
min@(↑ f \ ↑e) = f . Since g @ f , we obtain e ≺B f .

In general, �B need not be of order type at most ω, i.e., it is not necessarily a linearization. For instance, with two
processes p @ q, no communication events, and infinitely many local events on both p and q, the order type of �B is
ω + ω. When the order type of �B is at most ω, it is a B-bounded linearization of M.

Finally, the relation ≺B is FO[→,C,≤]-definable. Indeed, the strict partial order <B is FO[→,C,≤]-definable
since it can be expressed with the path formula ltB given above. From its definition, we deduce that the relation ≺B is
also FO[→,C,≤]-definable.

We are now ready to give our alternative proof of the direction (3) =⇒ (1) in Fact 8.

Proof of Fact 8 (3) =⇒ (1). Let L be a set of ∃B-bounded finite MSCs such that LinB(L) is regular. There exists an
EMSO sentence Φlin over Σlin-labeled words such that LinB(L) = L(Φlin). Since �B is FO[→,C,≤]-definable, it is easy
to translate Φlin into an EMSO[→,C,≤] formula Φ such that L(Φ) ⊆MSCfin

∃B(P,Σ) and, for all M ∈MSCfin
∃B(P,Σ), we

have M |= Φ if and only if M�B |= Φlin. Let A be a CFM such that L(A) = L(Φ ∧ Φ∃B). Then, for all M ∈ L, M is
∃B-bounded and M�B |= Φlin, hence M |= Φ∧Φ∃B, i.e., M ∈ L(A). Conversely, if M ∈ L(A), then M ∈MSCfin

∃B(P,Σ)
and �B is a linearization of M. Moreover, M�B ∈ LinB(L), hence M ∈ L.

The extension of Fact 8 to infinite MSCs requires some extra work since the order type of �B need not be at
most ω. We denote by MSCω

∃B(P,Σ) the set of infinite ∃B-bounded MSCs.

27

Theorem 5. Let B ∈ N and L ⊆MSCω
∃B(P,Σ). The following are equivalent:

1. L = L(A) for some CFMA.

2. L = L(Φ) for some MSO formula Φ.

3. LinB(L) is an ω-regular language.

The rest of Section 5.1 is devoted to the proof of (3) =⇒ (1), while (1) =⇒ (2) and (2) =⇒ (3) are again standard.
Recall that we cannot exactly proceed as in the case of finite MSCs, as the canonical linear order associated with an
infinite existentially bounded MSC is not necessarily of order type ω. We therefore adopt decomposition techniques
and results from [TW02] and [Kus03], where Mazurkiewicz traces and universally bounded MSCs are considered,
respectively. We first define a decomposition of an existentially bounded MSC into a finite part and boundedly many
disconnected infinite parts M j such that the canonical linear order of each M j is in fact of order typeω, i.e., a canonical
linearization (Lemma 16). Similarly, the given ω-regular word language LinB(L) can be described as the composition
of regular (and therefore EMSO-definable) finite and shuffled infinite parts such that the infinite parts correspond
to linearizations of the MSCs M j (Lemmas 18–20). The corresponding EMSO formulas over words can then be
transformed into EMSO formulas over MSCs using FO-definability of canonical linearizations (Lemma 21). In this
step, it is crucial that the separate infinite parts M j actually have canonical linearizations. This guarantees that word
formulas for linearizations are faithfully simulated by the associated formulas over MSCs. Using our main result,
Theorem 4, we can now conclude that there is a CFM for the target language L.

Let us be precise. We start by defining a decomposition of infinite MSCs such that in each component of the
decomposition, �B is of order type at most ω.

Let M = (E,→,C, loc, λ) ∈ MSCω
∃B(P,Σ). We denote by Typesfin(M) (resp. Typesinf(M)) the set of types that

occur finitely many times (resp. infinitely often) in M:

Typesfin(M) = {type(e) | e ∈ E ∧ { f ∈ E | type(e) = type(f)} is finite}

Typesinf(M) = {type(e) | e ∈ E ∧ { f ∈ E | type(e) = type(f)} is infinite} .

We then let

Efin = {e ∈ E | ∃ f ∈ E : e ≤B f ∧ type(f) ∈ Typesfin(M)} and Einf = E \ Efin .

Recall that ≤B = (≤ ∪ revB)∗. The definition of Efin and Einf depends not only on M, but also on the given bound B.
Note that Efin and Einf are not necessarily C-closed: there may be some send events in Efin whose matching receive
events are in Einf (the converse is not possible, since Efin is downward closed). However, since M is B-bounded, there
are at most B unmatched sends in Efin for every channel (p, q).

Lemma 15. There exists a B-bounded linearization � of M such that for all e ∈ Efin and f ∈ Einf, e � f .

Proof. Recall that a linearization of M is B-bounded if and only if it contains ≤B.
Let � be any B-bounded linearization of M, and �′ the concatenation of its restrictions to Efin and Einf. That is,

e �′ f if and only if e ∈ Efin and f ∈ Einf, or e � f and e, f ∈ Efin, or e � f and e, f ∈ Einf. Clearly, �′ is a total order
on E. Let us show that for all e ≤B f , we have e �′ f . Since � is a B-bounded linearization of M, we have e � f , and
thus, if e, f ∈ Efin or e, f ∈ Einf, we get e �′ f . If e ∈ Efin and f ∈ Einf, then e �′ f by definition. Finally, we cannot
have e ∈ Einf and f ∈ Efin since Efin is downward-closed with respect to ≤B.

We further decompose Einf into its connected components, as follows. We denote by P1, . . . , Pm the maximal
connected components of the undirected communication graph at infinity (P, {{p, q} | Typesinf(M) ∩ {p!q, q!p} , ∅}).
For all 1 ≤ j ≤ m, we then let

E j = Einf ∩
⋃
p∈P j

Ep .

Note that, by definition, every E j is infinite.

28

Finally, we associate with Efin, Einf, and each E j the following MSCs over Σlin:

Mfin = (Efin,→∩ Efin × Efin,C ∩ Efin × Efin, loc|Efin , (λ × type)|Efin)

Minf = (Einf,→∩ Einf × Einf,C ∩ Einf × Einf, loc|Einf , (λ × type)|Einf)

M j = (E j,→∩ E j × E j,C ∩ E j × E j, loc|E j , (λ × type)|E j) .

Note that send events of M which are located in Efin and whose matching receive event is in Einf become internal
events in Mfin, and similarly for unmatched receive events in the infinite part. Adding the types of all events to the
labeling allows us to maintain any information on M in its decomposition.

Lemma 16. For all M j with 1 ≤ j ≤ m, �B is of order type ω.

Proof. This is in fact true of any linear extension of ≤B, and not just the canonical �B. We want to prove that for every
e ∈ E j, the set { f ∈ E j | f �B e} is finite. To do so, it suffices to prove that for all p ∈ P j, there exists f ∈ E j

p such
that e ≤B f (and thus e �B f). By definition of P j, there exists a path p1, . . . , p` such that p1 = loc(e), p` = p, and
for all 1 ≤ i < `, M j contains infinitely many events of type pi!pi+1 or pi?pi+1. If M j contains infinitely many events
of type pi!pi+1, then for all e′ on process pi, there exist f ′ on process pi and g′ on process pi+1 such that e′ ≤proc f ′

and f ′ C g′, hence e′ ≤B g′. If M j contains infinitely many events of type pi?pi+1, then for all e′ on process pi, there
exist f ′ on process pi and g′ on process pi+1 such that e′ ≤proc f ′ and f ′ revB g′, hence e′ ≤B g′. Therefore, we obtain
events e2, . . . , e` on processes p2, . . . , p` = p such that e ≤B e2 ≤B · · · ≤B e`.

To avoid any ambiguity, in this proof, we write e.g. FO[Σ, P,≤,C] or FO[Σlin, P,≤,C], rather than FO[≤,C], so as
to distinguish between formulas over MSCs over Σ and P, and MSCs over Σlin and P coming from decompositions.
We also denote by FO[Σlin,�], EMSO[Σlin,�], and MSO[Σlin,�] formulas over word linearizations, Σlin being the
alphabet, and � the underlying total order.

In the rest of the proof, we restrict to MSCs M having a fixed set T = Typesinf(M) of types at infinity, with
maximal connected components of the induced communication graph at infinity being P1, . . . , Pm. We decompose
Σlin into disjoint subalphabets Σfin

lin,Σ
1
lin, . . . ,Σ

m
lin as follows. First, we denote by Σinf

lin the set of all (a, t) ∈ Σlin such that
t ∈ T and Σfin

lin = Σlin \ Σinf
lin . We further decompose Σinf

lin into Σ1
lin, . . . ,Σ

m
lin, where Σ

j
lin denotes the set of pairs of the form

(a, p), (a, p!q) or (a, p?q) with p ∈ P j (by definition of the decomposition, this is also equivalent to q ∈ P j). Note
that, while every event in M j is labeled with a letter in Σ

j
lin, events in Mfin may have labels in any of the alphabets

Σfin
lin,Σ

1
lin, . . . ,Σ

m
lin. However, the labels of all ≤B-maximal events of M j are in Σfin

lin.
For words u, v ∈ Σ∗lin ∪ Σωlin, we denote by u� v the shuffle of u and v, i.e., the set of words w ∈ Σ∗lin ∪ Σωlin that are

a possible interleaving of u and v.
Now, let L ⊆MSCω

∃B(P,Σ) be a set of MSCs with types at infinity T . We decompose words in LinB(L) according to
the decomposition of their corresponding MSCs. More precisely, for w ∈ LinB(L), we denote by wfin,winf,w1, . . . ,wm

the restrictions of w to positions denoting events located respectively in the parts Mfin,Minf,M1, . . . ,Mm of the corre-
sponding MSC M ∈ L. That is, wfin ∈ Σ∗linΣfin

lin∪{ε} denotes a linearization of Mfin, winf ∈
(
Σinf

lin

)ω
denotes a linearization

of Minf, and w j ∈
(
Σ

j
lin

)ω
denotes a linearization of M j. Moreover, w is a shuffle of wfin and winf, and winf is itself a

shuffle of w1, . . . ,wm.

Lemma 17. For all w ∈ LinB(L), we have wfinwinf ∈ LinB(L) and wfin ·�
m
j=1 w j ⊆ LinB(L).

Proof. Let M ∈ L be the MSC corresponding to w. As in Lemma 15, the word wfinwinf is also a B-bounded lineariza-
tion of M, and thus in LinB(L). In addition, any v ∈�m

j=1 w j corresponds to a possible B-bounded linearization of
Minf. Indeed, since there are no causal dependencies between events in distinct M j, any interleaving of the B-bounded
linearizations w1, . . . ,wm of the different components yields a B-bounded linearization of Minf. This means that we
also have wfinv ∈ LinB(L).

Lemma 18. If LinB(L) is an ω-regular language then there is a finite sequence of pairs of regular languages
(K1, L1), . . . , (Kk, Lk), with Ki ⊆ Σ∗lin and Li ⊆ Σωlin, such that{

(wfin,winf) | w ∈ LinB(L)
}

=
⋃

1≤i≤k

Ki × Li .

29

Moreover, for all 1 ≤ i ≤ k and (v1, . . . , vm) ∈
(
Σ1

lin

)ω
× · · · ×

(
Σm

lin

)ω
, if Li ∩�

m
j=1 v j , ∅ then�m

j=1 v j ⊆ Li.

Proof. In order to distinguish, in a linearization, between positions that correspond to the finite or infinite part of the
MSC, we define a formula x ≤B y such that, for all prefixes u of B-bounded linearizations w ∈ Σωlin of some MSC
M ∈ MSCω

∃B(P,Σ), and for all positions i and j in u, we have u, [x 7→ i, y 7→ j] |= x ≤B y if and only if the pair of
events in M associated to positions (i, j) is in the relation ≤B. We first introduce an MSO[Σlin,�] formula xCy with an
analogous semantics. The formula simply says that (i) x is a write to channel (p, q) and y a read from channel (p, q),
for some (p, q) ∈ Ch, (ii) between x and y, there are less than B messages sent, and read, on channel (p, q), (iii) the
count modulo B of messages sent on channel (p, q) up until x, and of messages read from channel (p, q) up until y, are
identical. We also let x ≤proc y := x � y ∧ proc(x) = proc(y), where proc(x) = proc(y) is a simple disjunction on the
possible labels of x and y. It is then easy to define x ≤B y from the formulas x C y and x ≤proc y.

We can now define the regular language K ⊆ Σ∗lin by the MSO[Σlin,�] formula ∀x.∃y.
(
x ≤B y ∧

∨
(a,t)∈Σfin

lin
(a, t)(y)

)
.

Notice that K contains all finite parts wfin of words w ∈ LinB(L).
Let ∼ ⊆ K × K be the equivalence relation defined by u ∼ v if u−1LinB(L) = v−1LinB(L). Since LinB(L) is regular,

∼ is of finite index. We let K1, . . . ,Kk be the elements of K/∼, and for all 1 ≤ i ≤ k, Li =
(
K−1

i LinB(L)
)
∩

(
Σinf

lin

)ω
.

Let w ∈ LinB(L). By Lemma 17, we have wfinwinf ∈ LinB(L). Moreover, wfin ∈ K, so there exists i such that
wfin ∈ Ki. Then winf ∈ K−1

i LinB(L) ∩
(
Σinf

lin

)ω
, thus (wfin,winf) ∈ Ki × Li. Conversely, if (u, v) ∈ Ki × Li, then

u′v ∈ LinB(L) for some u′ ∈ Ki. Hence, u ∼ u′ and w = uv ∈ LinB(L). In addition, since v contains only letters from
Σinf

lin , u contains all positions from wfin. Since u is in K, it also contains only positions from wfin, that is, u = wfin. It
follows that v = winf.

Finally, we prove that each Li is closed under commutation of letters in distinct subalphabets Σ
j
lin. Let (v1, . . . , vm) ∈(

Σ1
lin

)ω
× · · · ×

(
Σm

lin

)ω
such that there exists some v ∈ Li ∩�

m
j=1 v j. Since v ∈ Li, there exist u ∈ Ki and w ∈ LinB(L)

such that u = wfin and v = winf. Since the alphabets Σ
j
lin are disjoint, this implies v j = w j for all j. By Lemma 17, this

means u ·�m
j=1 v j ⊆ LinB(L), hence�m

j=1 v j ⊆ u−1LinB(L) ∩
(
Σinf

lin

)ω
= Li.

To further decompose each Li according to the partition of winf into w1, . . . ,wm, we apply the lemma below, proven
e.g. in [Kus03, Theorem 4.11].

Lemma 19. Let R be an ω-regular language over a finite alphabet Σ = Σ1] · · ·] Σm. Suppose that every word from
R contains every letter from Σ infinitely often and that, for all (u1, . . . , um) ∈ Σω1 × · · · × Σωm, u1 � · · ·� um ∩ R , ∅
implies u1� · · ·� um ⊆ R. Then R is a finite union of languages of the form R1� · · ·� Rm, where R j is an ω-regular
language over Σ j.

Lemma 20. If LinB(L) is an ω-regular language then there is a finite sequence of tuples of regular languages
(K′1, L

1
i , . . . , L

m
i)1≤i≤` such that{

(wfin,w1, . . . ,wm) | w ∈ LinB(L)
}

=
⋃

1≤i≤`

K′i × L1
i × · · · × Lm

i .

Proof. We apply Lemma 18 and then Lemma 19 to each Li. We obtain a finite family (K′i , L
1
i , . . . , L

m
i)1≤i≤` such that

all K′i ⊆ Σ∗lin are regular languages and all L j
i ⊆ (Σ j

lin)
ω

are ω-regular languages, and{
(wfin,winf) | w ∈ LinB(L)

}
=

⋃
1≤i≤k

K′i ×
m
�
j=1

L j
i .

Moreover, for all w ∈ LinB(L), (w1, . . . ,wm) is the unique decomposition of winf as a shuffle of words in the subalpha-
bets Σ1

lin, . . . ,Σ
m
lin, which means that winf ∈�

m
j=1 L j

i if and only if (w1, . . . ,wm) ∈ L1
i × · · · × Lm

i . We obtain{
(wfin,w1, . . . ,wm) | w ∈ LinB(L)

}
=

⋃
1≤i≤`

K′i × L1
i × · · · × Lm

i .

Since all languages K′i and L j
i from Lemma 20 are regular or ω-regular, they can be defined in EMSO[Σlin,�].

This translates into a set of tuples of EMSO[Σlin,C,≤] formulas over MSC decompositions (using the canonical
decomposition similarly to the proof for finite MSCs):

30

Lemma 21. If LinB(L) is anω-regular language then there exists a finite set of tuples of EMSO[Σlin, P,C,≤] sentences
(Φi,Ψ

1
i , . . . ,Ψ

m
i)1≤i≤` such that for all M ∈ MSCω

∃B(P,Σ) with Typesinf(M) = T, we have M ∈ L if and only if there
exists i such that Mfin |= Φi and M j |= Ψ

j
i for all 1 ≤ j ≤ m.

Proof. Let (K′1, L
1
i , . . . , L

m
i)1≤i≤` be as in Lemma 20. There are EMSO[Σlin,�] formulas Φ̂i, Ψ̂

1
i , . . . , Ψ̂

m
i such that

K′i = L(Φi) and L j
i = L(Ψ j

i) for all i, j. Let Φi,Ψ
1
i , . . . ,Ψ

m
i be the EMSO[Σlin, P,≤,C] formulas obtained by replacing,

in these EMSO[Σlin,�] formulas, every predicate x � y with the FO[Σlin, P,≤,C] formula defining the canonical
linearization �B.

Let M ∈ MSCω
∃B(P,Σ) with types at infinity T , and let u ∈ Σ∗lin, v1 ∈ (Σ1

lin)ω, . . . , vm ∈ (Σm
lin)ω be the canonical

linearizations of the MSCs Minf,M1, . . . ,Mm (by Lemma 16, this is well-defined). Let w ∈ u ·�m
j=1 v j. Then w is a

B-bounded linearization of M.
We have M ∈ L if and only if w ∈ LinB(L), which means, by Lemma 20, if and only if there exists i such that

u |= Φ̂i and v j |= Ψ̂
j
i for all j, that is, if and only if there exists i such that Minf |= Φi and M j |= Ψ

j
i for all j.

Finally, we conclude the proof of Theorem 5 (3) =⇒ (1). First, we can assume that all MSCs M ∈ L have the
same set T = Typesinf(M) of types at infinity. Indeed, properties (1), (2), and (3) hold for L if and only if they hold
for every restriction of L to a particular set T of types at infinity. Now, by Theorem 4, definability of MSCω

∃B(P,Σ)
and Lemma 21, it is now enough to construct an EMSO[Σ, P,C,≤] formula Ξ such that, for all M ∈ MSCω

∃B(P,Σ),
we have M |= Ξ if and only if there exists i such that Mfin |= Φi and M j |= Ψ

j
i for all 1 ≤ j ≤ m. First, we can define

FO[Σ, P,C,≤] formulas fin(x), inf 1(x), . . . , inf m(x) that hold precisely at events in Mfin,M1, . . . ,Mm, respectively. Let
Φ̃i be the FO[Σ, P,C,≤] formula obtained from Φi by (i) restricting every quantification to events in Mfin, for instance,
replacing ∃x.ξ with ∃x.fin(x) ∧ ξ, and (ii) replacing Σlin predicates in a straightforward way, for instance, the formula
(a, p?q)(x) is replaced with a(x)∧ p(x)∧ ∃y.q(y)∧ y C x. We define similarly formulas Ψ̃

j
i relativized to M j. We then

let

Ξ =
∨

1≤i≤`

Φ̃i ∧
∧

1≤ j≤m

Ψ̃
j
i

 .
5.2. Temporal Logic

The transformation of temporal-logic formulas into automata has many applications, ranging from synthesis to
verification. Temporal logics are well understood in the realm of sequential systems where formulas can reason
about linearly ordered sequences of events. As we have seen, executions of concurrent systems are actually partially
ordered. Over partial orders, however, there is no longer a canonical temporal logic like LTL over words. Several
natural temporal logics have been studied over Mazurkiewicz traces (see [GK07] for an overview). Starting from a
formula in all these logics, we can always construct an equivalent asynchronous automaton [Zie87], a standard model
of shared-memory systems. We will show below that this is still true when formulas are interpreted over MSCs and
the system model is given in terms of CFMs.

Many temporal logics over partial orders are captured by the following generic language, which we will call
TL(Co,C,C−1, Ũ, S̃). Its formulas are defined as follows:

ϕ ::= a | p | ϕ ∨ ϕ | ¬ϕ | Coϕ | 〈C〉ϕ | 〈C−1〉ϕ | ϕ Ũ ϕ | ϕ S̃ ϕ where a ∈ Σ, p ∈ P .

A formula ϕ ∈ TL(Co,C,C−1, Ũ, S̃) is interpreted over events of MSCs. We say that M, e |= a if λ(e) = a; similarly,
M, e |= p if loc(e) = p. The Co modality jumps to a parallel event: M, e |= Coϕ if there exists f ∈ E such that e 6≤ f ,
f 6≤ e, and M, f |= ϕ. The message modality goes to the matching receive: M, e |= 〈C〉ϕ if e C f for some f ∈ E such
that M, f |= ϕ. The definition is symmetric for 〈C−1〉ϕ. We use strict versions of until and since:

M, e |= ϕ1 Ũ ϕ2 if there exists f ∈ E such that e < f and M, f |= ϕ2

and, for all e < g < f , M, g |= ϕ1

M, e |= ϕ1 S̃ ϕ2 if there exists f ∈ E such that f < e and M, f |= ϕ2

and, for all f < g < e, M, g |= ϕ1 .

31

We define derived modalities Xp, Yp and Up, with the following meaning: Xp moves to the first event on process
p that is in the strict future of the current event, while Yp moves to the last event on process p that is in the strict past
of the current event; finally, Up is the usual LTL (non-strict) until for a single process p, evaluated at the current event
if it is on process p, or the first event of its future that is on process p otherwise:

Xp ϕ := ¬p Ũ (p ∧ ϕ)

Yp ϕ := ¬p S̃ (p ∧ ϕ)

ϕ1 Up ϕ2 := p ∧
(
ϕ2 ∨

(
ϕ1 ∧ (¬p ∨ ϕ1) Ũ (p ∧ ϕ2)

))
.

This temporal logic and others have been studied in the context of Mazurkiewicz traces [GK07, GK10, Thi94,
DG06]. The logic introduced by Thiagarajan in [Thi94] uses an until modality similar to Up, except that if the current
event is not on process p, the evaluation starts at the latest event on process p in the past of the current event (or the
first event of process p if none exists). The second temporal modality of this logic is a unary modality Op interpreted
as follows: Op ϕ holds at e if the first event on process p that is not in the past of e satisfies ϕ. Both can similarly be
expressed in TL(Co,C,C−1, Ũ, S̃).

All these modalities can be easily translated into FO[→,C,≤], and thus we can apply Theorem 1 and Proposition 3
to translate any TL(Co,C,C−1, Ũ, S̃) formula into a transducer which determines the set of events where the formula
holds. However, this approach does not give any guarantee on the size of the resulting transducer. Instead, we present
a direct translation from TL(Co,C,C−1, Ũ, S̃) to PDLsf[Loop], leading to a transducer of size exponential in the size
of the formula and doubly exponential in the number of processes.

Theorem 6. For all ϕ ∈ TL(Co,C,C−1, Ũ, S̃,Xp,Yp,Up), there exists a transducer Aϕ with 2|ϕ|·2
O(|P| log |P|)

states per
process such that JAϕK = {(M,Mϕ) | M ∈MSC(P,Σ)}.

Proof. Similarly to the proof of Lemma 10, we will first translate every modality Mod into a transduceer BMod.
In particular, if Mod is a unary modality, then BMod is a transducer from {0, 1} to {0, 1}, and if it is binary, then
BMod is a transducer from {0, 1}2 to {0, 1}. Consider, for example, Mod = Co. For M = (E,→,C, loc, λ × γ) with
λ, γ : E → {0, 1}, we will have M ∈ L(BCo) iff, for all events e ∈ E,

M, e |= out ⇐⇒ M, e |= Co in

with temporal-logic formulas out =
∨

a∈{0,1}(a, 1) and in =
∨

b∈{0,1}(1, b). Now suppose Mod = Ũ. Then, for M =

(E,→,C, loc, λ × γ) with λ : E → {0, 1}2 and γ : E → {0, 1}, we will get M ∈ L(BŨ) iff, for all events e ∈ E,

M, e |= out ⇐⇒ M, e |= in1 Ũ in2 .

where out =
∨

a,b∈{0,1}((a, b), 1), in1 =
∨

a,b∈{0,1}((1, a), b), and in2 =
∨

a,b∈{0,1}((a, 1), b). In the following, we will
exploit that, in the unary and the binary case, the formulas out, in, in1, and in2 can also be considered as event
formulas from PDLsf[Loop].

The number of states per process of BMod will be bounded by 22O(|P| log |P|)
. We then compose these transducers for a

given formula ϕ ∈ TL(Co,C,C−1, Ũ, S̃,Xp,Yp,Up), just like in the proof of Lemma 10, so that we finally obtain the
desired transducer Aϕ with 2|ϕ|·2

O(|P| log |P|)
states per process. Note that this procedure is in the spirit of [GK07, GK10],

where formulas from temporal logics with MSO-definable modalities over Mazurkiewicz traces are translated into
small Büchi automata.

We obtain BMod as the transducerAξMod according to Theorem 2, where

ξMod = A
(
out ⇐⇒ ψMod

)
is a PDLsf[Loop] sentence of size 2O(|P| log |P|). It remains to specify the event formulas ψMod, which we address in the
following.

Let Π denote the set of PDLsf[∅] path formulas

π = π1 ·Cp1,p2 ·
+
−→ ·Cp2,p3 · · ·

+
−→ ·Cpm−1,pm · π2

32

with 1 ≤ m ≤ |P|, p1, . . . , pm ∈ P and pi , p j for 1 ≤ i < j ≤ m, π1, π2 ∈ {
+
−→, {true}?} and π . {true}?. Note that

for all events g, h, we have g < h if and only if M, g, h |= π for some π ∈ Π. Given π ∈ Π, we then define a state
formula is-next(π) in PDLsf[Loop] such that for all events e, we have M, e |= is-next(π) if and only if minJπK(e) is
well-defined, and is the minimal event on its process which is in the future of e:

is-next(π) = 〈π〉 ∧
∧
π′∈Π

¬Loop(min π ·
+
←− · (π′)−1) .

Symmetrically, we let
is-latest(π) = 〈π−1〉 ∧

∧
π′∈Π

¬Loop(max (π−1) ·
+
−→ · π′)

so that M, e |= is-latest(π) if and only if there exists p ∈ P such that Jmax π−1K(e) = max{g ∈ Ep | g < e}. Note
that ∅ , Jπ−1K(e) ⊆ {g ∈ Ep | g < e} which is finite, hence its maximum is well-defined. Given the special shape of
π, we can simplify the definitions of min π and max π−1 to obtain formulas of size O(|P|), so that both is-next(π) and
is-latest(π) are of size 2O(|P| log |P|). For instance, if π = Cp1,p2 ·

+
−→ ·Cp2,p3 · · ·

+
−→ ·Cpm−1,pm ·

+
−→, we have

max π−1 ≡
{¬ 〈C−1

pm−1 ,pm 〉}?
←−−−−−−−−−−− ·C−1

pm−1,pm
·
{¬ 〈C−1

pm−2 ,pm−1
〉}?

←−−−−−−−−−−−− ·C−1
pm−2,pm−1

· · ·C−1
p1,p2

.

We now determine the formulas ψMod for each modality in the temporal logic. The base cases and message
modalities are trivial.

• Suppose that Mod = Xp (the case Mod = Yp is similar). We let

ψXp =
∨
π∈Π

〈π〉 p ∧ is-next(π) ∧ 〈min π〉 in ,

where, as above, in =
∨

b∈{0,1}(1, b). The formula ψXp is of size 2O(|P| log |P|). Notice that if we are already on
process p then we get a simpler, constant size, formula ψp∧Xp = 〈→〉 in.

• Suppose that Mod = Up. We use the constant size formula

ψUp = p ∧
(
in2 ∨

(
in1 ∧ 〈

in1
−−→〉 in2

))
.

• Suppose that Mod = Ũ (the case Mod = S̃ is similar). Notice that in order to determine if ψŨ is true at a given
event e, it suffices to consider all potential “minimal” events f > e such that M, f |= in2 and check whether
M, g |= in1 for all e < g < f . More precisely, we have M, e |= in1 Ũ in2 if and only if there exists π ∈ Π such
that f = Jmin (π · {in2}?)K(e) is well-defined and for all e < g < f , M, g |= in2, that is, if and only if M, e |= ψŨ,
where

ψŨ =
∨
π∈Π

〈π〉 in2 ∧
∧
σ,τ∈Π

¬Loop(σ · {¬in1}? · τ · (min (π · {in2}?))−1) .

The formula ψŨ is of size 2O(|P| log |P|).

• Suppose that Mod = Co. Given e, f ∈ E with loc(f) = q , loc(e), we have f ‖ e if and only if one of
the following holds: (a) all events on process q are parallel with e, (b) no event on q is in the past of e, and
f <proc min{g ∈ Eq | e < g}, (c) no event on q is in the future of e, and max{g ∈ Eq | g < e} <proc f ,

33

(d) max{g ∈ Eq | g < e} <proc f <proc min{g ∈ Eq | e < g}. This leads to the following definition:

ψCo =
∨
p,q

σ,τ∈Π\{
+

−→}

〈jumpp,q〉 in ∧
∧
π∈Π

¬ 〈π〉 q ∧ ¬ 〈π−1〉 q

 ∨is-next(τ) ∧ 〈min τ ·
+
←−〉 (q ∧ in) ∧

∧
π∈Π

¬ 〈π−1〉 q

 ∨is-latest(σ) ∧ 〈max (σ−1) ·
+
−→〉 (q ∧ in) ∧

∧
π∈Π

¬ 〈π〉 q

 ∨(
is-latest(σ) ∧ is-next(τ) ∧ Loop(max (σ−1) ·

+
−→ · {in}? ·

+
−→ · (min τ)−1)

)
.

The formula ψCo is of size 2O(|P| log |P|).

This concludes the proof of Theorem 6.

Note that the transducer constructed in Theorem 6 is non-deterministic. Informally, a transducer from Σ to Γ is
deterministic if it can be obtained from a deterministic CFM over P and Σ by adding one output to each transition.
So here a first source of non-determinism is that all the transducers we constructed essentially “guess” their output.
However, even if we fix the output as part of the MSC and only want to construct a CFM which checks that the output
is correct, it is not possible to avoid non-determinism. We cannot even avoid it for simple past formulas, which is in
contrast to what happens for words or Mazurkiewicz traces.

Proposition 4. Assume that |Σ| ≥ 2 and |P| ≥ 3. For p ∈ P and a ∈ Σ, there is no deterministic CFMA over Σ× {0, 1}
such that L(A) = {(E,→,C, loc, λ × γ) | γ(e) = 1 iff (E,→,C, loc, λ), e |= Yp a}.

Proof. Let P = {p, q, r} and Σ = {0, 1}. We show that there exists no deterministic CFM recognizing the set L of
MSCs M = (E,→,C, loc, λ × γ) such that for all e ∈ Eq, γ(e) = 1 if and only if (E,→,C, loc, λ), e |= Yp 1. Assume
that there exists a deterministic CFMA = (Ap,Aq,Ar,Msg,Acc) such that L(A) = L. Fix n > |S q|

2, where S q is the
set of states ofAq. For all k ∈ {0, . . . , n− 1}, we define an MSC Mk = (E,→,Ck, loc, λ× γk), as depicted in Figure 16
(for n = 5 and k = 2):

• Ep = {ei | 0 ≤ i < 2n}, Eq = { fi | 0 ≤ i < 2n}, and Er = {gi | 0 ≤ i < 2n}, with e0 → e1 → · · · → e2n−1,
f0 → f1 → · · · → f2n−1, and g0 → g1 → · · · → g2n−1.

• For all 0 ≤ i < k, e2i Ck fi, and for all k ≤ i < n, e2i Ck fn+i.

For all 0 ≤ i < n, e2i+1 Ck g2i, and g2i+1 Ck fk+i.

• For all 0 ≤ i < n, λ(e2i) = 0 and λ(e2i+1) = 1.

For all h ∈ Er ∪ Eq, λ(h) = 0.

• For all 0 ≤ i < 2k − 1, γk(fi) = 0, and for all 2k − 1 ≤ i < 2n, γk(fi) = 1.

For all h ∈ Ep ∪ Er, γk(h) = 0.

Clearly, Mk ∈ L(A). Let sk and tk be the states before reading respectively fk and fk+n in the unique run ρk of A on
Mk: sk = source(ρk(fk)) and tk = source(ρk(fk+n)).

Note that for all k, the sequence of send and receive actions performed by process p or process r in Mk are the
same, so the runs ofA on MSCs Mk only differ on process q. In particular, the sequence of n messages sent by process
r to process q is the same for all k. Moreover, since n > |S q|

2, there exist 0 ≤ k < k′ < n such that sk = sk′ and tk = tk′ .
We can then combine the runs ofA on Mk and Mk′ to define a run where process q receives the messages from process
p and r in the same order as in Mk, but behaves as in Mk′ in the middle part where it receives the n messages from
process r. More precisely, let M = (E,→,Ck, loc, λ × γ), where (E,→,Ck, loc, λ) is as in Mk, and γ is defined as
follows: γ(h) = 0 for all h ∈ Ep ∪ Er, γ(fi) = 0 for all 0 ≤ i < k + k′ − 1, and γ(fi) = 1 for all k + k′ − 1 ≤ i < n. Then,
M ∈ L(A), but M < L.

34

0
e0

1
e1

g0 g1

0
e2

1
e3

g2 g3

0
e4

1
e5

g4 g5

0
e6

1
e7

g6 g7

0
e8

1
e9

g8 g9

0
f0

0
f1

0
f2

1
f3

1
f4

1
f5

1
f6

1
f7

1
f8

1
f9

q

r

p

k n n − k

sk tk

Figure 16: Definition of Mk . We only indicate the value of λ on process p, and of γk on process q.

5.3. The Gossip Problem

Gossiping is a technique used to maintain a consistent view of the global system state in a distributed system.
The problem can be stated as follows: whenever process q receives a message from process r, q has to decide, for
all processes p, whether it has more recent information on p than r. This problem is at the heart of many distributed
algorithms. Interestingly, gossip protocols and related techniques, such as asynchronous mappings, have also been
exploited in formal methods, in particular when it comes to establishing the expressive power of automata models
[MS97, CMZ93, MKS03, DS97]. In particular, gossip protocols are the key to simulating high-level specifications,
which include message sequence graphs and monadic second-order logic [HMK+05, GKM06, Kus03, Zie87, Tho90].
All known techniques and algorithms, however, require that communication be synchronous or accomplished through
FIFO channels with limited capacity.

We show that we can apply our results to construct a CFM that solves the gossip problem. This is defined more
precisely below. Let M = (E,→,C, loc, λ) be an MSC and e ∈ E. For all processes p such that { f ∈ Ep | f < e} , ∅,
we let latestp(e) = max{ f ∈ Ep | f < e}. The gossip transducer should determine, for all processes p and all receive
events e with f C e, whether latestp(e) < latestp(f). We show that this property can be expressed in PDLsf[Loop] so
that we can obtain the gossip transducer as a corollary of Proposition 3.

Let Π and is-latest(π) be defined as in the proof of Theorem 6. The property described above is expressed by
the PDLsf[Loop] formula below. It states that the event latestp(e) is obtained from e with max (σ−1) and the event
latestp(f) is obtained from f with max (τ−1). Then, it compares the two events using the loop modality.∨

σ,τ∈Π
q,r∈P

〈σ−1〉 p ∧ is-latest(σ) ∧ 〈C−1
q,r〉 (〈τ

−1〉 p ∧ is-latest(τ))

∧ Loop(max (σ−1) ·
+
−→ · (max (τ−1))−1 ·Cq,r) .

Note that the gossip CFM is unavoidably nondeterministic (this follows from Proposition 4). This is in contrast to
the deterministic protocols for synchronous communication or message-passing environments with bounded channels
[MS97, CMZ93, MKS03, DS97].

6. Conclusion

In this paper, we showed that every FO[→,C,≤] formula over MSCs is effectively equivalent to a CFM. As an
intermediate step, we used a purely logical transformation of own interest, relating FO logic with a star-free fragment
of PDL. While star-free PDL constitutes a two-dimensional temporal logic over MSCs, we leave open whether there
is a one-dimensional one, with a finite set of FO-definable modalities, that is expressively complete for FO[→,C,≤].

Though our result closes an important gap concerning the expressive power of CFMs, there remain interesting
open questions addressing both CFMs and automata on graphs in general:

First, it is still open whether every formula from the full PDL logic over MSCs can be translated into CFMs.
In [BKM10], only a unidirectional fragment was considered. The difficulty comes with unrestricted usage of the

35

star operator, which allows one to go forth and back in an MSC unboundedly many times. While such two-way
mechanisms do not add expressive power in the setting of words, the situation is unclear in the realm of MSCs. It
would already be interesting to solve this question for more specialized structures such as pictures, which also come
with natural notions of recognizability in terms of graph acceptors and two-way automata [KM01].

Second, it is worthwhile to also study architectures with one unbounded FIFO channel per process (as considered,
e.g., in [BEJQ18]), or including pushdown processes. The latter give rise to multiply nested words, and it is an open
question whether every first-order formula over multiply nested words (including the total order and the push-pop
relation) can be translated into an equivalent multi-pushdown automaton (aka nested-word automaton). Unlike in
MSCs, the matching relation of a nested word is not monotone so that the techniques presented in this paper do not
apply. Note that, when dropping the total order and restricting to two nesting relations, one can still take advantage of
Hanf’s theorem [Bol08].

Finally, it will be interesting to see whether the technique from Section 5 can be applied to other meaningful
classes of MSCs so as to obtain logical characterizations of restricted CMFs in terms of full MSO logic.

References

[AM09] R. Alur and P. Madhusudan. Adding nesting structure to words. Journal of the ACM, 56(3):1–43, 2009.
[Ara98] João Araújo. Formalizing sequence diagrams. In Proceedings of the OOPSLA’98 Workshop on Formalizing UML. Why? How?,

volume 33, 10 of ACM SIGPLAN Notices, New York, 1998. ACM Press.
[AW04] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations and Advanced Topics. John Wiley & Sons, 2004.

[BDM+11] M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on data words. ACM Transactions on
Computational Logic, 12(4):27, 2011.

[Bed15] N. Bedon. Logic and branching automata. Logical Methods in Computer Science, 11(4), 2015.
[BEJQ18] A. Bouajjani, C. Enea, K. Ji, and S. Qadeer. On the completeness of verifying message passing programs under bounded asynchrony.

In Proceedings of CAV’18, Part II, volume 10982, pages 372–391. Springer, 2018.
[BFG18] B. Bollig, M. Fortin, and P. Gastin. Communicating finite-state machines and two-variable logic. In 35th Symposium on Theoretical

Aspects of Computer Science (STACS 2018), volume 96 of Leibniz International Proceedings in Informatics, pages 17:1–17:14.
Leibniz-Zentrum für Informatik, 2018.

[BK08] B. Bollig and D. Kuske. Muller message-passing automata and logics. Information and Computation, 206(9-10):1084–1094, 2008.
[BKM10] B. Bollig, D. Kuske, and I. Meinecke. Propositional dynamic logic for message-passing systems. Logical Methods in Computer

Science, 6(3:16), 2010.
[BL06] B. Bollig and M. Leucker. Message-passing automata are expressively equivalent to EMSO logic. Theoretical Computer Science,

358(2-3):150–172, 2006.
[Bol08] B. Bollig. On the expressive power of 2-stack visibly pushdown automata. Logical Methods in Computer Science, 4(4:16), 2008.
[BS10] H. Björklund and T. Schwentick. On notions of regularity for data languages. Theoretical Computer Science, 411(4-5):702–715, 2010.

[Büc60] J. Büchi. Weak second order logic and finite automata. Z. Math. Logik, Grundlag. Math., 5:66–62, 1960.
[BZ83] D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of the ACM, 30(2), 1983.

[CMZ93] R. Cori, Y. Métivier, and W. Zielonka. Asynchronous mappings and asynchronous cellular automata. Information and Computation,
106:159–202, 1993.

[DG06] V. Diekert and P. Gastin. Pure future local temporal logics are expressively complete for mazurkiewicz traces. Information and
Computation, 204(11):1597–1619, 2006.

[DG08] V. Diekert and P. Gastin. First-order definable languages. In Jörg Flum, Erich Grädel, and Thomas Wilke, editors, Logic and Automata:
History and Perspectives, volume 2 of Texts in Logic and Games, pages 261–306. Amsterdam University Press, 2008.

[DL94] G. De Giacomo and M. Lenzerini. Boosting the correspondence between description logics and propositional dynamic logics. In
Proceedings of the 12th National Conference on Artificial Intelligence, Seattle, WA, USA, July 31 - August 4, 1994, Volume 1., pages
205–212. AAAI Press / The MIT Press, 1994.

[DR95] V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, Singapore, 1995.
[DS97] D. Dolev and N. Shavit. Bounded concurrent time-stamping. SIAM J. Comput., 26(2):418–455, 1997.
[EL87] E. A. Emerson and C.-L. Lei. Modalities for model checking: branching time logic strikes back. Science of Computer Programming,

8(3):275–306, Jun 1987.
[Elg61] C. C. Elgot. Decision problems of finite automata design and related arithmetics. Transactions of the American Mathematical Society,

98:21–52, 1961.
[FL79] M. J. Fischer and R. E. Ladner. Propositional Dynamic Logic of regular programs. Journal of Computer and System Sciences,

18(2):194–211, 1979.
[Gab81] D. M. Gabbay. Expressive functional completeness in tense logic. In Uwe Mönnich, editor, Aspects of Philosophical Logic: Some

Logical Forays into Central Notions of Linguistics and Philosophy, pages 91–117. Springer Netherlands, Dordrecht, 1981.
[GHR94] D. M. Gabbay, I. Hodkinson, and M. A. Reynolds. Temporal Logic: Mathematical Foundations and Computational Aspects, vol. 1.

Oxford University Press, 1994.
[GK07] P. Gastin and D. Kuske. Uniform satisfiability in PSPACE for local temporal logics over Mazurkiewicz traces. Fundamenta Informat-

icae, 80(1-3):169–197, 2007.

36

[GK10] P. Gastin and D. Kuske. Uniform satisfiability problem for local temporal logics over Mazurkiewicz traces. Information and Compu-
tation, 208(7):797–816, 2010.

[GKM06] B. Genest, D. Kuske, and A. Muscholl. A Kleene theorem and model checking algorithms for existentially bounded communicating
automata. Information and Computation, 204(6):920–956, 2006.

[GKM07] B. Genest, D. Kuske, and A. Muscholl. On communicating automata with bounded channels. Fundamenta Informaticae, 80(1-3):147–
167, 2007.

[GLL09] S. Göller, M. Lohrey, and C. Lutz. PDL with intersection and converse: satisfiability and infinite-state model checking. Journal of
Symbolic Logic, 74(1):279–314, 2009.

[GO99] E. Grädel and M. Otto. On logics with two variables. Theoretical Computer Science, 224(1-2):73–113, 1999.
[Han65] W. Hanf. Model-theoretic methods in the study of elementary logic. In J. W. Addison, L. Henkin, and A. Tarski, editors, The Theory

of Models. North-Holland, Amsterdam, 1965.
[HJK+15] L. Hella, M. Järvisalo, A. Kuusisto, J. Laurinharju, T. Lempiäinen, K. Luosto, J. Suomela, and J. Virtema. Weak models of distributed

computing, with connections to modal logic. Distributed Computing, 28(1):31–53, 2015.
[HM92] J. Y. Halpern and Y. Moses. A guide to completeness and complexity for modal logics of knowledge and belief. Artif. Intell.,

54(2):319–379, 1992.
[HMK+05] J. G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni, and P. S. Thiagarajan. A theory of regular MSC languages. Information

and Computation, 202(1):1–38, 2005.
[IT99] ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart 1999 (MSC99). Technical report, ITU-TS, Geneva, 1999.

[Kam68] H. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of California, Los Angeles, 1968.
[KM01] J. Kari and C. Moore. New results on alternating and non-deterministic two-dimensional finite-state automata. In Proceedings of

STACS’01, pages 396–406. Springer, 2001.
[Kus00] D. Kuske. Infinite series-parallel posets: Logic and languages. In Proceedings of ICALP’00, volume 1853 of LNCS, pages 648–662.

Springer, 2000.
[Kus03] D. Kuske. Regular sets of infinite message sequence charts. Information and Computation, 187:80–109, 2003.
[Kuu13] A. Kuusisto. Modal logic and distributed message passing automata. In Proceedings of CSL’13, volume 23 of LIPIcs, pages 452–468.

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.
[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM, 21(7):558–565, 1978.
[Lan06] M. Lange. Model checking propositional dynamic logic with all extras. Journal of Applied Logic, 4(1):39–49, 2006.
[LL05] M. Lange and C. Lutz. 2-ExpTime lower bounds for Propositional Dynamic Logics with intersection. Journal of Symbolic Logic,

70(5):1072–1086, 2005.
[LM04] M. Lohrey and A. Muscholl. Bounded MSC Communication. Information and Computation, 189(2):160–181, 2004.
[Lyn96] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., 1996.
[Mar05] M. Marx. Conditional XPath. ACM Trans. Database Syst., 30(4):929–959, 2005.
[Men13] R. Mennicke. Propositional dynamic logic with converse and repeat for message-passing systems. Logical Methods in Computer

Science, 9(2:12):1–35, 2013.
[MKS03] M. Mukund, K. Narayan Kumar, and M. A. Sohoni. Bounded time-stamping in message-passing systems. Theoretical Computer

Science, 290(1):221–239, 2003.
[MS97] M. Mukund and M. A. Sohoni. Keeping track of the latest gossip in a distributed system. Distributed Computing, 10(3):137–148,

1997.
[Ray13] M. Raynal. Distributed Algorithms for Message-Passing Systems. Springer, 2013.
[Rei15] F. Reiter. Distributed graph automata. In Proceedings of LICS’15, pages 192–201. IEEE Computer Society, 2015.
[Rei17] F. Reiter. Asynchronous distributed automata: A characterization of the modal mu-fragment. In Proceedings of ICALP’17, volume 80

of LIPIcs, pages 100:1–100:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.
[Sto74] L. J. Stockmeyer. The Complexity of Decision Problems in Automata Theory and Logic. PhD thesis, MIT, 1974.
[Str81] R. S. Streett. Propositional dynamic logic of looping and converse. In Proceedings of STOC’81, pages 375–383. ACM, 1981.
[Tel01] G. Tel. Introduction to Distributed Algorithms. Cambridge University Press, 2nd edition, 2001.
[Thi94] P. S. Thiagarajan. A trace based extension of linear time temporal logic. In LICS’94, pages 438–447. IEEE Computer Society, 1994.
[Tho90] W. Thomas. On logical definability of trace languages. In Proceedings of Algebraic and Syntactic Methods in Computer Science

(ASMICS), Report TUM-I9002, Technical University of Munich, pages 172–182, 1990.
[Tho97] W. Thomas. Languages, automata and logic. In A. Salomaa and G. Rozenberg, editors, Handbook of Formal Languages, volume 3,

pages 389–455. Springer, 1997.
[Tra62] B. A. Trakhtenbrot. Finite automata and monadic second order logic. Siberian Math. J, 3:103–131, 1962. In Russian; English

translation in Amer. Math. Soc. Transl. 59, 1966, 23–55.
[TW68] J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an application to a decision problem of second-order logic.

Mathematical Systems Theory, 2(1):57–81, 1968.
[TW02] P. S. Thiagarajan and I. Walukiewicz. An expressively complete linear time temporal logic for Mazurkiewicz traces. Inf. Comput.,

179(2):230–249, 2002.
[VW86] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In Proceedings of LICS’86, pages

332–344. IEEE Computer Society, 1986.
[Zie87] W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O. — Informatique Théorique et Applications, 21:99–135, 1987.

37

	Introduction
	Context and Known Results
	Contribution
	Outline

	Preliminaries
	Message Sequence Charts
	MSO Logic and Its Fragments
	Communicating Finite-State Machines
	An Overview of Known Results

	Star-Free Propositional Dynamic Logic
	Syntax and Semantics
	From PDLsf to FO3
	Basic Properties of PDLsf
	Characterizing the Complement of a Path Formula
	From FO to PDLsf

	From PDLsf[Loop] to CFMs
	Letter-to-letter MSC Transducers
	Translation of PDLsf[Loop] Event Formulas into MSC Transducers
	Translation of PDLsf[Loop] and FO Sentences into CFMs.

	Applications
	Existentially bounded MSCs
	Temporal Logic
	The Gossip Problem

	Conclusion

