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Introduction

The Working Group I contribution to the IPCC Fourth 
Assessment Report describes progress in understanding of 
the human and natural drivers of climate change,1 observed 
climate change, climate processes and attribution, and 
estimates of projected future climate change. It builds 
upon past IPCC assessments and incorporates new fi ndings 
from the past six years of research. Scientifi c progress 
since the Third Assessment Report (TAR) is based upon 
large amounts of new and more comprehensive data, 
more sophisticated analyses of data, improvements in 
understanding of processes and their simulation in models 
and more extensive exploration of uncertainty ranges.

The basis for substantive paragraphs in this Summary 
for Policymakers can be found in the chapter sections 
specifi ed in curly brackets.

Human and Natural Drivers
of Climate Change

Changes in the atmospheric abundance of greenhouse 

gases and aerosols, in solar radiation and in land surface 

properties alter the energy balance of the climate system. 

These changes are expressed in terms of radiative 

forcing,2 which is used to compare how a range of human 

and natural factors drive warming or cooling infl uences 

on global climate. Since the TAR, new observations and 

related modelling of greenhouse gases, solar activity, land 

surface properties and some aspects of aerosols have led 

to improvements in the quantitative estimates of radiative 

forcing.

Global atmospheric concentrations of carbon 

dioxide, methane and nitrous oxide have increased 

markedly as a result of human activities since 1750 

and now far exceed pre-industrial values determined 

from ice cores spanning many thousands of years 

(see Figure SPM.1). The global increases in carbon 

dioxide concentration are due primarily to fossil fuel 

use and land use change, while those of methane 

and nitrous oxide are primarily due to agriculture.  

{2.3, 6.4, 7.3}

• Carbon dioxide is the most important anthropogenic 
greenhouse gas (see Figure SPM.2). The global 
atmospheric concentration of carbon dioxide has 
increased from a pre-industrial value of about 280 ppm 
to 379 ppm3 in 2005. The atmospheric concentration 
of carbon dioxide in 2005 exceeds by far the natural 
range over the last 650,000 years (180 to 300 ppm) as 
determined from ice cores. The annual carbon dioxide 
concentration growth rate was larger during the last 
10 years (1995–2005 average: 1.9 ppm per year), than 
it has been since the beginning of continuous direct 
atmospheric measurements (1960–2005 average: 1.4 
ppm per year) although there is year-to-year variability 
in growth rates.  {2.3, 7.3}

• The primary source of the increased atmospheric 
concentration of carbon dioxide since the pre-industrial 
period results from fossil fuel use, with land-use change 
providing another signifi cant but smaller contribution. 
Annual fossil carbon dioxide emissions4 increased 
from an average of 6.4 [6.0 to 6.8]5 GtC (23.5 [22.0 to 
25.0] GtCO2) per year in the 1990s to 7.2 [6.9 to 7.5] 
GtC (26.4 [25.3 to 27.5] GtCO2) per year in 2000–2005 
(2004 and 2005 data are interim estimates). Carbon 
dioxide emissions associated with land-use change 

1 Climate change in IPCC usage refers to any change in climate over time, whether due to natural variability or as a result of human activity. This usage differs from 
that in the United Nations Framework Convention on Climate Change, where climate change refers to a change of climate that is attributed directly or indirectly to 
human activity that alters the composition of the global atmosphere and that is in addition to natural climate variability observed over comparable time periods.

2 Radiative forcing is a measure of the infl uence that a factor has in altering the balance of incoming and outgoing energy in the Earth-atmosphere system and is an 
index of the importance of the factor as a potential climate change mechanism. Positive forcing tends to warm the surface while negative forcing tends to cool it. In 
this report, radiative forcing values are for 2005 relative to pre-industrial conditions defi ned at 1750 and are expressed in watts per square metre (W m–2). See Glos-
sary and Section 2.2 for further details.

3 ppm (parts per million) or ppb (parts per billion, 1 billion = 1,000 million) is the ratio of the number of greenhouse gas molecules to the total number of molecules of 
dry air. For example, 300 ppm means 300 molecules of a greenhouse gas per million molecules of dry air.

4 Fossil carbon dioxide emissions include those from the production, distribution and consumption of fossil fuels and as a by-product from cement production. An 
emission of 1 GtC corresponds to 3.67 GtCO2.

5 In general, uncertainty ranges for results given in this Summary for Policymakers are 90% uncertainty intervals unless stated otherwise, that is, there is an estimated 
5% likelihood that the value could be above the range given in square brackets and 5% likelihood that the value could be below that range. Best estimates are 
given where available. Assessed uncertainty intervals are not always symmetric about the corresponding best estimate. Note that a number of uncertainty ranges in 
the Working Group I TAR corresponded to 2 standard deviations (95%), often using expert judgement.
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Figure SPM.1. Atmospheric concentrations of carbon dioxide, 
methane and nitrous oxide over the last 10,000 years (large 
panels) and since 1750 (inset panels). Measurements are shown 
from ice cores (symbols with different colours for different studies) 
and atmospheric samples (red lines). The corresponding radiative 
forcings are shown on the right hand axes of the large panels. 
{Figure 6.4}

are estimated to be 1.6 [0.5 to 2.7] GtC (5.9 [1.8 to 
9.9] GtCO2) per year over the 1990s, although these 
estimates have a large uncertainty.  {7.3}

• The global atmospheric concentration of methane has 
increased from a pre-industrial value of about 715 ppb 
to 1732 ppb in the early 1990s, and was 1774 ppb in 
2005. The atmospheric concentration of methane 
in 2005 exceeds by far the natural range of the last 
650,000 years (320 to 790 ppb) as determined from ice 
cores. Growth rates have declined since the early 1990s, 
consistent with total emissions (sum of anthropogenic 
and natural sources) being nearly constant during this 
period. It is very likely6 that the observed increase 
in methane concentration is due to anthropogenic 
activities, predominantly agriculture and fossil fuel 
use, but relative contributions from different source 
types are not well determined.  {2.3, 7.4} 

• The global atmospheric nitrous oxide concentration 
increased from a pre-industrial value of about 270 
ppb to 319 ppb in 2005. The growth rate has been 
approximately constant since 1980. More than a third 
of all nitrous oxide emissions are anthropogenic and 
are primarily due to agriculture.  {2.3, 7.4}

The understanding of anthropogenic warming and 

cooling infl uences on climate has improved since 

the TAR, leading to very high confi dence7 that the 

global average net effect of human activities since 

1750 has been one of warming, with a radiative 

forcing of +1.6 [+0.6 to +2.4] W m–2 (see Figure 

SPM.2).  {2.3., 6.5, 2.9}

• The combined radiative forcing due to increases in 
carbon dioxide, methane, and nitrous oxide is +2.30 
[+2.07 to +2.53] W m–2, and its rate of increase 
during the industrial era is very likely to have been 
unprecedented in more than 10,000 years (see Figures 

CHANGES IN GREENHOUSE GASES FROM ICE CORE 
AND MODERN DATA

6 In this Summary for Policymakers, the following terms have been used to 
indicate the assessed likelihood, using expert judgement, of an outcome or 
a result: Virtually certain > 99% probability of occurrence, Extremely likely > 
95%, Very likely > 90%, Likely > 66%, More likely than not > 50%, Unlikely 
< 33%, Very unlikely < 10%, Extremely unlikely < 5% (see Box TS.1 for more 
details).

7 In this Summary for Policymakers the following levels of confi dence have 
been used to express expert judgements on the correctness of the underly-
ing science: very high confi dence represents at least a 9 out of 10 chance 
of being correct; high confi dence represents about an 8 out of 10 chance of 
being correct (see Box TS.1) 



4

Summary for Policymakers 

Figure SPM.2. Global average radiative forcing (RF) estimates and ranges in 2005 for anthropogenic carbon dioxide (CO2 ), methane 
(CH4 ), nitrous oxide (N2O) and other important agents and mechanisms, together with the typical geographical extent (spatial scale) of 
the forcing and the assessed level of scientifi c understanding (LOSU). The net anthropogenic radiative forcing and its range are also 
shown. These require summing asymmetric uncertainty estimates from the component terms, and cannot be obtained by simple addition. 
Additional forcing factors not included here are considered to have a very low LOSU. Volcanic aerosols contribute an additional natural 
forcing but are not included in this fi gure due to their episodic nature. The range for linear contrails does not include other possible effects 
of aviation on cloudiness.  {2.9, Figure 2.20}

SPM.1 and SPM.2). The carbon dioxide radiative 
forcing increased by 20% from 1995 to 2005, the 
largest change for any decade in at least the last 200 
years.  {2.3, 6.4} 

• Anthropogenic contributions to aerosols (primarily 
sulphate, organic carbon, black carbon, nitrate and 
dust) together produce a cooling effect, with a total 
direct radiative forcing of –0.5 [–0.9 to –0.1] W m–2 
and an indirect cloud albedo forcing of –0.7 [–1.8 to 
–0.3] W m–2. These forcings are now better understood 
than at the time of the TAR due to improved in situ, 
satellite and ground-based measurements and more 

comprehensive modelling, but remain the dominant 
uncertainty in radiative forcing. Aerosols also infl uence 
cloud lifetime and precipitation.  {2.4, 2.9, 7.5}

• Signifi cant anthropogenic contributions to radiative 
forcing come from several other sources. Tropospheric 
ozone changes due to emissions of ozone-forming 
chemicals (nitrogen oxides, carbon monoxide, and 
hydrocarbons) contribute +0.35 [+0.25 to +0.65] 
W m–2. The direct radiative forcing due to changes 
in halocarbons8 is +0.34 [+0.31 to +0.37] W m–2. 
Changes in surface albedo, due to land cover changes 
and deposition of black carbon aerosols on snow, exert 

RADIATIVE FORCING COMPONENTS

8 Halocarbon radiative forcing has been recently assessed in detail in IPCC’s Special Report on Safeguarding the Ozone Layer and the Global Climate System (2005).
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respective forcings of –0.2 [–0.4 to 0.0] and +0.1 [0.0 
to +0.2] W m–2. Additional terms smaller than ±0.1 W 
m–2 are shown in Figure SPM.2.  {2.3, 2.5, 7.2}

• Changes in solar irradiance since 1750 are estimated 
to cause a radiative forcing of +0.12 [+0.06 to +0.30] 
W m–2, which is less than half the estimate given in the 
TAR.  {2.7}

Direct Observations of Recent
Climate Change

Since the TAR, progress in understanding how climate is 

changing in space and in time has been gained through 

improvements and extensions of numerous datasets and 

data analyses, broader geographical coverage, better 

understanding of uncertainties, and a wider variety of 

measurements. Increasingly comprehensive observations 

are available for glaciers and snow cover since the 1960s, 

and for sea level and ice sheets since about the past 

decade. However, data coverage remains limited in some 

regions.  

Warming of the climate system is unequivocal, as is 

now evident from observations of increases in global 

average air and ocean temperatures, widespread 

melting of snow and ice, and rising global average 

sea level (see Figure SPM.3).  {3.2, 4.2, 5.5}

• Eleven of the last twelve years (1995–2006) rank among 
the 12 warmest years in the instrumental record of 
global surface temperature9 (since 1850). The updated 
100-year linear trend (1906 to 2005) of 0.74°C [0.56°C 
to 0.92°C] is therefore larger than the corresponding 
trend for 1901 to 2000 given in the TAR of 0.6°C 
[0.4°C to 0.8°C]. The linear warming trend over the 
last 50 years (0.13°C [0.10°C to 0.16°C] per decade) 
is nearly twice that for the last 100 years. The total 
temperature increase from 1850–1899 to 2001–2005 is 
0.76°C [0.57°C to 0.95°C]. Urban heat island effects 
are real but local, and have a negligible infl uence (less 
than 0.006°C per decade over land and zero over the 
oceans) on these values.  {3.2} 

• New analyses of balloon-borne and satellite 
measurements of lower- and mid-tropospheric 
temperature show warming rates that are similar 
to those of the surface temperature record and are 
consistent within their respective uncertainties, largely 
reconciling a discrepancy noted in the TAR. {3.2, 3.4} 

• The average atmospheric water vapour content has 
increased since at least the 1980s over land and ocean 
as well as in the upper troposphere. The increase is 
broadly consistent with the extra water vapour that 
warmer air can hold.  {3.4} 

• Observations since 1961 show that the average 
temperature of the global ocean has increased to depths 
of at least 3000 m and that the ocean has been absorbing 
more than 80% of the heat added to the climate system. 
Such warming causes seawater to expand, contributing 
to sea level rise (see Table SPM.1).  {5.2, 5.5} 

• Mountain glaciers and snow cover have declined on 
average in both hemispheres. Widespread decreases 
in glaciers and ice caps have contributed to sea level 
rise (ice caps do not include contributions from the 
Greenland and Antarctic Ice Sheets). (See Table 
SPM.1.)  {4.6, 4.7, 4.8, 5.5} 

• New data since the TAR now show that losses from 
the ice sheets of Greenland and Antarctica have very 
likely contributed to sea level rise over 1993 to 2003 
(see Table SPM.1). Flow speed has increased for some 
Greenland and Antarctic outlet glaciers, which drain ice 
from the interior of the ice sheets. The corresponding 
increased ice sheet mass loss has often followed 
thinning, reduction or loss of ice shelves or loss of 
fl oating glacier tongues. Such dynamical ice loss is 
suffi cient to explain most of the Antarctic net mass 
loss and approximately half of the Greenland net mass 
loss. The remainder of the ice loss from Greenland has 
occurred because losses due to melting have exceeded 
accumulation due to snowfall.  {4.6, 4.8, 5.5}

• Global average sea level rose at an average rate of 1.8 
[1.3 to 2.3] mm per year over 1961 to 2003. The rate 
was faster over 1993 to 2003: about 3.1 [2.4 to 3.8] 
mm per year. Whether the faster rate for 1993 to 2003 
refl ects decadal variability or an increase in the longer-
term trend is unclear. There is high confi dence that 

9 The average of near-surface air temperature over land and sea surface temperature.
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CHANGES IN TEMPERATURE, SEA LEVEL AND NORTHERN  HEMISPHERE SNOW COVER

Figure SPM.3. Observed changes in (a) global average surface temperature, (b) global average sea level from tide gauge (blue) and 
satellite (red) data and (c) Northern Hemisphere snow cover for March-April. All changes are relative to corresponding averages for 
the period 1961–1990. Smoothed curves represent decadal average values while circles show yearly values. The shaded areas are the 
uncertainty intervals estimated from a comprehensive analysis of known uncertainties (a and b) and from the time series (c).  {FAQ 3.1, 
Figure 1, Figure 4.2, Figure 5.13}
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the rate of observed sea level rise increased from the 
19th to the 20th century. The total 20th-century rise is 
estimated to be 0.17 [0.12 to 0.22] m.  {5.5}

• For 1993 to 2003, the sum of the climate contributions 
is consistent within uncertainties with the total sea level 
rise that is directly observed (see Table SPM.1). These 
estimates are based on improved satellite and in situ 
data now available. For the period 1961 to 2003, the 
sum of climate contributions is estimated to be smaller 
than the observed sea level rise. The TAR reported a 
similar discrepancy for 1910 to 1990.  {5.5} 

At continental, regional and ocean basin scales, 

numerous long-term changes in climate have 

been observed. These include changes in arctic 

temperatures and ice, widespread changes in 

precipitation amounts, ocean salinity, wind patterns 

and aspects of extreme weather including droughts, 

heavy precipitation, heat waves and the intensity of 

tropical cyclones.10  {3.2, 3.3, 3.4, 3.5, 3.6, 5.2}

• Average arctic temperatures increased at almost twice 
the global average rate in the past 100 years. Arctic 
temperatures have high decadal variability, and a warm 
period was also observed from 1925 to 1945.  {3.2}

10  Tropical cyclones include hurricanes and typhoons.

11  The assessed regions are those considered in the regional projections chapter of the TAR and in Chapter 11 of this report.

• Satellite data since 1978 show that annual average 
arctic sea ice extent has shrunk by 2.7 [2.1 to 3.3]% 
per decade, with larger decreases in summer of 7.4 [5.0 
to 9.8]% per decade. These values are consistent with 
those reported in the TAR.  {4.4}

• Temperatures at the top of the permafrost layer have 
generally increased since the 1980s in the Arctic (by 
up to 3°C). The maximum area covered by seasonally 
frozen ground has decreased by about 7% in the 
Northern Hemisphere since 1900, with a decrease in 
spring of up to 15%.  {4.7}

• Long-term trends from 1900 to 2005 have been observed 
in precipitation amount over many large regions.11 
Signifi cantly increased precipitation has been observed 
in eastern parts of North and South America, northern 
Europe and northern and central Asia. Drying has been 
observed in the Sahel, the Mediterranean, southern 
Africa and parts of southern Asia. Precipitation is 
highly variable spatially and temporally, and data are 
limited in some regions. Long-term trends have not 
been observed for the other large regions assessed.11  
{3.3, 3.9}

• Changes in precipitation and evaporation over the 
oceans are suggested by freshening of mid- and high-
latitude waters together with increased salinity in low-
latitude waters.  {5.2}

Table SPM.1.  Observed rate of sea level rise and estimated contributions from different sources.  {5.5, Table 5.3} 

 Rate of sea level rise (mm per year)
Source of sea level rise 1961–2003 1993–2003

Thermal expansion 0.42 ± 0.12 1.6 ± 0.5

Glaciers and ice caps 0.50 ± 0.18 0.77 ± 0.22

Greenland Ice Sheet 0.05 ± 0.12 0.21 ± 0.07

Antarctic Ice Sheet 0.14 ± 0.41 0.21 ± 0.35

Sum of individual climate 1.1 ± 0.5 2.8 ± 0.7
contributions to sea level rise

Observed total sea level rise 1.8 ± 0.5a 3.1 ± 0.7a

Difference
(Observed minus sum of 0.7 ± 0.7 0.3 ± 1.0
estimated climate contributions) 

Table note:
a Data prior to 1993 are from tide gauges and after 1993 are from satellite altimetry.
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Table notes: 
a See Table 3.7 for further details regarding defi nitions.
b See Table TS.4, Box TS.5 and Table 9.4.
c Decreased frequency of cold days and nights (coldest 10%).
d Warming of the most extreme days and nights each year.
e Increased frequency of hot days and nights (hottest 10%).
f Magnitude of anthropogenic contributions not assessed. Attribution for these phenomena based on expert judgement rather than formal attribution 

studies. 
g Extreme high sea level depends on average sea level and on regional weather systems. It is defi ned here as the highest 1% of hourly values of ob-

served sea level at a station for a given reference period. 
h Changes in observed extreme high sea level closely follow the changes in average sea level.  {5.5} It is very likely that anthropogenic activity contributed 

to a rise in average sea level.  {9.5} 
i In all scenarios, the projected global average sea level at 2100 is higher than in the reference period.  {10.6} The effect of changes in regional weather 

systems on sea level extremes has not been assessed.

• Mid-latitude westerly winds have strengthened in both 
hemispheres since the 1960s.  {3.5}

• More intense and longer droughts have been observed 
over wider areas since the 1970s, particularly in the 
tropics and subtropics. Increased drying linked with 
higher temperatures and decreased precipitation has 
contributed to changes in drought. Changes in sea 
surface temperatures, wind patterns and decreased 
snowpack and snow cover have also been linked to 
droughts.  {3.3}

• The frequency of heavy precipitation events has 
increased over most land areas, consistent with warming 
and observed increases of atmospheric water vapour.  
{3.8, 3.9}

• Widespread changes in extreme temperatures have been 
observed over the last 50 years. Cold days, cold nights 
and frost have become less frequent, while hot days, 
hot nights and heat waves have become more frequent 
(see Table SPM.2).  {3.8}

Table SPM.2. Recent trends, assessment of human infl uence on the trend and projections for extreme weather events for which there 
is an observed late-20th century trend.  {Tables 3.7, 3.8, 9.4; Sections 3.8, 5.5, 9.7, 11.2–11.9}

  Likelihood that trend Likelihood of a Likelihood of future trends
 Phenomenona and occurred in late 20th human contribution based on projections for
 direction of trend century (typically to observed trendb 21st century using
  post 1960)  SRES scenarios

 Warmer and fewer cold
 days and nights over Very likelyc Likelyd Virtually certaind

 most land areas 

 Warmer and more frequent
 hot days and nights over Very likelye Likely (nights)d Virtually certaind

 most land areas 

 Warm spells/heat waves.
 Frequency increases over Likely More likely than notf Very likely
 most land areas 

 Heavy precipitation events.
 Frequency (or proportion of 

Likely More likely than notf Very likely total rainfall from heavy falls)
 increases over most areas  

 Area affected by Likely in many 
More likely than not Likely droughts increases regions since 1970s 

 Intense tropical cyclone Likely in some 
More likely than notf Likely activity increases regions since 1970 

 Increased incidence of
 extreme high sea level Likely More likely than notf,h Likelyi

 (excludes tsunamis)g
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• There is observational evidence for an increase in 
intense tropical cyclone activity in the North Atlantic 
since about 1970, correlated with increases of tropical 
sea surface temperatures. There are also suggestions 
of increased intense tropical cyclone activity in some 
other regions where concerns over data quality are 
greater. Multi-decadal variability and the quality of 
the tropical cyclone records prior to routine satellite 
observations in about 1970 complicate the detection 
of long-term trends in tropical cyclone activity. There 
is no clear trend in the annual numbers of tropical 
cyclones.  {3.8} 

Some aspects of climate have not been observed to 

change.  {3.2, 3.8, 4.4, 5.3}

• A decrease in diurnal temperature range (DTR) was 
reported in the TAR, but the data available then extended 
only from 1950 to 1993. Updated observations reveal 
that DTR has not changed from 1979 to 2004 as both 
day- and night-time temperature have risen at about 
the same rate. The trends are highly variable from one 
region to another.  {3.2}

• Antarctic sea ice extent continues to show interannual 
variability and localised changes but no statistically 
signifi cant average trends, consistent with the lack 
of warming refl ected in atmospheric temperatures 
averaged across the region.  {3.2, 4.4}

• There is insuffi cient evidence to determine whether 
trends exist in the meridional overturning circulation 
(MOC) of the global ocean or in small-scale phenomena 
such as tornadoes, hail, lightning and dust-storms.  
{3.8, 5.3}

A Palaeoclimatic Perspective

Palaeoclimatic studies use changes in climatically sensitive 

indicators to infer past changes in global climate on time 

scales ranging from decades to millions of years. Such proxy 

data (e.g., tree ring width) may be infl uenced by both local 

temperature and other factors such as precipitation, and 

are often representative of particular seasons rather than 

full years. Studies since the TAR draw increased confi dence 

from additional data showing coherent behaviour across 

multiple indicators in different parts of the world. However, 

uncertainties generally increase with time into the past due 

to increasingly limited spatial coverage. 

Palaeoclimatic information supports the inter-

pretation that the warmth of the last half century 

is unusual in at least the previous 1,300 years. 

The last time the polar regions were signifi cantly 

warmer than present for an extended period (about 

125,000 years ago), reductions in polar ice volume 

led to 4 to 6 m of sea level rise.  {6.4, 6.6}

• Average Northern Hemisphere temperatures during the 
second half of the 20th century were very likely higher 
than during any other 50-year period in the last 500 
years and likely the highest in at least the past 1,300 
years. Some recent studies indicate greater variability 
in Northern Hemisphere temperatures than suggested 
in the TAR, particularly fi nding that cooler periods 
existed in the 12th to 14th, 17th and 19th centuries. 
Warmer periods prior to the 20th century are within the 
uncertainty range given in the TAR.  {6.6}

• Global average sea level in the last interglacial period 
(about 125,000 years ago) was likely 4 to 6 m higher 
than during the 20th century, mainly due to the retreat 
of polar ice. Ice core data indicate that average polar 
temperatures at that time were 3°C to 5°C higher than 
present, because of differences in the Earth’s orbit. The 
Greenland Ice Sheet and other arctic ice fi elds likely 
contributed no more than 4 m of the observed sea level 
rise. There may also have been a contribution from 
Antarctica.  {6.4} 
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Understanding and Attributing
Climate Change

This assessment considers longer and improved records, 

an expanded range of observations and improvements in 

the simulation of many aspects of climate and its variability 

based on studies since the TAR. It also considers the results 

of new attribution studies that have evaluated whether 

observed changes are quantitatively consistent with the 

expected response to external forcings and inconsistent 

with alternative physically plausible explanations.

Most of the observed increase in global average 

temperatures since the mid-20th century is very 

likely due to the observed increase in anthropogenic 

greenhouse gas concentrations.12 This is an 

advance since the TAR’s conclusion that “most of 

the observed warming over the last 50 years is likely 

to have been due to the increase in greenhouse gas 

concentrations”. Discernible human infl uences 

now extend to other aspects of climate, including 

ocean warming, continental-average temperatures, 

temperature extremes and wind patterns (see 

Figure SPM.4 and Table SPM.2).  {9.4, 9.5}

• It is likely that increases in greenhouse gas 
 concentrations alone would have caused more 
 warming than observed because volcanic and 

anthropogenic aerosols have offset some warming that 
would otherwise have taken place.  {2.9, 7.5, 9.4}

• The observed widespread warming of the atmosphere 
and ocean, together with ice mass loss, support the 
conclusion that it is extremely unlikely that global 
climate change of the past 50 years can be explained 
without external forcing, and very likely that it is not 
due to known natural causes alone.  {4.8, 5.2, 9.4, 9.5, 
9.7} 

• Warming of the climate system has been detected in 
changes of surface and atmospheric temperatures in 
the upper several hundred metres of the ocean, and 
in contributions to sea level rise. Attribution studies 
have established anthropogenic contributions to all of 
these changes. The observed pattern of tropospheric 
warming and stratospheric cooling is very likely due to 
the combined infl uences of greenhouse gas increases 
and stratospheric ozone depletion.  {3.2, 3.4, 9.4, 9.5} 

• It is likely that there has been signifi cant anthropogenic 
warming over the past 50 years averaged over each 
continent except Antarctica (see Figure SPM.4). 
The observed patterns of warming, including greater 
warming over land than over the ocean, and their 
changes over time, are only simulated by models that 
include anthropogenic forcing. The ability of coupled 
climate models to simulate the observed temperature 
evolution on each of six continents provides stronger 
evidence of human infl uence on climate than was 
available in the TAR.  {3.2, 9.4}

• Diffi culties remain in reliably simulating and attributing 
observed temperature changes at smaller scales. On 
these scales, natural climate variability is relatively 
larger, making it harder to distinguish changes expected 
due to external forcings. Uncertainties in local forcings 
and feedbacks also make it diffi cult to estimate the 
contribution of greenhouse gas increases to observed 
small-scale temperature changes.  {8.3, 9.4} 

• Anthropogenic forcing is likely to have contributed 
to changes in wind patterns,13 affecting extra-
tropical storm tracks and temperature patterns in 
both hemispheres. However, the observed changes in 
the Northern Hemisphere circulation are larger than 
simulated in response to 20th-century forcing change.  
{3.5, 3.6, 9.5, 10.3} 

• Temperatures of the most extreme hot nights, cold 
nights and cold days are likely to have increased due 
to anthropogenic forcing. It is more likely than not that 
anthropogenic forcing has increased the risk of heat 
waves (see Table SPM.2).  {9.4} 

12 Consideration of remaining uncertainty is based on current methodologies. 
13 In particular, the Southern and Northern Annular Modes and related changes in the North Atlantic Oscillation. {3.6, 9.5, Box TS.2}
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GLOBAL AND CONTINENTAL TEMPERATURE CHANGE

Figure SPM.4. Comparison of observed continental- and global-scale changes in surface temperature with results simulated by climate 
models using natural and anthropogenic forcings. Decadal averages of observations are shown for the period 1906 to 2005 (black line) 
plotted against the centre of the decade and relative to the corresponding average for 1901–1950. Lines are dashed where spatial 
coverage is less than 50%. Blue shaded bands show the 5–95% range for 19 simulations from fi ve climate models using only the natural 
forcings due to solar activity and volcanoes. Red shaded bands show the 5–95% range for 58 simulations from 14 climate models using 
both natural and anthropogenic forcings.  {FAQ 9.2, Figure 1}
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Projections of Future
Changes in Climate

A major advance of this assessment of climate change 

projections compared with the TAR is the large number of 

simulations available from a broader range of models. Taken 

together with additional information from observations, 

these provide a quantitative basis for estimating likelihoods 

for many aspects of future climate change. Model 

simulations cover a range of possible futures including 

idealised emission or concentration assumptions. These 

include SRES14 illustrative marker scenarios for the 2000 

to 2100 period and model experiments with greenhouse 

gases and aerosol concentrations held constant after year 

2000 or 2100. 

For the next two decades, a warming of about 

0.2°C per decade is projected for a range of SRES 

emission scenarios. Even if the concentrations of 

all greenhouse gases and aerosols had been kept 

constant at year 2000 levels, a further warming of 

about 0.1°C per decade would be expected.  {10.3, 

10.7}

• Since IPCC’s fi rst report in 1990, assessed projections 
have suggested global average temperature increases 
between about 0.15°C and 0.3°C per decade for 1990 to 
2005. This can now be compared with observed values 
of about 0.2°C per decade, strengthening confi dence in 
near-term projections.  {1.2, 3.2} 

• Model experiments show that even if all radiative 
forcing agents were held constant at year 2000 levels, 
a further warming trend would occur in the next two 
decades at a rate of about 0.1°C per decade, due mainly 
to the slow response of the oceans. About twice as 
much warming (0.2°C per decade) would be expected 
if emissions are within the range of the SRES scenarios. 
Best-estimate projections from models indicate 
that decadal average warming over each inhabited 
continent by 2030 is insensitive to the choice among 
SRES scenarios and is very likely to be at least twice 
as large as the corresponding model-estimated natural 
variability during the 20th century.  {9.4, 10.3, 10.5, 
11.2–11.7, Figure TS-29} 

Analysis of climate models together with 

constraints from observations enables an assessed 

likely range to be given for climate sensitivity for 

the fi rst time and provides increased confi dence in 

the understanding of the climate system response 

to radiative forcing.  {6.6, 8.6, 9.6, Box 10.2}

• The equilibrium climate sensitivity is a measure of the 
climate system response to sustained radiative forcing. 
It is not a projection but is defi ned as the global average 
surface warming following a doubling of carbon 
dioxide concentrations. It is likely to be in the range 
2°C to 4.5°C with a best estimate of about 3°C, and is 
very unlikely to be less than 1.5°C. Values substantially 
higher than 4.5°C cannot be excluded, but agreement 
of models with observations is not as good for those 
values. Water vapour changes represent the largest 
feedback affecting climate sensitivity and are now 
better understood than in the TAR. Cloud feedbacks 
remain the largest source of uncertainty.  {8.6, 9.6, Box 
10.2} 

• It is very unlikely that climate changes of at least the 
seven centuries prior to 1950 were due to variability 
generated within the climate system alone. A signifi cant 
fraction of the reconstructed Northern Hemisphere 
inter-decadal temperature variability over those 
centuries is very likely attributable to volcanic eruptions 
and changes in solar irradiance, and it is likely that 
anthropogenic forcing contributed to the early 20th-
century warming evident in these records.  {2.7, 2.8, 
6.6, 9.3}

14 SRES refers to the IPCC Special Report on Emission Scenarios (2000). The SRES scenario families and illustrative cases, which did not include additional climate 
initiatives, are summarised in a box at the end of this Summary for Policymakers. Approximate carbon dioxide equivalent concentrations corresponding to the 
computed radiative forcing due to anthropogenic greenhouse gases and aerosols in 2100 (see p. 823 of the TAR) for the SRES B1, A1T, B2, A1B, A2 and A1FI illus-
trative marker scenarios are about 600, 700, 800, 850, 1250 and 1,550 ppm respectively. Scenarios B1, A1B and A2 have been the focus of model intercomparison 
studies and many of those results are assessed in this report.
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Continued greenhouse gas emissions at or above 

current rates would cause further warming and 

induce many changes in the global climate system 

during the 21st century that would very likely be 

larger than those observed during the 20th century.  

{10.3}

• Advances in climate change modelling now enable 
best estimates and likely assessed uncertainty ranges to 
be given for projected warming for different emission 
scenarios. Results for different emission scenarios are 
provided explicitly in this report to avoid loss of this 
policy-relevant information. Projected global average 
surface warmings for the end of the 21st century 
(2090–2099) relative to 1980–1999 are shown in Table 
SPM.3. These illustrate the differences between lower 
and higher SRES emission scenarios, and the projected 
warming uncertainty associated with these scenarios.  
{10.5}

• Best estimates and likely ranges for global average 
surface air warming for six SRES emissions marker 
scenarios are given in this assessment and are shown 
in Table SPM.3. For example, the best estimate for 
the low scenario (B1) is 1.8°C (likely range is 1.1°C 
to 2.9°C), and the best estimate for the high scenario 

(A1FI) is 4.0°C (likely range is 2.4°C to 6.4°C). 
Although these projections are broadly consistent with 
the span quoted in the TAR (1.4°C to 5.8°C), they are 
not directly comparable (see Figure SPM.5). The Fourth 
Assessment Report is more advanced as it provides best 
estimates and an assessed likelihood range for each of 
the marker scenarios. The new assessment of the likely 
ranges now relies on a larger number of climate models 
of increasing complexity and realism, as well as new 
information regarding the nature of feedbacks from the 
carbon cycle and constraints on climate response from 
observations.  {10.5}

• Warming tends to reduce land and ocean uptake of 
atmospheric carbon dioxide, increasing the fraction of 
anthropogenic emissions that remains in the atmosphere. 
For the A2 scenario, for example, the climate-carbon 
cycle feedback increases the corresponding global 
average warming at 2100 by more than 1°C. Assessed 
upper ranges for temperature projections are larger 
than in the TAR (see Table SPM.3) mainly because 
the broader range of models now available suggests 
stronger climate-carbon cycle feedbacks.  {7.3, 10.5} 

• Model-based projections of global average sea level 
rise at the end of the 21st century (2090–2099) are 
shown in Table SPM.3. For each scenario, the midpoint 
of the range in Table SPM.3 is within 10% of the 

Table SPM.3. Projected global average surface warming and sea level rise at the end of the 21st century.  {10.5, 10.6, Table 10.7}

Table notes:
a These estimates are assessed from a hierarchy of models that encompass a simple climate model, several Earth System Models of Intermediate 

 Complexity and a large number of Atmosphere-Ocean General Circulation Models (AOGCMs).
b Year 2000 constant composition is derived from AOGCMs only.

 Temperature Change Sea Level Rise 
 (°C at 2090-2099 relative to 1980-1999)a (m at 2090-2099 relative to 1980-1999)

 Best Likely Model-based range excluding future
Case estimate range rapid dynamical changes in ice fl ow

Constant Year 2000 
concentrationsb 0.6 0.3 – 0.9 NA

B1 scenario 1.8 1.1 – 2.9 0.18 – 0.38

A1T scenario 2.4 1.4 – 3.8 0.20 – 0.45

B2 scenario 2.4 1.4 – 3.8 0.20 – 0.43

A1B scenario 2.8 1.7 – 4.4 0.21 – 0.48

A2 scenario 3.4 2.0 – 5.4 0.23 – 0.51

A1FI scenario 4.0 2.4 – 6.4 0.26 – 0.59
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TAR model average for 2090–2099. The ranges are 
narrower than in the TAR mainly because of improved 
information about some uncertainties in the projected 
contributions.15  {10.6}

• Models used to date do not include uncertainties in 
climate-carbon cycle feedback nor do they include 
the full effects of changes in ice sheet fl ow, because a 
basis in published literature is lacking. The projections 
include a contribution due to increased ice fl ow from 
Greenland and Antarctica at the rates observed for 1993 
to 2003, but these fl ow rates could increase or decrease 
in the future. For example, if this contribution were to 
grow linearly with global average temperature change, 

the upper ranges of sea level rise for SRES scenarios 
shown in Table SPM.3 would increase by 0.1 to 0.2 m. 
Larger values cannot be excluded, but understanding of 
these effects is too limited to assess their likelihood or 
provide a best estimate or an upper bound for sea level 
rise.  {10.6}

• Increasing atmospheric carbon dioxide concentrations 
lead to increasing acidifi cation of the ocean. Projections 
based on SRES scenarios give reductions in average 
global surface ocean pH16 of between 0.14 and 0.35 
units over the 21st century, adding to the present 
decrease of 0.1 units since pre-industrial times.  {5.4, 
Box 7.3, 10.4}

Figure SPM.5. Solid lines are multi-model global averages of surface warming (relative to 1980–1999) for the scenarios A2, A1B and B1, 
shown as continuations of the 20th century simulations. Shading denotes the ±1 standard deviation range of individual model annual 
averages. The orange line is for the experiment where concentrations were held constant at year 2000 values. The grey bars at right 
indicate the best estimate (solid line within each bar) and the likely range assessed for the six SRES marker scenarios. The assessment of 
the best estimate and likely ranges in the grey bars includes the AOGCMs in the left part of the fi gure, as well as results from a hierarchy 
of independent models and observational constraints.  {Figures 10.4 and 10.29}

MULTI-MODEL AVERAGES AND ASSESSED RANGES FOR SURFACE WARMING

15 TAR projections were made for 2100, whereas projections in this report are for 2090–2099. The TAR would have had similar ranges to those in Table SPM.3 if it had  
treated the uncertainties in the same way.

16 Decreases in pH correspond to increases in acidity of a solution. See Glossary for further details.
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PROJECTIONS OF SURFACE TEMPERATURES

• Sea ice is projected to shrink in both the Arctic and 
Antarctic under all SRES scenarios. In some projections, 
arctic late-summer sea ice disappears almost entirely 
by the latter part of the 21st century.  {10.3} 

• It is very likely that hot extremes, heat waves and heavy 
precipitation events will continue to become more 
frequent.  {10.3}

• Based on a range of models, it is likely that future 
tropical cyclones (typhoons and hurricanes) will 
become more intense, with larger peak wind speeds 
and more heavy precipitation associated with ongoing 
increases of tropical sea surface temperatures. There is 
less confi dence in projections of a global decrease in 
numbers of tropical cyclones. The apparent increase 
in the proportion of very intense storms since 1970 in 
some regions is much larger than simulated by current 
models for that period.  {9.5, 10.3, 3.8} 

There is now higher confi dence in projected patterns 

of warming and other regional-scale features, 

including changes in wind patterns, precipitation 

and some aspects of extremes and of ice.  {8.2, 8.3, 

8.4, 8.5, 9.4, 9.5, 10.3, 11.1}

• Projected warming in the 21st century shows scenario-
independent geographical patterns similar to those 
observed over the past several decades. Warming is 
expected to be greatest over land and at most high 
northern latitudes, and least over the Southern Ocean 
and parts of the North Atlantic Ocean (see Figure 
SPM.6).  {10.3} 

• Snow cover is projected to contract. Widespread 
increases in thaw depth are projected over most 
permafrost regions.  {10.3, 10.6} 

Figure SPM.6. Projected surface temperature changes for the early and late 21st century relative to the period 1980–1999. The central 
and right panels show the AOGCM multi-model average projections for the B1 (top), A1B (middle) and A2 (bottom) SRES scenarios 
averaged over the decades 2020–2029 (centre) and 2090–2099 (right). The left panels show corresponding uncertainties as the relative 
probabilities of estimated global average warming from several different AOGCM and Earth System Model of Intermediate Complexity 
studies for the same periods. Some studies present results only for a subset of the SRES scenarios, or for various model versions. 
Therefore the difference in the number of curves shown in the left-hand panels is due only to differences in the availability of results.  
{Figures 10.8 and 10.28}
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PROJECTED PATTERNS OF PRECIPITATION CHANGES

Figure SPM.7. Relative changes in precipitation (in percent) for the period 2090–2099, relative to 1980–1999. Values are multi-model 
averages based on the SRES A1B scenario for December to February (left) and June to August (right). White areas are where less than 
66% of the models agree in the sign of the change and stippled areas are where more than 90% of the models agree in the sign of the 
change.  {Figure 10.9}

• Extratropical storm tracks are projected to move 
poleward, with consequent changes in wind, 
precipitation and temperature patterns, continuing the 
broad pattern of observed trends over the last half-
century.  {3.6, 10.3} 

• Since the TAR, there is an improving understanding 
of projected patterns of precipitation. Increases in the 
amount of precipitation are very likely in high latitudes, 
while decreases are likely in most subtropical land 
regions (by as much as about 20% in the A1B scenario 
in 2100, see Figure SPM.7), continuing observed 
patterns in recent trends.  {3.3, 8.3, 9.5, 10.3, 11.2 to 
11.9} 

• Based on current model simulations, it is very likely that 
the meridional overturning circulation (MOC) of the 
Atlantic Ocean will slow down during the 21st century. 
The multi-model average reduction by 2100 is 25% 
(range from zero to about 50%) for SRES emission 
scenario A1B. Temperatures in the Atlantic region 
are projected to increase despite such changes due to 
the much larger warming associated with projected 
increases in greenhouse gases. It is very unlikely that 
the MOC will undergo a large abrupt transition during 
the 21st century. Longer-term changes in the MOC 
cannot be assessed with confi dence.  {10.3, 10.7}  

Anthropogenic warming and sea level rise would 

continue for centuries due to the time scales 

associated with climate processes and feedbacks, 

even if greenhouse gas concentrations were to be 

stabilised.  {10.4, 10.5, 10.7}

• Climate-carbon cycle coupling is expected to add 
carbon dioxide to the atmosphere as the climate system 
warms, but the magnitude of this feedback is uncertain. 
This increases the uncertainty in the trajectory of 
carbon dioxide emissions required to achieve a 
particular stabilisation level of atmospheric carbon 
dioxide concentration. Based on current understanding 
of climate-carbon cycle feedback, model studies 
suggest that to stabilise at 450 ppm carbon dioxide 
could require that cumulative emissions over the 21st 
century be reduced from an average of approximately 
670 [630 to 710] GtC (2460 [2310 to 2600] GtCO2) to 
approximately 490 [375 to 600] GtC (1800 [1370 to 
2200] GtCO2). Similarly, to stabilise at 1000 ppm, this 
feedback could require that cumulative emissions be 
reduced from a model average of approximately 1415 
[1340 to 1490] GtC (5190 [4910 to 5460] GtCO2) to 
approximately 1100 [980 to 1250] GtC (4030 [3590 to 
4580] GtCO2).  {7.3, 10.4}
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• If radiative forcing were to be stabilised in 2100 at B1 
or A1B levels14 a further increase in global average 
temperature of about 0.5°C would still be expected, 
mostly by 2200.  {10.7}

• If radiative forcing were to be stabilised in 2100 at A1B 
levels14, thermal expansion alone would lead to 0.3 to 
0.8 m of sea level rise by 2300 (relative to 1980–1999). 
Thermal expansion would continue for many centuries, 
due to the time required to transport heat into the deep 
ocean.  {10.7}

• Contraction of the Greenland Ice Sheet is projected 
to continue to contribute to sea level rise after 2100. 
Current models suggest that ice mass losses increase 
with temperature more rapidly than gains due to 
precipitation and that the surface mass balance 
becomes negative at a global average warming 
(relative to pre-industrial values) in excess of 1.9°C 
to 4.6°C. If a negative surface mass balance were 
sustained for millennia, that would lead to virtually 
complete elimination of the Greenland Ice Sheet and 
a resulting contribution to sea level rise of about 7 m. 
The corresponding future temperatures in Greenland 

are comparable to those inferred for the last interglacial 
period 125,000 years ago, when palaeoclimatic 
information suggests reductions of polar land ice extent 
and 4 to 6 m of sea level rise.  {6.4, 10.7} 

• Dynamical processes related to ice fl ow not included 
in current models but suggested by recent observations 
could increase the vulnerability of the ice sheets to 
warming, increasing future sea level rise. Understanding 
of these processes is limited and there is no consensus 
on their magnitude.  {4.6, 10.7}

• Current global model studies project that the Antarctic 
Ice Sheet will remain too cold for widespread surface 
melting and is expected to gain in mass due to increased 
snowfall. However, net loss of ice mass could occur if 
dynamical ice discharge dominates the ice sheet mass 
balance.  {10.7}

• Both past and future anthropogenic carbon dioxide 
emissions will continue to contribute to warming and 
sea level rise for more than a millennium, due to the 
time scales required for removal of this gas from the 
atmosphere.  {7.3, 10.3}
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17 Emission scenarios are not assessed in this Working Group I Report of the IPCC.  This box summarising the SRES scenarios is taken from the TAR and has been 
subject to prior line-by-line approval by the Panel.

THE EMISSION SCENARIOS OF THE IPCC SPECIAL REPORT ON EMISSION SCENARIOS (SRES)17

A1. The A1 storyline and scenario family describes a future world of very rapid economic growth, global 
population that peaks in mid-century and declines thereafter, and the rapid introduction of new and more effi cient 
technologies. Major underlying themes are convergence among regions, capacity building and increased cultural 
and social interactions, with a substantial reduction in regional differences in per capita income. The A1 scenario 
family develops into three groups that describe alternative directions of technological change in the energy system. 
The three A1 groups are distinguished by their technological emphasis: fossil-intensive (A1FI), non-fossil energy 
sources (A1T) or a balance across all sources (A1B) (where balanced is defi ned as not relying too heavily on one 
particular energy source, on the assumption that similar improvement rates apply to all energy supply and end 
use technologies).

A2. The A2 storyline and scenario family describes a very heterogeneous world. The underlying theme is self-
reliance and preservation of local identities. Fertility patterns across regions converge very slowly, which results 
in continuously increasing population. Economic development is primarily regionally oriented and per capita 
economic growth and technological change more fragmented and slower than other storylines.

B1. The B1 storyline and scenario family describes a convergent world with the same global population, that 
peaks in mid-century and declines thereafter, as in the A1 storyline, but with rapid change in economic structures 
toward a service and information economy, with reductions in material intensity and the introduction of clean 
and resource-effi cient technologies. The emphasis is on global solutions to economic, social and environmental 
sustainability, including improved equity, but without additional climate initiatives.

B2. The B2 storyline and scenario family describes a world in which the emphasis is on local solutions to 
economic, social and environmental sustainability. It is a world with continuously increasing global population, at 
a rate lower than A2, intermediate levels of economic development, and less rapid and more diverse technological 
change than in the B1 and A1 storylines. While the scenario is also oriented towards environmental protection and 
social equity, it focuses on local and regional levels.

An illustrative scenario was chosen for each of the six scenario groups A1B, A1FI, A1T, A2, B1 and B2. All 
should be considered equally sound.

The SRES scenarios do not include additional climate initiatives, which means that no scenarios are included 
that explicitly assume implementation of the United Nations Framework Convention on Climate Change or the 
emissions targets of the Kyoto Protocol.




