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Abstract

We consider the propagation of equatorial waves of small amplitude, in a flow with an
underlying non-uniform current. Without making the too restrictive rigid-lid approx-
imation, by exploiting the available Hamiltonian structure of the problem, we derive
the dispersion relation for the propagation of coupled long-waves: a surface wave and
an internal wave. Also, we investigate the above-mentioned model of wave-current
interactions in the general case with arbitrary vorticities.
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1 Introduction

The propagation of ocean waves in equatorial regions presents great physical relevance and
offers many mathematical challenges. For example, the equatorial region of the Pacific
extends over 13000 km (about one third of its total length) and it is responsible for one
of the most important climate phenomena: the El Nino events, starting every few years
and having a global impact several months afterwards (see the discussion in [12]). More-
over, the ocean flow in this region is characterized by underlying depth-varying currents
(westward at the surface and eastward at about 100-200 m depth, while at great depths
the water is almost still – see [1]). A further complication is the fact that equatorial ocean
regions present the strongest stratification, with a thermocline that is quite well-defined,
separating two layers of practically constant density. The study of wave-current interac-
tions in equatorial regions is of great current interest (see [3], [4], [5], [11] and references
therein). As we noted above the El Nino events is one of the most important climate phe-
nomena. In the present paper we consider the model of wave-current interactions (see [3])
with parameters which correspond to El Nino case. Also, we investigate the general case
with arbitrary vorticities (the case of only non-zero constant vorticity in the near-surface
homogeneous layer have been considered in [15]).

c© The author(s). Distributed under a Creative Commons Attribution 4.0 International License
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2 Preliminaries

Near the Equator the Coriolis force acts like a waveguide, inducing the azimuthal prop-
agation of waves and currents, and we can therefore investigate two-dimensional flows
in the f -plane approximation. Following the setting of the recent paper [3], we consider
equations of motion of the fluid in the domain bounded by flat bed z = −h from below
and with the upper boundary z = h1 + η1(x, t) which is a free surface of elevation (where
h ≈ 8 and h1 ≈ 0.24 are some non-dimensional constants, which reflect the fact that the
near-surface layer is about 100-200 m deep, the average depth of the Pacific ocean near
the Equator being about 4km). The thermocline z = η(x, t) separates the two layers of
different constant densities in the domain under consideration. Thus, the thermocline
divides the domain into two parts: the deep (colder) layer

D(t) = {(x, z) : −h < z < η(x, t)}

and the relatively shallow near-surface layer

D1(t) = {(x, z) : η(x, t) < z < h1 + η1(x, t)} .

We consider an inviscid setting, in which the wind effects are captured by the wind-
drift near-surface current of constant vorticity (see the data in [10] for the reasonable
assumption that wind-generated currents are appropiately described by the assumption of
constant vorticity, and note that non-zero vorticity means non-uniform currents – see the
considerations in [7]). Therefore, above the thermocline, in the region D1(t) the equations
of motion are Euler’s equations

u1,t + u1u1,x +$1u1,z + ω$1 = −px

$1,t + u1$1,x +$1$1,z − ωu1 = −pz − g,

where (u1, $1) is the velocity field in upper region, p is the pressure, ω = 0, 15 is the
non-dimensional constant that captures the Coriolis effect due to the Earth’s rotation and
g ≈ 2 × 104 is the non-dimensional gravity. Taking into account the equations of mass
conservation (for constant density) and the vorticity distribution typical of mixing in the
near-surface layer, we have

u1,x +$1,z = 0

u1,z −$1,x = γ1,

where γ1 < 0 is the vorticity (constant in the near-surface layer, the sign corresponding
to the westward trade winds in the equatorial Pacific, for an eastward orientation of the
horizontal axis, as in the paper [3]).

Denoting with (u,$) the velocity field in lower region D(t) the equations of motion are
again Euler’s equations

ut + uux +$uz + ω$ = − 1

1 + r
px,

$t + u$x +$$z − ωu = − 1

1 + r
pz − g,
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with r � 1 a constant that takes into account the stable density stratification (the less
dense, warmer, fluid overlying the abyssal colder fluid). Below the thermocline, in the
region D(t), the equations of mass conservation and vorticity distribution can be written
as follows:

ux +$z = 0,

uz −$x = γ,

where γ > is the vorticity, constant in the region below the thermocline (thus capturing
the eastward orientation of the Equatorial Undercurrent, which occurs practically from
about 100-200 m depth to 500m depth: see the data provided in [4] and [5].

We now present the relevant boundary conditions. Firstly, at the free surface z =
h1 + η1(x, t) the pressure is the constant atmospheric pressure, so that we complement
the above-metioned equations with the following the dynamic and kinematic boundary
conditions

$1 = η1,t + u1η1,x on z = h1 + η1(x, t),

$1 = ηt + u1ηx on z = η(x, t),

$ = ηt + uηx on z = η(x, t),

$ = 0 on z = −h.

Besides, as noted in [3], the available field data for equatorial flows suggests a continuous
transition between the two layers (velocity discontinuities across the thermocline are not
detected in measurements), so that that it is required that a tangential velocity balance
holds:

$1ηx + u1 = $ηx + u on z = η(x, t) ,

in addition to the condition that the pressure is continuous across the thermocline z =
η(x, t).

The complicated nature of the governing equations described above is to some degree
compensated by the fact that they have a Hamiltonian structure (see the discussion in [3]).
We recall that Zakharov’s discovery [17] of the Hamiltonian formulation for irrotational
deep-water gravity waves represented an important advance, enabling in-depth studies (see
the discussion in [8]). Subsequently Hamiltonian formulations for irrotational internal
waves were provided in [9], for waves with constant vorticity [16] and for wave-current
interactions in stratified rotational flows with piecewise constant vorticity (see [6] and
[3]). In all these results, the key idea is that for harmonic functions one reduce the two-
dimensions to one (on the boundary) by means of Dirichlet-Neumann operators (scalar
with no stratification, but if there is a thermocline, one needs a coupling of a scalar and
a matrix Dirichlet-Neumann operator – see the discussion in [9], [6] and [3]). For this
to be analytically tractable, one needs the assumption of irrotational flow (as in [9]), or
of constant vorticity (as in [6] and [3], where a nonlinear separation result was proved,
showing that, at the level of the nonlinear governing equations, wave-current interactions
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for flows with constant vorticity correspond to a harmonic wave on a non-uniform pure-
current background state). To take advantage of this feature, we define

Φ(x, t) = ϕ(x, η(x, t), t), Φ1(x, t) = ϕ1(x, η(x, t), t) ,

and
Φ2(x, t) = ϕ1(x, h1 + η1(x, t), t) ,

where ϕ in D(t) and ϕ1 in D1(t) are harmonic perturbed velocity potentials which are
defined as follows:{

u = ϕx + γ (z + h) and $ = ϕz in D(t),
u1 = ϕ1,x + γ1z + γh and $1 = ϕ1,z in D(t).

Then, let
u = (η, η1, ξ, ξ1)T ,

where the superscript denotes the transpose and

ξ = (1 + r) Φ− Φ1 , ξ1 = Φ2 ,

with a positive constant r (defined above; typically r = 10−3 – see [12]).
Using the Fourier transform

∧
f =

∫
R
f (x) e−ikxdx

for f in the Schwartz class S(R) in each component of u above-mentioned linearised equa-
tions of motion are transformed for any fixed k ∈ R into the linear autonomous system of
ordinary differential equations (see [3]):

∂t
∧
u (k, t) = M (k)

∧
u (k, t) , (1)

where

M(k) =

 −iγhk + iµkΘ (k) iµ1k sech (h1k) Θ (k) k2Θ (k) k2 sech (h1k) Θ (k)
iµk sech (h1k) Θ (k) −iΓ1k + iµ1k Θ1 (k) k2 sech (h1k) Θ (k) k2Θ1 (k)

Γ− µ2Θ (k) −µµ1 sech (h1k) Θ (k) −iγhk + iµkΘ (k) iµk sech (h1k) Θ (k)
−µµ1 sech (h1k) Θ (k) ωΓ1 − g − µ2

1Θ1 (k) iµ1k sech (h1k) Θ (k) −iΓ1k + iµ1kΘ1 (k)


and

µ = (1+r)γ−γ1+rω
2 , µ1 = γ1+ω

2 ,

ω = 0, 15 , Γ = −r∧g , ∧
g = g − ωhγ,

Θ (k) = tanh(hk)
k[1+r+tanh(hk) tanh(h1k)] ,

Θ1 (k) = tanh(hk)+(1+r) tanh(h1k)
k[1+r+tanh(hk) tanh(h1k)] .

Here a fixed nondimensional value of k corresponds to a harmonic oscillation of the free
surface and/or of the thermocline of wavelength 1000π

|k| m. Therefore we have that the

unique solution to (1) with initial data

∧
u0 (k) =

∫
R
u0 (x) eikxdx,
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is
∧
u (k, t) = eM(k)t∧u0 (k)

for t ≥ 0. This solution corresponds, by means of the inverse Fourier transform, to the
solution

u (x, t) =
1

2π

∫
R
eM(k)t∧u0 (k) eikxdk

of the linearized problem under consideration, with initial data u0 ∈ S (R). Note that
the Schwartz class is good to describe localized waves, which arise as perturbations of a
pure-current background state with a flat free surface and a flat thermocline.

An eigenvalue with non-zero real part leads to instability due to growth in time (see
the discussion in [3]). On the other hand, to a purely imaginary eigenvalue

Λ(k) = −ikc with c ∈ R\{0}

of the 4 × 4 matrix M(k), with corresponding eigenvector b(k) 6= 0, we can associate the
oscillatory mode solution

eM(k)tb(k) = e−ikxb(k) .

Also, a purely imaginary eigenvalue Λ(k) = −ikc of M(k) corresponds to the fundamental
oscillation mode

eik(x−ct)b(k)

with frequency |k|2π , propagating at the constant speed c and the general solution of (1) is

a linear combination of solutions of the form tneΛ(k)tU , where n is a nonnegative integer,
U is a constant vector and Λ(k) is an eigenvalue of M(k) (see the discussion in [3]). This
way, the linear wave propagation is reduced to the study of the eigenvalues of the matrix
M(k).

Finding accurate estimate for the eigenvalues of M(k) turns out to be quite a challenge
(see [3] and [14]), but this is at the core of understanding the evolution of wave packets at
the surface and along the thermocline. In this context, it is worth to note that, Λ(k) ∈ C
is an eigenvalue of M(k) with eigenvector (v1, v2, v3, v4)T if and only if

λ(k) =
iΛ(k)

k

is an eigenvalue with corresponding eigenvector (v1, v2, iv3, iv4)T of the real matrix

R (k) =


γh− µΘ (k) −µ1 sech (h1k) Θ (k) Θ (k) sech (h1k) Θ (k)

−µ sech (h1k) Θ (k) Γ1 − µ1 Θ1 (k) sech (h1k) Θ (k) Θ1 (k)
−Γ + µ2Θ (k) µµ1 sech (h1k) Θ (k) γh− µΘ (k) −µ sech (h1k) Θ (k)

µµ1 sech (h1k) Θ (k) −ωΓ1 + g + µ2
1Θ1 (k) −µ1 sech (h1k) Θ (k) Γ1 − µ1Θ1 (k)

 .

3 The propagation of linear waves in the El Nino setting

A careful consideration of the field data reveals that h1/h � 1 typically. Moreover,
during an El Nino event the trade winds in the equatorial mid-Pacific loose considerably
in intensity and, as a consequence, the depth of the thermocline diminishes a great deal
throughout the Pacific. These physical consideration motivate us to investigate the linear
problem in the limiting case h1 → 0.

The following lemma holds.
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Lemma 1. In the limiting case h1 → 0 we have that the matrix R(k) has only real
eigenvalues, given explicitly by:

λ1,2 = γh, λ3,4 = γh− (µ1Θ + µΘ)±
√

Θ2 (µ1 + µ)2 + Θ
∧
g (1 + r).

Proof. To investigate roots of the characteristic polynomial

p(λ) = det(R− λI4) ,

we first perform two sets of operations to simplify its structure. Add the first row multiplied
by µ to the third row, and the second row multiplied by µ1 to the fourth row, and in the
outcome add the third column multiplied by µ to the first column and the fourth column
multiplied by µ1 to the second column to obtain a determinant expressed in terms of λ,
which corresponds to the wave speed relative to the maximum speed of the current, given

by
Λ
p (λ) =

∣∣∣∣∣∣∣∣
−X 0 Θ Θ

0 γ1h1 −X Θ Θ
−Γ− 2µX 0 −X 0

0
∧
g − 2µ1X 0 γ1h1 −X

∣∣∣∣∣∣∣∣ ,
where

h1 = 0, X = λ− γh, ∧
g = g − ωhγ, Γ = −r∧g.

Therefore, we have

Λ
p (λ) =

∣∣∣∣∣∣∣∣∣
−X 0 Θ Θ

0 −X Θ Θ

r
∧
g − 2µX 0 −X 0

0
∧
g − 2µ1X 0 −X

∣∣∣∣∣∣∣∣∣ =

X4 + (2µ1Θ + 2µΘ)X3 +
(
−Θ

∧
g − r∧gΘ

)
X2.

Now, it is easy to see that all the roots of the equation
Λ
p (λ) = 0 are real. Indeed, we

have

Λ
p (λ) = X4 + (2µ1Θ + 2µΘ)X3 +

(
−Θ

∧
g − r∧gΘ

)
X2 = 0

or (
X2 + (2µ1Θ + 2µΘ)X +

(
−Θ

∧
g − r∧gΘ

))
X2 = 0.

Consequently,(
λ− γh− (µ1Θ + µΘ) +

√
Θ2 (µ1 + µ)2 + Θ

∧
g (1 + r)

)
×(

λ− γh− (µ1Θ + µΘ)−
√

Θ2 (µ1 + µ)2 + Θ
∧
g (1 + r)

)
(λ− γh)2 = 0.

Therefore,

λ1,2 = γh− (µ1Θ + µΘ)±
√

Θ2 (µ1 + µ)2 + Θ
∧
g (1 + r), λ3,4 = γh.

�
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Taking into account that Θ = tanh(hk)
k(1+r) ,

∧
g = g − ωhγ (where g >> γhω) and µ1 + µ =

(1+r)(γ+ω)
2 we get

λ1,2 = γh− tanh (hk)

2k
(γ + ω)±

√
tanh2 (hk)

k2
(γ + ω)2 +

tanh (hk)

k
(g − ωhγ), (2)

λ3,4 = γh. (3)

Therefore, the matrix M(k) has the following purely imaginary eigenvalues

Λ1,2 = − ik
2

(
γh− tanh (hk)

2k
(γ + ω)

)
±ik

√
tanh2 (hk)

k2
(γ + ω)2 +

tanh (hk)

k
(g − ωhγ).

Λ3 = −ikγh.

which corresponding to oscillations with speeds given by formulas (2)− (3).

Thus, the previous considerations prove the main result.

Theorem 1. In an El Nino setting, the propagation of linear waves generated by equation
(1) is characterized by the fundamental oscillation modes propagating at the constant
speeds given by the formulas (2)− (3).

4 The propagation of linear waves for a case of non-zero
constant vorticities.

In [14] the model of wave-current interactions (see [3]) ) in the case of the absence of
vorticity has been considered. However, this permits a more detailed analysis, and then
the model with non-zero vorticities can be regarded as a perturbation of the the irrotational
setting. In this respect, the above-mentioned paper [14] and [15] where γ = 0 and γ1 6= 0,
are closely connected with general case and reasoning from here can be adapted to the
case with nonzero γ1 and γ if we replace λ with X = λ− γh (see Lemma 1 in [14]), taking
into account some technical details.

Thus, we can investigate the model with non-zero vorticities based on general scheme
of proofs from [14,15] with necessary references to the above-mentioned papers.

As we noted in Intoduction, Λ(k) ∈ C is an eigenvalue of M(k) with eigenvector

(v1, v2, v3, v4)T if and only if λ(k) = iΛ(k)
k is an eigenvalue with corresponding eigenvector

(v1, v2, iv3, iv4)T of the real matrix R (k). Moreover, the following leema holds (see [3],
page 28)

Lemma 2. The matrix M(k) has four distinct purely imaginary eigenvalues for 0 < |k| <
64.

Thus, we can investigate the model in the physically relevant regime 0 < |k| < 64,
with non-zero vorticities based on general scheme of proofs from [14, 15] with necessary
references to the above-mentioned papers.
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Lemma 3. The eigenvalues of R(k) for 0 < |k| < 64 satifies the following estimates:

|λi| ≤ (
16

k2
tanh2 (k (h+ h1)) + 2γ2

1h
2
1 − 8γ1h1µ1Θ1 + 2Θ1γ

2
1h1

+
4

k
(g − ωγh) tanh k (h+ h1)− 8µµ1Θ

tanh (h1k)

k
)1/2 + γh. (4)

Proof. To investigate roots of the characteristic polynomial p(λ) = det(R−λI4), we first
perform two sets of operations to simplify its structure. Add the first row multiplied by µ
to the third row, and the second row multiplied by µ1 to the fourth row, and in the outcome
add the third column multiplied by µ to the first column and the fourth column multiplied
by µ1 to the second column to obtain a determinant edxpressed in terms of X = λ− γh,
corresponding to the wave speed relative to the maximum speed of the

Λ
p (λ) =

∣∣∣∣∣∣∣∣
−X 0 Θ sΘ

0 γ1h1 −X sΘ Θ1

−Γ− 2µλ 0 −X 0

0
∧
g − 2µ1X 0 γ1h1 −X

∣∣∣∣∣∣∣∣ ,
where s = sech (h1k), Γ = rωγh− rg, ∧g = g + γ2

1h1 − ωγh.
We obtain:

X4 + (−2γ1h1 + 2µ1Θ1 + 2µΘ)X3 +

(γ2
1h

2
1 −Θ1γ

2
1h1 −Θ1 (g − ωγh)− 4µΘγ1h1

+4µµ1

(
ΘΘ1 − s2Θ2

)
− rΘ (g − ωγh))X2+

(2γ1h1rΘ (g − ωγh) + 2µΘγ2
1h

2
1

−2
(
rgµ1 + µg + µγ2

1h1 − rωγhµ1

) (
ΘΘ1 − s2Θ2

)
)X−

γ2
1h

2
1rΘ (g − ωγh) + (rg2 + rγ2

1h1 (g − ωγh)

−rωγhg)
(
ΘΘ1 − s2Θ2

)
= 0. (5)

In view of above-mentioned Lemma 2 (see [3] ) all the roots of this equation are real.
Taking into account coefficients of equation (5) we have following equalities:

X1 +X2 +X3 +X4 = −2γ1h1 + 2µ1Θ1 + 2µΘ, (6)

X1 (X2 +X3 +X4) +X2 (X3 +X4) +X3X4 =

γ2
1h

2
1 −Θ1γ

2
1h1 −Θ1 (g − ωγh)− 4µΘγ1h1

+4µµ1Θ
tanh (h1k)

k
− rΘ (g − ωγh) , (7)

where Xi are roots of the equation (5). Thus, by squaring the right-hand and left-hand
sides of equation (6) and using equation (7) multiplied by 2, carrying same manipulations
as in papers [14, 15] we obtain the validity of Lemma 3 and since the further proof of
this fact repeats almost word for word the corresponding proof from the above-mentioned
papers, we omit the further details. �
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Remark. From physical point of view γ1 is a negative constant (see [3], page 11) greater
than 1 ( approximately equal to -12.5) and since r < 1 (and therefore µ1 = γ1+r

2 < 0 ) we
get that term 8γ1h1µ1Θ1 is a positive. Thus, formula (4) acquires a more simpler form:

|λi| ≤ (
16

k2
tanh2 (k (h+ h1)) + 2γ2

1h
2
1 + 2Θ1γ

2
1h1

+
4

k
(g − ωγh) tanh k (h+ h1)− 8µµ1Θ

tanh (h1k)

k
)1/2 + γh. (8)

Besides, to obtain roots of the equation we also can use the following standard substitution

X = δ − −γ1h1 + µ1Θ1 + µΘ

2
.

and the problem boils down to the consideration of the following equation

δ4 + pδ2 + qδ + l = 0, (9)

where

p = γ2
1h

2
1 −Θ1γ

2
1h1 −Θ1 (g − ωγh)− 4µΘγ1h1 − rΘ (g − ωγh) +

4µµ1Θ tanh(h1k)
k − 3

2 (γ1h1 − µ1Θ1 − µΘ)2 ;

q = 2γ1h1rΘ (g − ωγh) + 2µΘγ2
1h

2
1 − 2

(
rgµ1 + µg + µγ2

1h1 − rωγhµ1

)
×

Θ tanh(h1k)
k + (−γ1h1 + µ1Θ1 + µΘ)3 + (γ1h1 − µ1Θ1 − µΘ)×(

γ2
1h

2
1 −Θ1γ

2
1h1 −Θ1 (g − ωγh)− 4µΘγ1h1 + 4µµ1Θ tanh(h1k)

k − rΘ (g − ωγh)
)

;

l = 1
4 (γ1h1 − µ1Θ1 − µΘ)2 (γ2

1h
2
1 −Θ1γ

2
1h1 −Θ1 (g − ωγh)− 4µΘγ1h1+

4µµ1Θ tanh(h1k)
k − rΘ (g − ωγh)) + (γ1h1 − µ1Θ1 − µΘ) (γ1h1rΘ (g − ωγh) +

µΘγ2
1h

2
1 −

(
rgµ1 + µg + µγ2

1h1 − rωγhµ1

)
Θ tanh(h1k)

k )− 3
16 (γ1h1 − µ1Θ1 − µΘ)4−

γ2
1h

2
1rΘ (g − ωγh) +

(
g2 + γ2

1h1 (g − ωγh)− ωγhg
)
rΘ tanh(h1k)

k .

Following a procedure from the paper [14] under notations

p1 =
p2 − 4l

4
− 1

3
p2 = − 1

12
p2 − l,

q1 =
2

27
p3 − 1

3
p
p2 − 4l

4
− q2

8
= − 1

108
p3 +

1

3
pl − q2

8
,

d = −q1/

(√
−p1

3

)3

,
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Q =

(
1

3
p1

)3

+

(
1

2
q1

)2

=

(
− 1

12
p2 − l

)3

+

(
− 1

216
p3 +

1

6
pl − q2

16

)2

we consider the following three cases generated by equation y3 − 3y = d which is related
to resolvent cubic of the above-mentioned quartic equation (9):

i) Q < 0 (which corresponds to the case |d| < 2);
ii) Q = 0 (which corresponds to the case |d| = 2);
iii) Q > 0 (which corresponds to the case |d| > 2).
Then, by the similar manipulations as in [14] under condition p1 = − 1

12p
2 − l < 0, we

obtain that M(k) has the four disjoint purely imaginary eigenvalues:

Λ1,2 = − ik
2

(
√

2z̃ ∓

√
−2

(
p+ z̃ +

q√
2z̃

))
+

ik
−2γh− γ1h1 + µ1Θ1 + µΘ

2
, (10)

Λ3,4 = − ik
2

(
−
√

2z̃ ∓

√
−2

(
p+ z̃ − q√

2z̃

))
+

ik
−2γh− γ1h1 + µ1Θ1 + µΘ

2
, (11)

where z̃ = ỹ
√

1
36p

2 + 1
3 l−

1
3p and ỹ are some constants depending on d as in formulas

below (according to cases (i-iii)):
i) −1 < ỹ ≤ −1

2d for d ∈ (0, 2] and −1
2d ≤ ỹ < 1 for d ∈ [−2, 0) .

ii) ỹ = −1 for d = 2 and ỹ = 1 for d = −2

iii) ỹ =
3

√
d+
√
d2−4
2 + 1

3

√
d+
√

d2−4
2

.

In other words, by formulas (10) − (11) we get four types of oscillations with speeds
given by formulas (12)− (13) below

λ1,2 = γh+
1

2

(
√

2z̃ ∓

√
−2

(
p+ z̃ +

q√
2z̃

))
− −γ1h1 + µ1Θ1 + µΘ

2
, (12)

λ3,4 = γh+
1

2

(
−
√

2z̃ ∓

√
−2

(
p+ z̃ − q√

2z̃

))
− −γ1h1 + µ1Θ1 + µΘ

2
, (13)

where 1
12p

2 + l > 0 (note that since g is a dominated term, this condition is not very
restrictive. Besides for long-waves, in our case µ1 and µ are sufficiently close to zero, thus
this condition holds directly).

The previous considerations prove the following result.
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Theorem 2. The propogation of linear waves generated by equation (1) is characterized
by the the fundamental oscillation modes propagating at the constant speeds given by the
formulas (12)− (13). Moreover, the following estimates hold:

|λi| ≤ (
16

k2
tanh2 (k (h+ h1)) + 2γ2

1h
2
1 − 8γ1h1µ1Θ1 + 2Θ1γ

2
1h1

+
4

k
(g − ωγh) tanh k (h+ h1)− 8µµ1Θ

tanh (h1k)

k
)1/2 + γh.
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