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Z2Z4-Additive Quasi-Cyclic codes
Minjia Shi, Shitao Li, Patrick Solé

Abstract—We study the codes of the title by the
CRT method, that decomposes such codes into con-
stituent codes, which are shorter codes over larger
alphabets. Criteria on these constituent codes for
self-duality and linear complementary duality of the
decomposed codes are derived. The special class of
the one-generator codes is given a polynomial repre-
sentation and exactly enumerated. In particular, we
present some illustrative examples of binary linear
codes derived from the Z2Z4-additive quasi-cyclic
codes that meet the Griesmer bound with equality.

Index Terms—Z2Z4-additive quasi-cyclic codes,
Chinese Remainder Theorem, self-dual codes, ACD
codes.

I. INTRODUCTION

IN this article, we consider the mixed alphabet
codes with two alphabets: the first is the finite

field Z2 and the second is the local ring Z4.
These mixed alphabets were introduced in [7] in
the additive case, and studied in the cyclic case
in [1], [8]. The latter class was shown recently
to be asymptotically good [12], [27]. Many other
pairs of alphabets are possible [3], [4], [5], [9],
[15], [24], but in the present paper, for simplicity’s
sake, we will focus on Z2 and Z4. A natural
generalization of cyclic codes is the class of quasi-
cyclic codes, which has been studied in particular
by using a decomposition of the alphabet into local
rings and of the codes into constituent codes [16],
[17], [25], by the Chinese Remainder Theorem
(CRT). These constituents codes are shorter, of
length the co-index, over larger alphabets (exten-
sions of the original alphabet of degree the index
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of the code). Self-dual quasi-cyclic codes and
self-dual generalized quasi-cyclic codes over finite
fields were proved to be asymptotically good [18],
[23]. So are linear complementary dual (LCD)
quasi-cyclic codes over finite fields [14].

In the present paper, we combine both trends by
studying Z2Z4-additive quasi-cyclic codes. Here,
it generalizes the notion of LCD codes to additive
complementary dual (ACD) codes in Zα2 ×Zβ4 [6].
The CRT decomposition allows us to give criteria
bearing on the constituent codes for the quasi-
cyclic codes to be self-dual, or to be ACD. Note
that the family of LCD codes has known a surge
of interest in recent years, due to applications
in Boolean masking in embarked cryptographic
computations [10]. The family of self-dual codes
has been studied since the 1960’s over fields [19],
and since the 1990’s over rings [21], and enjoys
many connections with combinatorial designs and
modular forms [22]. The subclass of quasi-cyclic
codes called one-generator is traditionally treated
by a polynomial representation akin to that of
cyclic codes [11], [20]. We use this formulation
over Z2Z4 to derive exact enumeration results.

The material is arranged as follows. The next
section recalls notation and definitions needed
in the other sections. Section 3 establishes the
polynomial representation of Z2Z4-additive quasi-
cyclic codes. Section 4 develops the CRT ap-
proach, and derives the two criterion mentioned.
Section 5 studies the one-generator class. Section
6 gives some good examples of Z2Z4-additive
quasi-cyclic codes. Section 7 concludes the article.

II. PRELIMINARIES

In this section, we introduce some basic
concepts, and present some auxiliary lemmas. For
every vector c ∈ Zl2m2

2 × Zl4m4
4 , we write c =

(c2, c′4), where c2 = (c00, c01, . . . , c0,l2−1, c10,
. . . , c1,l2−1, . . . , cm2−1,0, . . . , cm2−1,l2−1) ∈
Zl2m2
2 and c′4 = (c′00, c

′
01, . . . , c

′
0,l4−1, c

′
10, . . . ,
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c′1,l4−1, . . . , c
′
m4−1,0, . . . , c

′
m4−1,l4−1) ∈ Zl4m4

4 .
We denote by T2 (resp. T4) the standard shift
operator acting on Zl2m2

2 (resp. Zl4m4
4 ).

Definition II.1. A Z2Z4-additive code C of type
(l2m2, l4m4) is called a Z2Z4-additive quasi-
cyclic code if for every codeword c ∈ C, its shift,
defined as

T (c) = (T l22 (c2), T l44 (c′4)) = (cm2−1,0, . . . ,

cm2−1,l2−1, c00, c01, . . . , c0,l2−1, . . . , cm2−2,0,

. . . , cm2−2,l2−1, c
′
m4−1,0, . . . , c

′
m4−1,l4−1, c

′
00,

c′01, . . . , c
′
0,l4−1, . . . , c

′
m4−2,0, . . . , c

′
m4−2,l4−1)

is also a codeword of C. Such a code C is said to
be Z2Z4-additive quasi-cyclic of index (l2, l4)
or (l2, l4)-quasi-cyclic over Z2Z4.

For any pair of vectors

u = (u2,u′4) = (u00, u01, . . . , u0,l2−1, u10, . . . ,

u1,l2−1, . . . , um2−1,0, . . . , um2−1,l2−1,

u′00, u
′
01, . . . , u

′
0,l4−1, u

′
10, . . . ,

u′1,l4−1, . . . , u
′
m4−1,0, . . . , u

′
m4−1,l4−1)

and

v = (v2, v′4) = (v00, v01, . . . , v0,l2−1, v10, . . . ,

v1,l2−1, . . . , vm2−1,0, . . . , vm2−1,l2−1,

v′00, v
′
01, . . . , v

′
0,l4−1, v

′
10, . . . , v

′
1,l4−1, . . . ,

v′m4−1,0, . . . , v
′
m4−1,l4−1) ∈ Zl2m2

2 × Zl4m4
4 ,

the standard inner product [7] is defined as

u · v = 2u2 · v2 + u′4 · v′4

=

2 l2−1∑
j=0

m2−1∑
i=0

uijvij +

l4−1∑
k=0

m4−1∑
r=0

u′rkv
′
rk


(mod 4).

Definition II.2. Let C be any Z2Z4-additive quasi-
cyclic code. The additive dual code of C is defined
as C⊥ = {v ∈ Zl2m2

2 ×Zl4m4
4 | u·v = 0, for all u ∈

C}.

A natural generalization of LCD codes from
linear to additive codes is as follows.

Definition II.3. [6] A Z2Z4-additive quasi-cyclic
code C is ACD if C ∩ C⊥ = {0}.

Using Definition II.2 of the dual, we have the
following lemma.

Lemma II.4. If C is any Z2Z4-additive quasi-
cyclic code, then C⊥ is also additive quasi-cyclic.

Proof: Let C be any Z2Z4-additive
quasi-cyclic code of index (l2, l4), and type
(l2m2, l4m4). Let

v = (v2, v′4) = (v00, v01, . . . , v0,l2−1, v10, . . . ,

v1,l2−1, . . . , vm2−1,0, . . . , vm2−1,l2−1,

v′00, v
′
01, . . . , v

′
0,l4−1, v

′
10, . . . , v

′
1,l4−1, . . . ,

v′m4−1,0, . . . , v
′
m4−1,l4−1) ∈ C

⊥,

It suffices to show that T (v) ∈ C⊥. Since v ∈ C⊥,
for any codeword

u = (u2,u′4) = (u00, u01, . . . , u0,l2−1, u10, . . . ,

u1,l2−1, . . . , um2−1,0, . . . , um2−1,l2−1,

u′00, u
′
01, . . . , u

′
0,l4−1, u

′
10, . . . , u

′
1,l4−1, . . . ,

u′m4−1,0, . . . , u
′
m4−1,l4−1) ∈ C,

we have

u · v =

2 l2−1∑
j=0

m2−1∑
i=0

uijvij +

l4−1∑
k=0

m4−1∑
r=0

u′rkv
′
rk


= 0 (mod 4).

Now we just need to prove that u · T (v) = 0.
Let m = lcm(m2,m4). Then Tm(u) = u for any
u ∈ Zl2m2

2 × Zl4m4
4 . Since C is a Z2Z4-additive

quasi-cyclic code, Tm−1(u) ∈ C. Hence

0 = Tm−1(u) · v = u · T (v).

Therefore, T (v) ∈ C⊥, and hence C⊥ is also
additive quasi-cyclic.
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III. ADDITIVE QUASI-CYCLIC CODES

In this section, we introduce a polynomial rep-
resentation of a Z2Z4-additive quasi-cyclic codes.
Let Z2[X] (resp. Z4[X]) denote the polynomials in
the indeterminate X with coefficients in Z2 (resp.
Z4). Consider now the quotient rings

R2 := R2(Z2,m2) = Z2[X]/(Xm2 − 1),

R4 := R4(Z4,m4) = Z4[X]/(Xm4 − 1).

Let C be a Z2Z4-additive quasi-cyclic code of type
(l2m2, l4m4). Write an arbitrary codeword of C as

c = (c00, c01, . . . , c0,l2−1, c10, . . . ,

c1,l2−1, . . . , cm2−1,0, . . . , cm2−1,l2−1,

c′00, c
′
01, . . . , c

′
0,l4−1, c

′
10, . . . , c

′
1,l4−1, . . . ,

c′m4−1,0, . . . , c
′
m4−1,l4−1) ∈ C.

Define a map φ : Zl2m2
2 ×Zl4m4

4 −→ Rl22 ×R
l4
4

by

φ(c) =(c0(X), c1(X), . . . , cl2−1(X),

c′0(X), c′1(X), . . . , c′l4−1(X)) ∈ Rl22 ×R
l4
4

where

cj(X) =

m2−1∑
i=0

cijX
i ∈ R2, 0 ≤ j ≤ l2 − 1,

c′k(X) =

m4−1∑
r=0

c′rkX
r ∈ R4, 0 ≤ k ≤ l4 − 1.

Let φ(C) denote the image of C under φ. For any
element c(X) = (c0(X), c1(X), . . . , cl2−1(X),
c′0(X), c′1(X), . . . , c′l4−1(X)) ∈ Rl22 × Rl44 , and
any a(X) ∈ Z4[X], we have

a(X)c(X) = (a(X)c0(X), a(X)c1(X), . . . ,

a(X)cl2−1(X), a(X)c′0(X),

a(X)c′1(X), . . . , a(X)c′l4−1(X)),

where a(X) = a(X) (mod 2). We have the
following lemma.

Lemma III.1. The map φ induces a one-
to-one correspondence between Z2Z4-additive
quasi-cyclic codes of index (l2, l4) and Z4[X]-
submodules of Rl22 ×R

l4
4 .

Proof: The result follows from [16, Lemma
3.1] and [17, Lemma 3.1], so we omit it here.

We define a “conjugation” map ∼ on R2 (re-
sp. R4) as one that acts as the identity on the
elements of Z2 (resp. Z4) and that sends X
to X−1 = Xm2−1 (resp. X−1 = Xm4−1).
The reciprocal polynomial of a polynomi-
al f(X) is Xdeg(f(X))f(X−1) and is denot-
ed by f∗(X). Let θm(X) =

∑m−1
i=0 Xi. Let

x = (x0, x1, . . . , xl2−1, x
′
0, x
′
1, . . . , x

′
l4−1), y =

(y0, y1, . . . , yl2−1, y
′
0, y
′
1, . . . , y

′
l4−1) ∈ R

l2
2 ×R

l4
4 ,

m = lcm(m2,m4). We define an extension map
of [8, Definition 8]

◦(x, y) =
l2−1∑
i=0

2xiθ m
m2

(Xm2)Xm−1−deg(yi)y∗i

+

l4−1∑
j=0

x′jθ m
m4

(Xm4)Xm−1−deg(y′j)y′∗j

mod (Xm − 1),

where the computations are made taking the bina-
ry zeros and ones in xi and yi as quaternary zeros
and ones. We call it ◦-inner product and denote
◦(x, y) by x ◦ y.

Proposition III.2. Let u, v ∈ Zl2m2
2 ×Zl4m4

4 ,m =
lcm(m2,m4). Then u · (Tn(v)) = 0 for all 0 ≤
n ≤ m− 1 if and only if φ(u) ◦ φ(v) = 0.

Proof: Let

u = (u2,u′4) = (u00, u01, . . . , u0,l2−1, u10, . . . ,

u1,l2−1, . . . , um2−1,0, . . . , um2−1,l2−1,

u′00, u
′
01, . . . , u

′
0,l4−1, u

′
10, . . . ,

u′1,l4−1, . . . , u
′
m4−1,0, . . . , u

′
m4−1,l4−1),

v = (v2, v′4) = (v00, v01, . . . , v0,l2−1, v10, . . . ,

v1,l2−1, . . . , vm2−1,0, . . . , vm2−1,l2−1,

v′00, v
′
01, . . . , v

′
0,l4−1, v

′
10, . . . , v

′
1,l4−1, . . . ,

v′m4−1,0, . . . , v
′
m4−1,l4−1) ∈ Zl2m2

2 × Zl4m4
4 ,

Then

φ(u) = (u0(X),u1(X), . . . ,ul2−1(X),

u′0(X),u′1(X), . . . ,u′l4−1(X)),

φ(v) = (v0(X),v1(X), . . . , vl2−1(X),

v′0(X), v′1(X), . . . , v′l4−1(X)).
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The condition φ(u) ◦ φ(v) = 0 is equivalent to
l2−1∑
i=0

2ui(X)θ m
m2

(Xm2 )Xm−1−deg(vi(X))v∗i (X)

+

l4−1∑
j=0

u′j(X)θ m
m4

(Xm4 )Xm−1−deg((v′j(X)))v′∗j (X)

= θ m
m2

(Xm2 )

m2−1∑
r=0

2

l2−1∑
i=0

m2−1∑
k=0

ukivk+r,iX
m−1−r


+ θ m

m4
(Xm4 )

m4−1∑
t=0

l4−1∑
j=0

m4−1∑
s=0

u′sjv
′
s+t,jX

m−1−t


=

m−1∑
n=0

2

l2−1∑
i=0

m2−1∑
k=0

ukivk+n,i+

l4−1∑
j=0

m4−1∑
s=0

u′sjv
′
s+n,j

Xm−1−n mod (Xm − 1),

= 0,

where the subscripts k+n (resp. s+n) are taken
modulo m2 (resp. m4). Comparing the coefficient
of Xm−1−n on both sides, the above equation is
equivalent to

2

l2−1∑
i=0

m2−1∑
k=0

ukivk+n,i +

l4−1∑
j=0

m4−1∑
s=0

u′sjv
′
s+n,j = 0,

for all 0 ≤ n ≤ m − 1. The equation means
precisely that

u2 ·
(
T−l2n2 (v2)

)
+ u′4 ·

(
T−l4n4 (v′4)

)
= u ·

(
T−n(v)

)
= 0.

Since T−n = Tm−n, φ(u) ◦ φ(v) = 0, is equiv-
alent to u · (Tn(v)) = 0 for all 0 ≤ n ≤ m − 1.

By applying Proposition III.2, we can obtain the
following.

Corollary III.3. Let C be an additive quasi-cyclic
code and C ⊂ Zl2m2

2 ×Zl4m4
4 , let φ(C) be its image

in Rl22 × Rl44 under φ. Then φ(C)⊥◦ = φ(C⊥),
where the dual in Zl2m2

2 × Zl4m4
4 is taken with

respect to the standard inner product, while the
dual in Rl22 × Rl44 is taken with respect to the
◦-inner product. In particular, a Z2Z4-additive
quasi-cyclic code is self-dual with respect to the
standard inner product if and only if φ(C) is self-
dual with respect to the ◦-inner product.

Example III.4. Let C be a Z2Z4-additive quasi-
cyclic code with generator matrix

G =


10 01 00 00 00 20
00 10 01 20 00 00
01 00 10 00 20 00
10 01 01 10 01 02
01 10 01 02 10 01
01 01 10 01 02 10

 .

Thus l2 = 2, l4 = 2. It can be checked that C
is self-orthogonal, and that |C| = 2343. Hence
|C⊥| = 2646/2343 = 2343 = |C|. Therefore
C = C⊥ and C is self-dual with respect to the
standard inner product. Under the mapping of φ,

R2
2 ×R2

4 =

(
Z2[X]

(X3 − 1)

)2

×
(

Z4[X]

(X3 − 1)

)2

,

φ(C) is Z4[X]-submodule of R2
2×R2

4 with genera-
tor vectors a1(X) = (1, X, 2X2, 0) and a2(X) =
(1, X + X2, 1, X + 2X2). It is easy to verify
that φ(C) is self-dual with respect to the ◦-inner
product. And a1(X) and a2(X) are generator
polynomials of C.

IV. THE RINGS R2(Z2,m) AND R4(Z4,m)

When m is an odd integer > 1, upon using the
CRT for polynomials, we see that the ring R2 =
R2(Z2,m) = Z2[X]/(Xm − 1) is never a finite
field, and that R2 is a direct product of finite fields.
The ring R4 = R4(Z4,m) = Z4[X]/(Xm − 1) is
not a local ring, and R4 is a direct product of local
rings. The following background material can be
found in [26].

Under the latter assumption, the polynomial
Xm−1 factors completely into distinct irreducible
factors in Z4[X], so by Hensel’s lifting, we may
write Xm − 1 ∈ Z4[X] as

Xm − 1 = f1f2 . . . fr,

where fj are distinct basic irreducible polynomi-
als. This product is unique in the sense that, if
Xm − 1 = f ′1f

′
2 . . . f

′
r′ is another decomposition

into basic irreducible polynomials, then r = r′

and, after suitable renumbering of the f ′,j s, we
have that fj is an associate of f ′j for each 1 ≤
j ≤ r. The two sides of the above equation are
reciprocal.

Xm − 1 = −f∗1 f∗2 . . . f∗r .
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If f is a basic irreducible polynomial, so is f∗.
By the uniqueness of the decomposition of a
polynomial into basic irreducible factors, we can
now write

Xm − 1 = g1 . . . gsh1h
∗
1 . . . hth

∗
t , (1)

where g1, . . . , gs are those f ,js that are associates
to their own reciprocals, and h1, h∗1, . . . , ht, h

∗
t are

the remaining f∗j s grouped in pairs. Therefore, let
fi = fi (mod 2), then the polynomial Xm−1 can
be decomposed into the following form in Z2[X]

Xm − 1 = f1 f2 . . . fr.

By (1), we have

Xm − 1 = g1 . . . gsh1 h∗1 . . . ht h
∗
t ,

where g1, . . . , gs are associates to their own re-
ciprocals, hj and h∗j are reciprocal. Consequently,
we may now write

R4 =
Z4[X]

(Xm − 1)
=

(
s⊕
i=1

Z4[X]

(gi)

)
⊕ t⊕

j=1

(
Z4[X]

(hj)
⊕ Z4[X]

(h∗j )

) ,

(2)

R2 =
Z2[X]

(Xm − 1)
=

(
s⊕
i=1

Z2[X]

(gi)

)
⊕ t⊕

j=1

(
Z2[X]

(hj)
⊕ Z2[X]

(h∗j )

) .

(3)

The direct sum on the right-hand side is endowed
with the coordinate-wise addition and multiplica-
tion.

For simplicity of notation, whenever m is
fixed, we denote Z4[X]/(gi) by Gi, Z4[X]/(hj)
by H ′j , Z4[X]/(h∗j ) by H ′′j , Z2[X]/(gi) by Gi,
Z2[X]/(hj) by H ′j , and Z2[X]/(h∗j ) by H ′′j . It
follows from the above equations that

Rl44 =

(
s⊕
i=1

Gl4i

)
⊕

 t⊕
j=1

(
H ′j

l4 ⊕H ′′j
l4
) ,

Rl22 =

(
s⊕
i=1

Gi
l2

)
⊕

 t⊕
j=1

(
H ′j

l2 ⊕H ′′j
l2
) .

Then

Rl22 ×R
l4
4 =

(
s⊕
i=1

(
Gi

l2 ×Gil4
))
⊕ t⊕

j=1

((
H ′j

l2 ×H ′j
l4
)
⊕
(
H ′′j

l2 ×H ′′j
l4
)) .

(4)

In particular, every R2R4-additive code C can be
decomposed as the direct sum

C =

(
s⊕
i=1

Ci

)
⊕

 t⊕
j=1

(
C ′j ⊕ C ′′j

) , (5)

where, for each 1 ≤ i ≤ s, Ci is a GiGi-additive
code, for each 1 ≤ j ≤ t, C ′j is a H ′jH

′
j-additive

code and C ′′j is a H ′′j H
′′
j -additive code.

Every element of R4 (resp. R2) may be writ-
ten as u(X) (resp. v(X)) for some polynomial
u(X) ∈ Z4[X] (resp. v(X) ∈ Z2[X]). The
decomposition of R4 (resp. R2) shows that u(X)
(resp. v(X)) may also be written as an (s + 2t)-
tuple

u(X) = (u1(X), . . . , us(X),

u′1(X), u′′1(X), . . . , u′t(X), u′′t (X)),

v(X) = (v1(X), . . . , vs(X),

v′1(X), v′′1 (X), . . . , v′t(X), v′′t (X)),

where ui(X) ∈ Gi, vi(X) ∈ Gi (1 ≤ i ≤ s),
u′j(X) ∈ H ′j , v′j(X) ∈ H ′j and u′′j (X) ∈
H ′′j , v

′′
j (X) ∈ H ′′j (1 ≤ j ≤ t). Of course, the

ui, u
′
j , u
′′
j (resp. vi, v′j , v

′′
j ) may also be considered

as polynomials in Z4[X] (resp. Z2[X]).
For any element r ∈ R4 (resp. R2), we have

earlier defined its “conjugate” r̃, induced by the
map X 7→ X−1 in R4 (resp. R2). Suppose that r,
expressed in terms of the decomposition (2) (resp.
(3)), is given by

r = (r1, . . . , rs, r
′
1, r
′′
1 , . . . , r

′
t, r
′′
t ),

where ri ∈ Gi (resp. Gi) (1 ≤ i ≤ s), r′j ∈ H ′j
(resp. H ′j) and r′′j ∈ H ′′j (resp. H ′′j ) (1 ≤ j ≤ t).
We now describe decomposition of r̃.

We note that, for a polynomial f ∈ Z4[X], f |
Xm − 1 (resp. f ∈ Z2[X], f | Xm − 1),
the quotients Z4[X]/(f) (resp. Z2[X]/(f)) and
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Z4[X]/(f∗) (resp. Z2[X]/(f∗)) are isomorphic as
rings. The isomorphism is given by

Z4[X]

(f)
→ Z4[X]

(f∗)
, u(X)+(f) 7→ u(X−1)+(f∗),

Z2[X]

(f)
→ Z2[X]

(f∗)
, v(X)+(f) 7→ v(X−1)+(f∗).

Here, the symbol X−1 makes sense. In fact, it can
be considered as Xm−1, since f, f∗, f , f∗ divide
Xm − 1. Therefore, the element r̃ can now be
expressed as

r̃ = (r̃1, . . . , r̃s, r
′′
1 , r
′
1, . . . , r

′′
t , r
′
t).

When f and f∗ are associates, for vec-
tors u = (u0, . . . , ul2−1, u

′
0, . . . , u

′
l4−1), v =

(v0, . . . , vl2−1, v
′
0, . . . , v

′
l4−1) ∈ (Z2[X]/(f))l2 ×

(Z4[X]/(f))l4 , we define the Hermitian inner
product on (Z2[X]/(f))l2 × (Z4[X]/(f))l4 to be

〈u, v〉 =
l2−1∑
i=0

2uiṽi +

l4−1∑
j=0

u′j ṽ
′
j (mod f).

Proposition IV.1. Let C be a R2R4-additive
code and a, b ∈ C ⊂ Rl22 × Rl44 and write
a = (a0, a1, . . . , al2−1, c0, c1, . . . , cl4−1) and b =
(b0, b1, . . . , bl2−1, d0, d1, . . . , dl4−1). Decompos-
ing each ai, bi, cj , dj , we write

ai = (ai1, . . . , ais, a
′
i1, a

′′
i1, . . . , a

′
it, a

′′
it),

cj = (cj1, . . . , cjs, c
′
j1, c

′′
j1, . . . , c

′
jt, c

′′
jt),

bi = (bi1, . . . , bis, b
′
i1, b

′′
i1, . . . , b

′
it, b
′′
it),

dj = (dj1, . . . , djs, d
′
j1, d

′′
j1, . . . , d

′
jt, d

′′
jt),

where aik, bik ∈ Gk, a′ik′ , b′ik′ ∈ H ′k′ , a′′ik′′ , b′′ik′′ ∈
H ′′k′′ , cjr, djr ∈ Gr, c′jr′ , d′jr′ ∈ G′r′ , c′′jr′′ , d′′jr′′ ∈
G′′r′′ . Let b̃i(X) = bi(X−1), d̃j(X) = dj(X−1).
Then a ◦ b = 0 if and only if

l2−1∑
i=0

2air b̃ir +

l4−1∑
j=0

cjrd̃jr = 0 (1 ≤ r ≤ s)

and
l2−1∑
i=0

2a′ikb
′′
ik +

l4−1∑
j=0

c′jkd
′′
jk = 0,

l2−1∑
i=0

2a′′ikb
′
ik +

l4−1∑
j=0

c′′jkd
′
jk = 0 (1 ≤ k ≤ t).

Proof:

a ◦ b

=

l2−1∑
i=0

2aiXm−1−deg(bi)b∗i +

l4−1∑
j=0

cjXm−1−deg(dj)d∗j

=Xm−1

l2−1∑
i=0

2aib̃i

+Xm−1

l4−1∑
j=0

cj d̃j


=Xm−1

l2−1∑
i=0

2ai1b̃i1 +

l4−1∑
j=0

cj1d̃j1, . . . ,

l2−1∑
i=0

2aisb̃is +

l4−1∑
j=0

cjsd̃js,

l2−1∑
i=0

2a′i1b
′′
i1 +

l4−1∑
j=0

c′j1d
′′
j1,

l2−1∑
i=0

2a′′i1b
′
i1 +

l4−1∑
j=0

c′′j1d
′
j1, . . . ,

l2−1∑
i=0

2a′itb
′′
it +

l4−1∑
j=0

c′jtd
′′
jt,

l2−1∑
i=0

2a′′itb
′
it +

l4−1∑
j=0

c′′jtd
′
jt

 .

The result follows.

Theorem IV.2. A R2R4-additive code C with
C ⊂ Rl22 × R

l4
4 the CRT decomposition of which

is as in (4), it is self-dual with respect to the
◦-inner product, or equivalently, a Z2Z4-additive
quasi-cyclic code of index (l2, l4) is self-dual with
respect to the standard inner product, if and only
if

C =

(
s⊕
i=1

Ci

)
⊕

 t⊕
j=1

(
C ′j ⊕ (C ′j)

⊥) ,

where, for 1 ≤ i ≤ s, Ci is a self-dual GiGi-
additive code (with respect to the Hermitian inner
product), for 1 ≤ j ≤ t, C ′j is a H ′jH

′
j-additive

code and (C ′j)
⊥ is its dual with respect to the

standard inner product.

Proof: By Proposition IV.1, we have that C
is self-dual with respect to the ◦-inner product,
if and only if, Ci is self-dual with respect to the
Hermitian inner product and C ′′j is dual of C ′j with
respect to the standard inner product.

Example IV.3. Let m = 3, l2 = l4 = 2, X3−1 =
(X − 1)(X2 +X +1) in Z4[X], according to the
CRT decomposition,

R2
2 ×R2

4 =

(
Z2[X]

(X3 − 1)

)2

×
(

Z4[X]

(X3 − 1)

)2

=
(
G1

2 ×G2
1

)
⊕
(
G2

2 ×G2
2

)
,
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where G1 = Z2[X]
(X−1)

∼= Z2, G1 = Z4[X]
(X−1)

∼=
Z4, G2 = Z2[X]

(X2+X+1) , G2 = Z4[X]
(X2+X+1) .

The generator vectors of φ(C) in Example III.4
are a1(X) = (1, X, 2X2, 0) and a2(X) = (1, X+
X2, 1, X + 2X2) ∈ R2

2 × R2
4. By (4), we have

a1(X) = (1, X, 2X2, 0) = (1, 1, 2, 0, 1, X, 2 +
2X, 0), a2(X) = (1, X + X2, 1, X + 2X2) =

(1, 0, 1, 3, 1, 1, 1, 2+3X) ∈ (G1
2×G2

1)⊕ (G2
2×

G2
2). By (5), let C1 be Z4[X]-submodule of

G1
2 × G2

1 with generator vectors (1, 1, 2, 0) and
(1, 0, 1, 3), then C1 is a self-dual Z2Z4-additive
code with respect to the standard inner product
or the Hermitian inner product. Let C2 be Z4[X]-
submodule of G2

2 × G2
2 with generator vectors

(1, X, 2 + 2X, 0) and (1, 1, 1, 2 + 3X), then C2

is a self-dual G2G2-additive code with respect to
the Hermitian inner product.

A similar characterization for ACD-ness is as
follows.

Theorem IV.4. A R2R4-additive code C with
C ⊂ Rl22 × R

l4
4 the CRT decomposition of which

is as in (4). Then C is ◦-ACD if C ∩C⊥◦ = {0},
or equivalently, a Z2Z4-additive quasi-cyclic code
of index (l2, l4) is standard ACD, if and only if Ci
is Hermitian ACD, C ′j and C ′′j are standard ACD,
that is, Ci ∩ C⊥H

i = {0}, C ′j ∩ C ′j
⊥

= {0}, and
C ′′j ∩ C ′′j

⊥
= {0}, where 1 ≤ i ≤ s, 1 ≤ j ≤ t.

Proof: Through the previous description, the
code C⊥◦ is of the form

C⊥◦ =

(
s⊕
i=1

C⊥H
i

)
⊕

 t⊕
j=1

(
C ′j
⊥ ⊕ C ′′j

⊥
) .

Then

C ∩ C⊥◦ =

(
s⊕
i=1

(
Ci ∩ C⊥H

i

))
⊕ t⊕

j=1

(
(C ′j ∩ C ′j

⊥
)⊕ (C ′′j ∩ C ′′j

⊥
)
) .

The left hand side of that equality reduces to the
null space, iff each summand on the right hand
side does. The result follows.

V. 1-GENERATOR Z2Z4-ADDITIVE
QUASI-CYCLIC CODES

Let m be a positive odd integer, let
ordm(2) denote the order of 2 modulo m,
and let l2, l4 be positive integers such that
gcd(l2, ordm(2)) = gcd(l4, ordm(2)) = 1.
Let a(X) ∈ Rl22 × Rl44 , a(X) =
(a0(X), . . . , al2−1(X), a′0(X), . . . , a′l4−1(X)),
then the module

M = R4a(X) = {α(X)a(X) = (α(X)a0(X),

. . . , α(X)al2−1(X), α(X)a′0(X),

. . . , α(X)a′l4−1(X)) | α(X) ∈ R4}

is a 1-generator Z2Z4-additive quasi-cyclic code
with the generator a(X), where α(X) =
α(X) (mod 2). Define

annR4
M = {α(X) ∈ R4|α(X)a(X) = 0},

then annR4M is an ideal of R4, and called the
annihilator of M .

Let I2 = (a0(X), a1(X), . . . , al2−1(X))R2

be the ideal generated by
a0(X), a1(X), . . . , al2−1(X) in R2, and
I4 = (a′0(X), a′1(X), . . . , a′l4−1(X))R4 be the
ideal generated by a′0(X), a′1(X), . . . , a′l4−1(X)
in R4. Let

annR2
I2 = {α(X) ∈ R2 | α(X)ai(X) = 0,

0 ≤ i ≤ l2 − 1},
annR4

I2 = {α(X) ∈ R4 | α(X)ai(X) = 0,

0 ≤ i ≤ l2 − 1},
annR4

I4 = {α(X) ∈ R4 | α(X)a′i(X) = 0,

0 ≤ i ≤ l4 − 1},

then there exist monic polynomials
f2(X), g2(X), h2(X), f4(X), g4(X), h4(X) ∈
Z4[X] such that

f2(X)g2(X)h2(X) = xm − 1,

f4(X)g4(X)h4(X) = xm − 1,

and

I2 = (h2(X))R2
,

I4 = (g4(X)h4(X), 2f4(X)h4(X))R4
,

annR2
I2 = (f2(X)g2(X))R2

,

annR4
I2 = (f2(X)g2(X), 2f2(X)h2(X))R4

.
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By Proposition 1 in [11], we have

annR4I4 = (f4(X)g4(X), 2f4(X)h4(X))R4 .

Obviously, there are f(X), g(X), h(X) ∈ R4, and
f(X)g(X)h(X) = Xm − 1. such that

annR4M = annR4I2 ∩ annR4I4

= (f(X)g(X), 2f(X)h(X)),

Corollary V.1. The type of the 1-generator Z2Z4-
additive quasi-cyclic code M = R4a(X) is
4deg(f(X))2deg(g(X)).

Proof: Since α(X) 7→ α(X)a(X) (for all
α(X) ∈ R4) is a surjective R4-module
homomorphism from R4 onto R4a(X)
with kernel annM . According to the
fundamental theorem of ring homomorphism,
R4/annM ∼= R4a(X). Since |annM | =
4deg h(X)2deg g(X), |M | = |R4a(X)| =
|R4/annM | = 4m−deg h(X)−deg g(X)2deg g(X) =
4deg f(X)2deg g(X).

Lemma V.2. Let a(X) = (a0(X), . . . , al2−1(X),
a′0(X), . . . , a′l4−1(X)) ∈ Rl22 × Rl44 , and
M = R4a(X) be a 1-generator Z2Z4-
additive quasi-cyclic code. Let I2 and I4
be given above. Then for any b(X) =
(b0(X), . . . , bl2−1(X), b′0(X), . . . , b′l4−1(X)) ∈
Rl22 × Rl44 , R4a(X) = R4b(X) if and only if
b(X) = p(X)a(X), where p(X) is a polynomial
in Z4[X] such that gcd(p(X), f2(X)g2(X)) = 1
and gcd(p(X), f4(X)g4(X)) = 1.

Proof: We can prove the results by consider-
ing [11, Proposition 3] and [20, Lemma 2].

In the following, we enumerate 1-
generator Z2Z4-additive quasi-cyclic codes.
Let f(X), g(X), h(X) ∈ Z4[X] be given as
above, and let us factorize f(X), g(X) in Z4[X].
Assume that

f(X) = f1(X)f2(X) . . . fs(X),

g(X) = g1(X)g2(x) . . . gt(X),

where fi(X)’s and gj(X)’s are pairwise co-
prime basic irreducible polynomials over Z4, and
deg fi(X) = ei,deg gj(X) = dj , respectively.
Then we can factorize f(X), g(X) in Z2[X].

f(X) = f1(X)f2(X) . . . fs(X),

g(X) = g1(X)g2(X) . . . gt(X),

where fi(X)’s and gj(X)’s are distinct irre-
ducible polynomials over Z2, and deg fi(X) =
ei,deg gj(X) = dj , respectively.

Theorem V.3. The number of all distinct 1-
generator Z2Z4-additive quasi-cyclic codes with
annihilator (f(X)g(X), 2f(X)h(X)) equals

s∏
i=1

4l4ei − 2l4ei

4ei − 2ei
·2
l2ei − 1

2ei − 1

t∏
j=1

2l4dj−1

2dj − 1
·2
l2dj − 1

2dj − 1
.

Proof: When the annihilator
(f(X)g(X), 2f(X)h(X)) is restricted to R2, it’s
a 1-generator quasi-cyclic code with parity-check
polynomial f(X)g(X), by Theorem 12 in [11],

Li =
2l2ei − 1

2ei − 1
(1 ≤ i ≤ s),

L′j =
2l2dj − 1

2dj − 1
(1 ≤ j ≤ t).

Hence, there are
∏s
i=1 Li

∏t
j=1 L

′
j binary

1-generator quasi-cyclic codes with parity-
check polynomial f(X)g(X). When the
annihilator (f(X)g(X), 2f(X)h(X)) is
restricted to R4, it’s a quaternary 1-generator
quasi-cyclic code with the annihilator
(f(X)g(X), 2f(X)h(X)), by Theorem 2 in
[20], there are

∏s
i=1

4l4ei−2l4ei

4ei−2ei
∏t
j=1

2l4dj−1
2dj−1

quaternary 1-generator quasi-cyclic codes with the
annihilator (f(X)g(X), 2f(X)h(X)). Because
the direct sum of two quasi-cyclic codes is also a
quasi-cyclic code, this completes the proof.

Example V.4. Let m = 7, l2 = 2, l4 = 4, then
X7 − 1 can be factored into a product of basic
irreducible polynomials as

X7 − 1 = (X − 1)(X3+2X2 +X − 1)

(X3 −X2 + 2X − 1)

in Z4[X]. Let f(X) = X−1, g(X) = X3+2X2+
X−1, h(X) = X3−X2+2X−1. Now we con-
sider 1-generator Z2Z4-additive quasi-cyclic codes
with annihilator (f(X)g(X), 2f(X)h(X))R4 , so
in the language of Theorem V.3, we have

s = t = 1, e1 = 1, d1 = 3.

According to Theorem V.3, there are

44 − 24

4− 2
× 22 − 1

2− 1
× 212 − 1

23 − 1
× 26 − 1

23 − 1
= 1895400
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1-generator Z2Z4-additive quasi-cyclic codes with
annihilator (f(X)g(X), 2f(X)h(X)).

VI. EXAMPLES OF Z2Z4-ADDITIVE
QUASI-CYCLIC CODES

We define a Gray map ϕ : Zr2 × Zs4 → Zr+2s
2

such that ϕ(u) = ϕ(u|u′) = (u|ϕ4(u
′)), where

ϕ4 is the usual quaternary Gray map defined
by ϕ4(0) = (0, 0), ϕ4(1) = (0, 1), ϕ4(2) =
(1, 1), ϕ4(3) = (1, 0). Next, we give some codes
whose Gray images are optimal.

Lemma VI.1. [13] The Gray image C′ = ϕ(C) of
a Z2Z4-additive code C is linear if and only if

for all u = (u|u′), v =(v|v′) ∈ C
⇒ (0, 2u′ ∗ v′) ∈ C.

Example VI.2. Let C be a Z2Z4-additive quasi-
cyclic code with the generator matrix

G =


10 01 11 10 01 11
11 10 01 11 10 01
11 10 00 02 00 20
00 11 10 20 02 00
10 00 11 00 20 02

 ,

By Lemma VI.1, ϕ(C) is a nonlinear binary code
with parameters (18, 27, 7). ϕ(C) is best-known,
by [28].

Example VI.3. Let C be a Z2Z4-additive quasi-
cyclic code with generator matrix

G =

 10 01 11 2 · · · 2 2 · · · 2 0 · · · 0
11 10 01 0 · · · 0︸ ︷︷ ︸

l

2 · · · 2︸ ︷︷ ︸
l

2 · · · 2︸ ︷︷ ︸
l

 .

Thus l2 = 2, l4 = l, and the genera-
tor vector of C is a(X) = (1 + X2, X +
X2, 2 + 2X, · · · , 2 + 2X︸ ︷︷ ︸

l

). By Lemma VI.1, ϕ(C)

is a linear binary code with parameters [6l +
6, 2, 4l + 4], it can be checked that it meets the
Griesmer bound [19, chap.17, section 5].

Example VI.4. Let C be a Z2Z4-additive quasi-
cyclic code with generator matrix G is of the form

11 10 00 00 3 1 3 3 1 1 1
00 11 10 00 1 3 1 3 3 1 1
00 00 11 10 1 1 3 1 3 3 1
10 00 00 11 1 1 1 3 1 3 3

 .

Table 1: Optimal binary codes derived from Z2Z4-additive
quasi-cyclic codes with length 10.

Generator Parameters Griesmer Bound
(11|3333) [10, 2, 6] 6
(1 0|33 31) [10, 3, 5] 5
(11|33 22) [10, 4, 4] 4
(00|03 12)
(11|33 11) [10, 5, 4] 4
(0 0|01 32)
(1 0|33 31) [10, 6, 3] 3
(0 0|00 21)
(1 0|33 33) [10, 7, 2] 2
(00|00 11)
(11|33 32) [10, 8, 2] 2

Table 2: Optimal binary codes derived from Z2Z4-additive
quasi-cyclic codes with length 14.

Generator Parameters Griesmer Bound
(1 0|222 200) [14, 2, 9] 9
(11|332 310) [14, 3, 8] 8
(11|22 20 00) [14, 3, 8] 8
(0 0|001 112)
(1 0|313 311) [14, 6, 5] 5
(0 0|000 112)
(1 0|210 111) [14, 7, 4] 4

Thus l2 = 2, l4 = 1, and the generator vector of C
is a(X) = (1 + X, 1, 3 + X + 3X2 + 3X3 +
X4 + X5 + X6). By Lemma VI.1, ϕ(C) is a
linear binary code with parameters [22, 5, 10], it
can be checked that it is optimal with respect to
the Griesmer bound [19, chap.17, section 5].

Example VI.5. In the following Tables 1, 2 and 3,
we collect examples of Z2Z4-additive quasi-cyclic
codes with linear Gray images that is optimal
with respect to the Griesmer bound for length-
s n = 10, 14, 18, where "Parameters" denotes
"parameters of Gray images", "Griesmer Bound"
denotes "upper bound with respect to the Griesmer
bound" [19, chap.17, section 5].

Table 3: Optimal binary codes derived from Z2Z4-additive
quasi-cyclic codes with length 18.

Generator Parameters Griesmer Bound
(00 11 11|00 22 22) [18, 2, 12] 12
(01 01 11|00 02 22) [18, 3, 10] 10
(11|00 33 22 33) [18, 4, 8] 8
(11|01 23 23 23) [18, 5, 8] 8
(11|01 22 32 33) [18, 6, 8] 8



10

VII. CONCLUSION

In this article, we have considered quasi-cyclic
codes over a specific mixed alphabet. We have
established a structure theory for these codes, by
using the CRT, and derived from that theory cri-
teria for self-duality and LCDness. A polynomial
formulation has been given for the one-generator
subclass, yielding exact enumeration results.

Many generalizations are possible, by consider-
ing as alphabet pair a ring and one of its extension-
s; for instance Z4 and Z4[u] with u2 = 0, [15],
or other pairs of rings [3], [4], [5], [9]. In another
direction, the concept of quasi-cyclic codes could
be extended to so-called generalized quasi-cyclic
codes or quasi-abelian codes, or quasi-polycyclic
codes [2].

Define a Z2Z4-code to be nondegenerate if it
is neither a binary code, nor a Z4-code. An inter-
esting open problem is to know if nondegenerate
Z2Z4-additive quasi-cyclic codes are asymptoti-
cally good.
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