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ON THE PROPAGATION OF EQUATORIAL WAVES INTERACTING
WITH A NON-UNIFORM CURRENT

E. NOVRUZOV

ABSTRACT. We consider the propagation of equatorial waves of small amplitude, in a flow with
an underlying non-uniform current. Without making the too restrictive rigid-lid approximation,
by exploiting the available Hamiltonian structure of the problem, we derive the dispersion re-
lation for the propagation of coupled long-waves: a surface wave and an internal wave. Also,
we investigate the above-mentioned model of wave-current interactions in the general case with
arbitrary vorticities. Wave-current interactions; Hamiltonian formulation;

1. INTRODUCTION

The propagation of ocean waves in equatorial regions presents great physical relevance
and offers many mathematical challenges. For example, the equatorial region of the Pacific
extends over 13000 km (about one third of its total length) and it is responsible for one
of the most important climate phenomena: the El Nino events, starting every few years
and having a global impact several months afterwards (see the discussion in [12]). More-
over, the ocean flow in this region is characterized by underlying depth-varying currents
(westward at the surface and eastward at about 100-200 m depth, while at great depths
the water is almost still — see [1]). A further complication is the fact that equatorial ocean
regions present the strongest stratification, with a thermocline that is quite well-defined,
separating two layers of practically constant density. The study of wave-current interac-
tions in equatorial regions is of great current interest (see [3], [4], [5], [11] and references
therein). As we noted above the El Nino events is one of the most important climate phe-
nomena. In the present paper we consider the model of wave-current interactions (see [3])
with parameters which correspond to El Nino case. Also, we investigate the general case
with arbitrary vorticities (the case of only non-zero constant vorticity in the near-surface
homogeneous layer have been considered in [15]).

2. PRELIMINARIES

Near the Equator the Coriolis force acts like a waveguide, inducing the azimuthal propa-
gation of waves and currents, and we can therefore investigate two-dimensional flows in the
f-plane approximation. Following the setting of the recent paper [3], we consider equations
of motion of the fluid in the domain bounded by flat bed z = —h from below and with
the upper boundary z = hy + n1(x,t) which is a free surface of elevation (where h ~ 8 and
hi ~ 0.24 are some non-dimensional constants, which reflect the fact that the near-surface
layer is about 100-200 m deep, the average depth of the Pacific ocean near the Equator be-
ing about 4km). The thermocline z = n(x, t) separates the two layers of different constant
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2 E. NOVRUZOV

densities in the domain under consideration. Thus, the thermocline divides the domain
into two parts: the deep (colder) layer

D(t) = {(a,2) : —h < z < n(x, D)}
and the relatively shallow near-surface layer
Di(t) = {(z,2) : n(x,t) <z < hy +m(z,t)}.

We consider an inviscid setting, in which the wind effects are captured by the wind-drift
near-surface current of constant vorticity (see the data in [10] for the reasonable assump-
tion that wind-generated currents are appropiately described by the assumption of constant
vorticity, and note that non-zero vorticity means non-uniform currents — see the considera-
tions in [7]). Therefore, above the thermocline, in the region D1 (t) the equations of motion
are Euler’s equations

Ut + UIUL g + W1UL; + WO = — Py

Wit + UL + W11, — WUl = —Pr — G,

where (u1,w1) is the velocity field in upper region, p is the pressure, w = 0,15 is the
non-dimensional constant that captures the Coriolis effect due to the Earth’s rotation and
g ~ 2 x 10* is the non-dimensional gravity. Taking into account the equations of mass
conservation (for constant density) and the vorticity distribution typical of mixing in the
near-surface layer, we have

Uy +w@1,, =0

Ul,z — Wiz = V1,

where 71 < 0 is the vorticity (constant in the near-surface layer, the sign corresponding
to the westward trade winds in the equatorial Pacific, for an eastward orientation of the
horizontal axis, as in the paper [3]).

Denoting with (u,w) the velocity field in lower region D(t) the equations of motion are
again Euler’s equations

1
Ut + UlU, + U, + WTo = —mpm,
wt+uwx+wwz—wuz—1+sz—gy

with » < 1 a constant that takes into account the stable density stratification (the less
dense, warmer, fluid overlying the abyssal colder fluid). Below the thermocline, in the
region D(t), the equations of mass conservation and vorticity distribution can be written
as follows:

Uy + w, =0,

Uy — Wz =7,

where > is the vorticity, constant in the region below the thermocline (thus capturing the
eastward orientation of the Equatorial Undercurrent, which occurs practically from about
100-200 m depth to 500m depth: see the data provided in [4] and [5].

We now present the relevant boundary conditions. Firstly, at the free surface z =
hi 4+ m(z,t) the pressure is the constant atmospheric pressure, so that we complement
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the above-metioned equations with the following the dynamic and kinematic boundary
conditions
@1 =Mt + U on 2 = hy +m(x,t),

@y = N+ ung on z = n(x, ),
w =1 + ung on z = n(x,t),
w=0o0nz=—h.

Besides, as noted in [3], the available field data for equatorial flows suggests a continuous
transition between the two layers (velocity discontinuities across the thermocline are not
detected in measurements), so that that it is required that a tangential velocity balance
holds:

wWiNy + Ul = Wiy +u on z =n(z,t),

in addition to the condition that the pressure is continuous across the thermocline z =
n(x,t).

The complicated nature of the governing equations described above is to some degree
compensated by the fact that they have a Hamiltonian structure (see the discussion in [3]).
We recall that Zakharov’s discovery [17] of the Hamiltonian formulation for irrotational
deep-water gravity waves represented an important advance, enabling in-depth studies
(see the discussion in [8]). Subsequently Hamiltonian formulations for irrotational internal
waves were provided in [9], for waves with constant vorticity [16] and for wave-current
interactions in stratified rotational flows with piecewise constant vorticity (see [6] and
[3]). In all these results, the key idea is that for harmonic functions one reduce the two-
dimensions to one (on the boundary) by means of Dirichlet-Neumann operators (scalar
with no stratification, but if there is a thermocline, one needs a coupling of a scalar and
a matrix Dirichlet-Neumann operator — see the discussion in [9], [6] and [3]). For this to
be analytically tractable, one needs the assumption of irrotational flow (as in [9]), or of
constant vorticity (as in [6] and [3], where a nonlinear separation result was proved, showing
that, at the level of the nonlinear governing equations, wave-current interactions for flows
with constant vorticity correspond to a harmonic wave on a non-uniform pure-current
background state). To take advantage of this feature, we define

(I)(xat) = @(33777(3%15)775), (I>1(337t) = @1(33777(33775%75) )

and
@2(.’E,t) - @1(-T,h1 + ’I’]l(CC,t),t) )

where ¢ in D(t) and ¢; in D;(t) are harmonic perturbed velocity potentials which are
defined as follows:

u=py;+v(z+h) and w=¢, in D(t),
ur=piz+mz+vh and wi=¢1, in D(t).

Then, let
u= (77777175)51)T )

where the superscript denotes the transpose and
E=1+7r)® -1, &=,

with a positive constant r (defined above; typically 7 = 1073 — see [12]).
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Using the Fourier transform

A
— —ikacd
b= [ e

for f in the Schwartz class S(R) in each component of u above-mentioned linearised equa-
tions of motion are transformed for any fixed k € R into the linear autonomous system of
ordinary differential equations (see [3]):

O (k) = M (R)u (k. 1), (1)
where
—iyhk +ipk© (k) ik sech (hik)© (k) k20 (k) k2 sec h (hik) © (k)
M(k) o ipksech (hik)© (k)  —iT1k +imk ©1 (k)  k?sech (hik) O (k) k%0, (k)
- I — 1?0 (k) —pprsech (hk)© (k)  —ivhk +ipk© (k)  ipksech (hik) © (k)
—ppysech (hik)© (k)  wly —g—p301 (k)  dmksech (hik)© (k) —il1k +iuk©s (k)
and

_ A+r)y—mtrw _ ntw
n= 2 ) H1 = 2 )

w=0,15, T=-rg, g=g-—why,

tanh(hk
© (k) = k[1+r+tanh(h(k) t)al'lh(hlk')] )

__ tanh(hk)+(14r) tanh(h1k
©1 (k) = k[1+£+tan}(l(hk) tanh((hllk))] :

Here a fixed nondimensional value of k£ corresponds to a harmonic oscillation of the free

surface and/or of the thermocline of wavelength 10‘%‘)” m. Therefore we have that the

unique solution to (1) with initial data

A

MWZAWWW%%

is
u (k) = MWL (k)

for ¢ > 0. This solution corresponds, by means of the inverse Fourier transform, to the
solution

1 ,
u(ot) = o /R MM (k) b g,

of the linearized problem under consideration, with initial data uy € S (R). Note that
the Schwartz class is good to describe localized waves, which arise as perturbations of a
pure-current background state with a flat free surface and a flat thermocline.

An eigenvalue with non-zero real part leads to instability due to growth in time (see the
discussion in [3]). On the other hand, to a purely imaginary eigenvalue

A(k) = —ike with ¢ € R\{0}

of the 4 x 4 matrix M (k), with corresponding eigenvector b(k) # 0, we can associate the
oscillatory mode solution
MBIy (k) = e~ *2p(k) .
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Also, a purely imaginary eigenvalue A(k) = —ikc of M (k) corresponds to the fundamental
oscillation mode ‘
ezk(r—ct)b(k)

with frequency %, propagating at the constant speed ¢ and the general solution of (1) is
a linear combination of solutions of the form ¢"e** where n is a nonnegative integer,
U is a constant vector and A(k) is an eigenvalue of M (k) (see the discussion in [3]). This
way, the linear wave propagation is reduced to the study of the eigenvalues of the matrix

Finding accurate estimate for the eigenvalues of M (k) turns out to be quite a challenge
(see [3] and [14]), but this is at the core of understanding the evolution of wave packets at
the surface and along the thermocline. In this context, it is worth to note that, A(k) € C

is an eigenvalue of M (k) with eigenvector (v1,v2,vs,v4)7 if and only if

iA(k)
Ak) =
(k= A
is an eigenvalue with corresponding eigenvector (v, ve,ivs3,ivs)’ of the real matrix
yh — 1O (k) —uy sech (hik) © (k) o (k) sech (h1k) © (k)
R (k) _ | —psech(hk)© (k) 'y — 1 ©1 (k) sech (hi1k) © (k) 01 (k)
T + 4?0 (k) ppr sech (hik) © (k) vh — p® (k) —usech (h1k)© (k)

ppysech (hik) © (k) —wly+ g+ p201 (k) —pasech (hik)© (k) Iy — 1101 (k)
3. THE PROPAGATION OF LINEAR WAVES IN THE EL NINO SETTING

A careful consideration of the field data reveals that h;/h < 1 typically. Moreover,
during an El Nino event the trade winds in the equatorial mid-Pacific loose considerably
in intensity and, as a consequence, the depth of the thermocline diminishes a great deal
throughout the Pacific. These physical consideration motivate us to investigate the linear
problem in the limiting case hy — 0.

The following lemma holds.

Lemma 1. In the limiting case hy — 0 we have that the matriz R(k) has only real eigen-
values, given explicitly by:

A
Ma2=7h,  Aza=7h— (11O +puO) £ \/@2 (m1+p)?+0g(1+r).
Proof. To investigate roots of the characteristic polynomial
p(A\) = det(R — \y),

we first perform two sets of operations to simplify its structure. Add the first row multiplied
by wp to the third row, and the second row multiplied by w1 to the fourth row, and in the
outcome add the third column multiplied by u to the first column and the fourth column
multiplied by p1 to the second column to obtain a determinant expressed in terms of A,
which corresponds to the wave speed relative to the maximum speed of the current, given

X 0 e e
A 0 'ylhl - X © C)
byp(M =1 _r_oux 0 X 0 )
0 9—2mX 0 mh—X

h1=0, X =X—n~h, gzg—wh’y, F:—r@.
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Therefore, we have

_X 0 ® ©

A 0 —X ® ©

PN =10 9ux 0 -X 0 |~
0 g-2mX 0 -X

X4 (20 +2u0) X3 + (—@3 _ rﬁ@) X2,

. . A
Now, it is easy to see that all the roots of the equation p (A\) = 0 are real. Indeed, we

have
PO = X'+ (200 +2u0) X* + (-69—190) X* =0

or
<X2 (210 +2u0) X + (—@3 _ r@@)) X2 =0,
Consequently,
2 A
<)\—7h—(,u1®—|—,u@)—|—\/@2(m+,u) +@g(1—|—r)> X
2 2 A 2

(A== 0+ 40) = /62 ua + 1 + 05 (1)) (A= 31" = 0.

Therefore,

Mz =7h = (O +10) £ \/@2 (1 + 1)? + 09 (1 +7), As.a = 7h.

O

Taking into account that © = tzr(lﬁ’:];), 9 = g — why (where g >> vhw) and p; + pu =

(1+7)(y+w)
2

we get

tanh (hk tanh? (hk tanh (hk
M :w—%ﬁ)(ww)#kf) (w4 SO oy @)

)\374 = ’}/h. (3)

Therefore, the matrix M (k) has the following purely imaginary eigenvalues

ik tanh (hk _[tanh? (hk tanh (hk
Mg = -3 (’yh - 22) (v + w)) + zk\/kZ( ) (v +w)? + k:( ) (g — wh).

A3 = —ik’yh.

which corresponding to oscillations with speeds given by formulas (2) — (3).
Thus, the previous considerations prove the main result.

Theorem 1. In an El Nino setting, the propagation of linear waves generated by equation
(1) is characterized by the fundamental oscillation modes propagating at the constant speeds
given by the formulas (2) — (3).



4. THE PROPAGATION OF LINEAR WAVES FOR A CASE OF NON-ZERO CONSTANT
VORTICITIES.

In [14] the model of wave-current interactions (see [3]) ) in the case of the absence of
vorticity has been considered. However, this permits a more detailed analysis, and then the
model with non-zero vorticities can be regarded as a perturbation of the the irrotational
setting. In this respect, the above-mentioned paper [14] and [15] where v = 0 and v; # 0,
are closely connected with general case and reasoning from here can be adapted to the case
with nonzero v; and +y if we replace A with X = A\ —~h (see Lemma 1 in [14]), taking into
account some technical details.

Thus, we can investigate the model with non-zero vorticities based on general scheme of
proofs from [14,15] with necessary references to the above-mentioned papers.

As we noted in Intoduction, A(k) € C is an eigenvalue of M (k) with eigenvector
(v1,v2,v3,v4)T if and only if A\(k) = iA]gk) is an eigenvalue with corresponding eigenvector
(v1,v2,1v3,9v4)T of the real matrix R (k). Moreover, the following leema holds (see [3],
page 28)

Lemma 2. The matriz M (k) has four distinct purely imaginary eigenvalues for 0 < |k| <
64.

Thus, we can investigate the model in the physically relevant regime 0 < |k| < 64,
with non-zero vorticities based on general scheme of proofs from [14,15] with necessary
references to the above-mentioned papers.

Lemma 3. The eigenvalues of R(k) for 0 < |k| < 64 satifies the following estimates:

16
|\ < (ﬁ tanh? (k (h + h1)) + 297hT — 871h111101 + 20171

tanh (h1k
1{51))1/2 + ~h. (4)

4
t (9 = wyh) tanh k (h + hy) — 811 ©

Proof. To investigate roots of the characteristic polynomial p(\) = det(R — Aly), we first
perform two sets of operations to simplify its structure. Add the first row multiplied by u
to the third row, and the second row multiplied by w1 to the fourth row, and in the outcome
add the third column multiplied by u to the first column and the fourth column multiplied
by p1 to the second column to obtain a determinant edxpressed in terms of X = A — ~h,
corresponding to the wave speed relative to the maximum speed of the

-X 0 (C] s©
A 0 71h1 - X sO @1
PAN=| _r_9m 0o -x o0 |
0 a —2m X 0 yhy — X
where s = sech (h1k), T’ = rwyh — rg,@ = g+73h1 — wyh.

We obtain:
X4 =+ (—2’71h1 + 2,&1@1 =+ 2,&@) X3 +

(Vihi — ©17iht — ©1 (g — wyh) — 4pOmiin
+4pp (001 — 20%) — 1O (g — wyh)) X+
(271h17O (g — wyh) + 2077
—2 (rgp1 + pg + pyihi — rwyhp ) (00 — s70%)) X —
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1 hir® (g — wyh) + (rg® + ryihi (g — wyh)
—rwyhg) (00 — 82@2) =0. (5)

In view of above-mentioned Lemma 2 (see [3] ) all the roots of this equation are real.
Taking into account coefficients of equation (5) we have following equalities:

X1+ Xo+ X3+ Xy = —2v1h1 + 211101 + 210, (6)
X, (XQ + X3+ X4) + X5 (Xg + X4) + X3X4 =
1ihi = ©177ht — ©1 (9 — wyh) — 4pOyiin
tanh (h1k)
k

where X; are roots of the equation (5). Thus, by squaring the right-hand and left-hand sides
of equation (6) and using equation (7) multiplied by 2, carrying same manipulations as in
papers [14,15] we obtain the validity of Lemma 3 and since the further proof of this fact

repeats almost word for word the corresponding proof from the above-mentioned papers,
we omit the further details. O

+4p1p1© - 70 (g —wyh), (7)

Remark 1. From physical point of view 1 is a negative constant (see [3], page 11) greater
than 1 ( approzimately equal to -12.5) and since v < 1 (and therefore yy = 25" <0 ) we
get that term 8y1hi1101 is a positive. Thus, formula (4) acquires a more simpler form:

16
[Mil < (55 tanb® (k (b + b)) + 291ht + 20171

4
+— (9 — wyh)tanh k (h + h1) — 8uu1© )2 £ Ah. (8)

tanh (hik)
k k

Besides, to obtain roots of the equation we also can use the following standard substitution

—71h1 + 1©1 + o
5 .
and the problem boils down to the consideration of the following equation

X=6—

6t 4+ pd% 4 qs +1=0, (9)

where

p=9ih? — ©17ih1 — O1 (9 — wyh) — 4uOy1hy — 1O (9 — wyh) +
4uul@tanh£h1k) =8 iy — 1Oy — )
q = 271hr0 (9 — wyh) + 2u03h? — 2 (rgu + pg + pyihi — rwyhp) x
OWMME) 4 (i hy + 1101 + pO)? + (y1h1 — p1©1 — pO) X
('yfh? — ©172h1 — ©1 (g — wyh) — 401y + 4pp O g (g — wvh)) ;
I =1 (vh1 — 11101 — pO)* (V2h? — ©173hy — 1 (g — wyh) — 4uOy1hy +
4pupn © 2B 19 (g — wyh)) + (y1ht — p1©1 — pO) (41h17© (g — wyh) +
pOVEhE — (rguy + pg + e — rwyhp) ORIy 3 (0 py 0 — p©)* —

V2h3r0 (g — wyh) + (9% + 73hi (g — wyh) — wyhg) r@2k),



Following a procedure from the paper [14] under notations

. 1,

p1 1 3P =P b
2 5 1 p*P—4 4 1 4 1 7>
= — —_ ) — — — = —— 7l——
N=o7p — 3Py 8 0P T3P T g

4! ’
d:_q1/< _3> )
1\ /1 \? 1, N\ 1 1 ¢\
=(= - = ——p®—1 — P Ipl—
@ (3“) +<2q1> < 127 ) +< 2167 T 67 16)

we consider the following three cases generated by equation y® — 3y = d which is related
to resolvent cubic of the above-mentioned quartic equation (9):

i) @ < 0 (which corresponds to the case |d| < 2);

ii) @ = 0 (which corresponds to the case |d| = 2);

iii) @ > 0 (which corresponds to the case |d| > 2).

Then, by the similar manipulations as in [14] under condition p; = —%p2 —1 <0, we
obtain that M (k) has the four disjoint purely imaginary eigenvalues:

o g (e )

—2vh —y1hy + 1101 + p©

ik 5 , (10)
A ik VozF 2< yr- 1 ) +
=——1|—-V2 - z—
3.4 B b \/ﬁ
ik_nyh_'Ylhl +;u161 +,u® (11)

2 Y
where Z = ¥,/ %]ﬂ + %l — %p and y are some constants depending on d as in formulas
below (according to cases (i-iii)):

i) —1<y<—3dforde(0,2] and —3d <y <1forde[-20).
ii)y=—-1ford=2and y=1for d = -2

lll) gz 3/d+vd2—4 4 1 )
2 i/ N,
2
In other words, by formulas (10) — (11) we get four types of oscillations with speeds
given by formulas (12) — (13) below

1 = ~ . g —mh1 + m©O1 + po
Ao =~vh+ = 2 -2 — 12
12 =7 —1-2(\/ z:F\/ (p+z+\/2>,£)> 5 , (12)

1 _ _ g Y T C
Mss=~h+=|-V2 —9 — — 1
34 =" +2< Z¢\/ <p+z \/2?>> 5 : (13)
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where 1—12]92 + 1 > 0 (note that since g is a dominated term, this condition is not very
restrictive. Besides for long-waves, in our case u; and p are sufficiently close to zero, thus
this condition holds directly).

The previous considerations prove the following result.

Theorem 2. The propogation of linear waves generated by equation (1) is characterized
by the the fundamental oscillation modes propagating at the constant speeds given by the
formulas (12) — (13). Moreover, the following estimates hold:

16
|AHf§(%gtanhQ(k(h4‘h1»‘+27%h%“8VJHM191%—2@1V%h1

tanh (hik)
k

4
+— (9 —wyh) tanh k (h + h1) — 81 © )2 4,

k
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