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Abstract. Several sawmill simulators exist in the forest-product indus-
try. They are able to simulate the sawing of a log to generate the set
of lumbers that would be obtained by transforming a log at a sawmill.
In particular, such simulators are able to use a 3D scan of the exterior
shape of the logs as input for the simulation. However, it was observed
that they can be computationally intensive. Therefore, several authors
have proposed to use Artificial Intelligence metamodel, which, in general,
can make predictions extremely fast once trained. Such models can ap-
proximate the results of a simulator using a vector of descriptive features
representing a log, or, alternatively, the full 3D log scans. This paper pro-
poses to use dissimilarity to representative log scans as features to train
a Machine Learning classifier. The concept of class Medoids as represen-
tative elements of a class will be presented, and a Simlarity Discrimant
Analysis was chosen as a good candidate ML classier. This classifier will
be compared with two others models studied by the authors.

Keywords: Sawmill simulation · Artificial Intelligence · Iterative Clos-
est Point dissimilarity · Medoids · Similarity Discriminant Analysis

1 Introduction

The integration of 3D point cloud based tools in decision support systems has
been gaining attention in the past decades with the development of reliable
acquisition devices like terrestrial or airborne Lidar. For example, [18] reviews
different usages of 3D point cloud processing in the construction industry from
2004 to 2018, from construction progress tracking to 3D model reconstruction.
Similarly, [13] proposes a method to automatically model complex industrial
installations from 3D scan scenes by segmenting and comparing individual el-
ements with a model library. [16] proposes an application to industry 4.0 with
the creation of facility digital twins. The point clouds would be acquired from
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mobile phones and processed on remote servers to be transformed into multiple
2D views of the scene and fed to Artificial intelligence (AI) classification models.

Diverse usages of 3D scans similarly exists in the forest-wood industry and
in the related literature. For example, [12] proposes the use of 3D scans gener-
ated by a terrestrial Lidar to detect and classify defects on standing tree surfaces.
Similarly, scans of wood logs have been used for a long time in the sawmilling in-
dustry, which has several simulators as its disposal to process these point clouds.
The objective of these simulators is to simulate the sawing of the logs in a non
destructive way and generate production data. For example, [11] proposes to use
such scans and simulators to optimize the allocation of logs between several har-
vest sites and sawmills, using the simulated basket of products which would be
obtained by transforming sampled logs at each possible sawmill. Since introduc-
ing new machinery to sawmills might require heavy investment, it additionally
appears of particular interest to provide solutions using existing or low cost laser
scanners.

Considering, however, that traditional point cloud processing methods can be
extremely time consuming [13], AI based methods have been gaining attention
in the literature. For example, multiple works have been published in the past
few years proposing new deep learning models trained on huge CAD databases.
The interested reader may refer to [6] for a survey on the field. The use of these
neural networks to predict log basket of products has been studied recently by
[8], with interesting results.

In this paper, we propose to rather use a variant of Naive Bayes classifiers
which uses dissimilarity to class medoids as input features. This model is named
Similarity Discriminant Analysis (SDA) [3] in the literature. Such a model has,
indeed, the advantage of being trainable with relatively few data. Furthermore,
training such a classifier doesn’t require the extraction of knowledge based fea-
tures and is, therefore, completely data driven. This methodology was tested on
a dataset from the Canadian sawmilling industry.

This paper is structured as follow. Section 2 reviews previous works about
the use of ML simulation metamodels in the wood industry. The SDA classifier
is briefly explained in section 3. Section 4 presents the experimental setup and
simulation results. Section 5 will conclude and gives some perspectives.

2 Previous works on sawmill simulation metamodeling

Breaking a log into lumbers is a divergent process with co-production. Several
different products are, indeed, simultaneously obtained from the sawing of one
log. Additionally, these lumbers can have various dimensions and grades. For
this reason, this process is sometime compared with a disassembly process. Due
to the fact that this sawing process can be automatized, with online optimizers,
and that logs are heterogeneous in terms of shape and quality, it is difficult to
predict in advance the lumber output of a log. The sawmill industry, however,
has numeric simulators at its disposal to compute the set of lumbers, called in
this paper basket of products, which would be obtained by processing a specific
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log at a modeled sawmill. Such simulators can use 3D point clouds obtained by
laser scanners. Examples are Optitek [5], Autosaw [17] or Sawsim [7], which, in
particular, proposes the assessment of multiple sawmill designs as an example
of typical use. Similarly, [19] proposes the use of a sawmill digital simulation
to optimize a tactical production plan taking into consideration the acceptation
of orders with unusual products. Indeed, to respond positively to such an order
would have an impact on the whole lumber mix produced at the sawmill.

These simulators can, however, be computationally intensive. For example,
depending on the simulation setting and log scan, computing the resulting basket
of products for one log can take from a few seconds to 3 hours and more using
Optitek. Considering that fact, [10] proposed to approximate these simulators
with AI metamodels. In particular, several Machine Learning (ML) classifiers
are trained on results from past simulations. These models include k Nearest
Neighbors (kNN) and Random Forest. The input features used as input of these
classifiers are know-how features describing each log, like, for example, their
length and volume. A further work, [9], considers the problem of logs allocation
to sawmills. By using machine learning metamodels, this study demonstrates
that it is possible to increase significantly the value of the objective function be-
ing optimized. While this objective function doesn’t represent the actual benefit
obtained at a real sawmill, their numeric experiments are promising. Consider-
ing, however, that contrary to sawmill simulators those classifiers only used six
features describing the logs, [15] proposed to use a kNN based on a point cloud
dissimilarity. A drawback of this method is that computing this dissimilarity
involves the Iterative Closest Point (ICP) algorithm [2], which can be relatively
computationally intensive, especially since multiple ICP are needed by the kNN
to yield each prediction. Each new log has, indeed, to be compared with all
known logs in an example database. [4] later proposed to reduce the number
of ICP needed to yield a prediction by implementing a set of rules to filter out
unnecessary comparisons. While this approach reduce in average by more than
half the number of ICP comparisons needed for a prediction, several hundreds
are still required. In this paper, another approach is considered, which is to use
a dissimilarity as feature scheme [14]: a few representative logs are selected, and
a new log is represented by its vector of dissimilarity to these features.

3 Similarity discriminant analysis

Following is a description of the SDA, a naive bayes classifier using similarity to
medoids as features.

3.1 Medoids

As presented in [14], the use of an euclidean metric is central to numerous stan-
dard ML algorithms. Several methods have been proposed to adapt them when
the data points are unstructured and cannot be easily considered member of
a metric space, but are, instead, only known by comparison among themselves
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using a non metric similarity (or dissimilarity) measure. One of these methods
considers the use of dissimilarity toward representative elements of the dataset
as features. These features can then be used like any standard vector representa-
tion. [1] shows that under some theoretical conditions on the similarity function,
a binary classifier with bounded error can be learned from a representation of
data points as a vector of similarities to a subset of other randomly sampled
points. Similarly, [3] proposed to use medoids as representative points.

Class medoids are, indeed, a natural choice for class representatives when
the data points composing said class can’t be easily averaged to form a class
mean. Considers x1, x2, ..., xn the n elements of a class in a database, i.e, in this
paper, the n logs sharing a particular basket of products. The class medoid µ is
a central element of the class, i.e:

µ = arg min
j∈{1,2,...,n}

1

n

n∑
i=1

d(xj , xi) , (1)

with d the ICP dissimilarity. The medoid is, therefore, the member of the class
with minimal average dissimilarity with all the other class members. Contrary
to the class mean, it is a real member of the database.

In this paper, the medoids of each p classes, µ1, ..., µp are used to represent
log scans in the following way. Let x be a new log scan. It is represented by the p
dimensional vector (d(µ1, x), d(µ2, x), ..., d(µn, x)), i.e, the vector of dissimilarity
between x and each medoid.

The dataset used in this paper contains numerous classes. Some of them are
extremely rare, to the point of appearing only once or twice in the whole dataset.
therefore, a medoid is considered only if the class it belongs to appears more than
once in the dataset used for training the ML classifier. SDA parameters need,
indeed, strictly more than one sample per class to be estimated. Therefore, when
a class appears too rarely in the dataset, it isn’t taken into consideration by the
classifier. This also implies, however, that such a class can never be predicted
correctly.

3.2 Similarity Discriminant Analysis

SDA is a generative classifier introduced by [3]. It is specifically tailored for cases
where data inputs are only known from similarities or dissimilarities comparison
among themselves. More particularly, considering a vector T x = (tx1 , ..., t

x
p) of

dissimilarities to the class medoids, the model aims at modeling the probability
P(Y = j|T x) for all possible classes j ∈ {1, ..., p}. The class predicted for x is
then the class which minimize the expected misclassification cost, i.e:

ŷ = arg min
j∈(1,...,p)

EP(Y |Tx)(Cost(j, Y )), (2)

where Cost(j, Y )) represents the cost of predicting the class j for x, while its
real class is Y .
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[3] authors give an elegant argument based on Bayes theorem and entropy
maximization to justify their proposed estimator for this quantity, leading to the
following formula for the prediction ŷ:

ŷ = arg min
i∈(1,...,p)

∑
j∈(1,...,p)

Cost(i, j)(

p∏
k=1

λjke
−λjkt

x
k )P(Y = j) , (3)

with 1
λjk

= 1
|J|

∑
x with label j t

x
k, |J | the number of elements with label j in

the training database. 1
λjk

is, therefore, the average dissimilarity from the class j

to the medoid µk. The probabilities P(Y = j) are, generally, unknown. They are,
therefore, inferred from the training set. The Cost function used in this paper is
1− spre×pro, with spre×pro defined in section 4.

This model was implemented using the programming language Python.

4 Experiment

This section present our experiments on a logs 3D scan database. The results
from the SDA models are compared with the results from two other models,
previously studied in [4].

4.1 The log database

The database used in this paper was provided by the Canadian wood industry.
It contains the scans of 1207 logs, and their associated baskets of products,
computed by the sawing simulator Optitek. Each scan is a point cloud composed
of a succession of ellipsoid which, together, sample the log surface. The original
scans had empty sections, i.e missing ellipsoids, leading to poor performances of
the ICP algorithm when computing scan dissimilarities. This behavior had been
corrected by repeating the ellipsoid immediately preceding an empty section to
fill it. The database contains 19 types of lumbers. The basket of products y
associated with a log x can, therefore, be represented by a vector of length 19.
The ith element of this vector is then the number of lumbers of type i present
in x basket of products. It might be noticed that no basket contains more than
five different types of lumbers and that, therefore, the vectors y are sparse.

The database contains in total 105 different baskets, each being considered
a class in our classification problem and is represented by a number from 1 to
105.

4.2 Evaluation scores

When training ML classifiers, scores have to be introduced to measure and com-
pare their performances. The most commonly used score is, probably, the 0-1
score, s01, defined as:
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Fig. 1. Example of a log 3D scan

s01(y, ŷ) =

{
1, if y = ŷ

0, otherwise
, (4)

with y the true label of a data point x, and ŷ its predicted label. Such a
score is then averaged over all the data points in a test dataset to estimate the
probability for the classifier to predict the real class of any point x.

However, it might appear desirable for the cost of making a false prediction to
vary depending on the true class label y and false prediction ŷ. The prediction-
production score, spre×pro, was specifically introduced in [10] for the problem
of sawmill simulator metamodelling. Let y and ŷ be once again the real and
predicted baskets of products associated with a log x. Since these vectors are
sparse, counting all the (0, 0) real/predicted pairs contained in these vectors
would skew the scores optimistically, all such pairs are, therefore, removed. The
new length of y and ŷ is called l. the prediction score, spre, is defined as:

spre =
1

l

l∑
i=1

min(1,
ŷi

max(ε, yi)
) , (5)

with ε a small value to avoid dividing by 0. Similarly, the prediction score,
spro, is defined as:

spro =
1

l

l∑
i=1

min(1,
yi

max(ε, ŷi)
) . (6)

spre can be interpreted as the proportion of real basket that was predicted,
while spro is the proportion of the prediction that was effectively produced.

The prediction-production score is then naturally defined as:

spre×pro = spre × spro . (7)
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4.3 Results and discussion

For training and testing the SDA, the log database was randomly separated 10
times into a train test of size 724, i.e, 60% of the database, and a test set of
size 483, i.e, 40% of the database. The results from the SDA are, furthermore,
compared with two other models from [4]. the first one is a classic k nearest
neighbors algorithm. The second is a kNN which uses a set of rules to filter out
unnecessary ICP comparisons. This model is named r-kNN in this section. The
rules used to filter these comparisons are :

– If a log is shorter than the length of the smallest possible lumber, it is
attributed an empty basket of product without performing any comparison.

– Since logs come in a few standard length, two logs are compared only if they
have the same length.

For both of these models, k was fixed to 25 as in [4].

Fig. 2. Boxplots of the average prediction-production scores over the 10 train-test
separations for each model. The averaged ratio of the number of ICP needed to yield
a prediction over the total size of the train set are presented as well. The scores are in
percent

The boxplots of the spre×pro scores of each model over the ten train-test
are presented figure 2. As can be seen, r-kNN has the highest spre×pro scores
among the three models, while kNN and SDA are comparable. What strongly
counterbalance this lesser prediction performance for SDA, compared with r-
kNN, is, however, an important reduction of the number of ICP comparisons
needed to yield a prediction. While kNN needs to compare the new log with the
whole training database and r-kNN with, in average, 40% of the database, SDA
needs only to compare it with 3% of the database, i.e, only with the medoids.
Additionally, while the number of comparisons needed would increase linearly in
the size of the training database for r-kNN, it would remain constant for SDA
as long as no new class appears in the dataset.
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The average values of the compared models evaluation scores are further
presented in table 1. These evaluation scores are mean spre, mean spro, mean
spre×pro and mean s01, averaged over the ten random separations in train and
test sets. The highest scores among both models are set in bold. As previously,
r-kNN has slightly higher evaluations scores than the SDA model, except for the
production score. However, when comparing the 0-1 scores of r-kNN and SDA
using a Mcnemar test, the minimum pvalue of the test among the ten experiments
was 6 %. The error rate difference among the models can, therefore, never be
considered significant at a 5% confidence level in any of our experiments. The
difference in score is, indeed, only around 2% in average for both s01 and spre×pro.
To deem this difference acceptable or not would depend on the actual industrial
application considered.

Model spre spro spre×pro s01 ICP ratio

kNN 89.2± 0.5 85.5± 0.9 77.5± 0.8 66.5± 0.1 100

r-kNN 89.3± 0.5 88.2± 0.6 80.1± 0.7 69.0± 0.9 42± 1

SDA 85.2± 0.7 89.8± 0.5 77.8± 0.7 67.2± 0.1 3.2± 0.2

Table 1. Evaluation scores of SDA and r-kNN, averaged over ten random separations
of the database into a train and a test set, as well as the averaged ratio of the number
of ICP needed to yield a prediction over the total size of the train set. The scores are
similarly presented in percent.

5 Conclusion

This paper explores the use of medoids as features to train a well understood
ML classifier to the task of predicting the baskets of products of 3D log scans.
In particular, this method improves on previous works using kNN classifier by
reducing drastically the number of ICP comparisons needed to compare a new
log with a known database from 40% to 3% of the size of the training set, with
a limited reduction in score.

A second advantage of this method is that it doesn’t require complex feature
extraction and, therefore, it would be of interest to generalize it to other point
cloud applications.

Furthermore, while the SDA was specifically introduced for case with non
metric similarities, the representation as a vector of dissimilarities to medoids
could be used with other off the shelf ML classifiers. In particular, further works
will consider using this representation with Random Forest classifiers and Multi
Layer Perceptrons.
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generation of digital twins for facility management based on 3d point clouds. In:
Proceeding of the 34th Annual ARCOM Conference. vol. 2018, pp. 270–279 (2018)

17. Todoroki, C., et al.: Autosaw system for sawing simulation. New Zealand Journal
of Forestry Science 20(3), 332–348 (1990)

18. Wang, Q., Kim, M.K.: Applications of 3d point cloud data in the construction in-
dustry: A fifteen-year review from 2004 to 2018. Advanced Engineering Informatics
39, 306–319 (2019)



10 Chabanet, S., Chazelle, V.,, Thomas, P., Bril El-Haouzi, H.

19. Wery, J., Gaudreault, J., Thomas, A., Marier, P.: Simulation-optimisation based
framework for sales and operations planning taking into account new products
opportunities in a co-production context. Computers in industry 94, 41–51 (2018)


