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Abstract

In financial risk management, modelling dependency within a random vector X is
crucial, a standard approach is the use of a copula model. Say the copula model can
be sampled through realizations of Y having copula function C: had the marginals of Y
been known, sampling X (i), the i-th component of X , would directly follow by composing
Y(i) with its cumulative distribution function (c.d.f.) and the inverse c.d.f. of X (i). In
this work, the marginals of Y are not explicit, as in a factor copula model. We design an
algorithm which samples X through an empirical approximation of the c.d.f. of the Y-
marginals. To be able to handle complex distributions for Y or rare-event computations,
we allow Markov Chain Monte Carlo (MCMC) samplers. We establish convergence results
whose rates depend on the tails of X , Y and the Lyapunov function of the MCMC sampler.
We present numerical experiments confirming the convergence rates and also revisit a real
data analysis from financial risk management.
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1 Introduction

1.1 Statement of the problem

Let X be a Rd-valued random variable, we aim at computing statistics of the form

E (g(X )) .
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We focus on the case where sampling directly X is not feasible. Namely, the marginal cu-
mulative distribution functions (c.d.f.’s) F (i) of X (i) are known, but the copula C, although
existing owing to Sklar’s Theorem (see [Joe14]), is not explicit. In summary, we assume the
probabilistic model for X is given by

X = (X (1), . . . ,X (d)) ∼ C(F (1)(·), . . . , F (d)(·)). (1.1)

We are investigating a framework where the copula C coincides with that of a vector Y = Φ(Z)
with a measurable function Φ : RD → Rd and a RD-valued random variable Z which can
be sampled, by Monte Carlo (MC) or Markov Chain Monte Carlo (MCMC) schemes. The
marginals G(i) of Y(i) may be not explicit or tractable: hence the following usual simulation
scheme can not be applied (because at line 3, G(i) is unknown).

Algorithm 1: Usual sampling of X through sampling of Z (see [CLV04, Th.
4.8 p.143])

Input: (F (i))−1 the quantile of X (i), G(i) the c.d.f. of Y(i)

Output: X = (X (1), . . . ,X (d)) sampled with the distribution (1.1)
1 Sample Z
2 Compute Y = Φ(Z)

3 Get U = (U1, . . . , Ud) = (G(1)(Y(1)), . . . , G(d)(Y(d)))

4 Set X (i) = (F (i))−1(Ui)

In the following we assume that the marginal c.d.f.’s G(i) and F (i) are continuous.
To overcome the unfeasibility of Algorithm 1, our strategy is to build empirically, using n
samples of Y, the c.d.f. G(i) of Y(i): this approximation will induce some error on G(i) which
will have an impact of the resulting generated sample (X̂k : 1 ≤ k ≤ n). The goal of this
paper is to analyse the overall error as a function of n, by considering two criterions:

� the strong error in Lp norm (using n samples)
∣∣∣g(Xn)− g(X̂n)

∣∣∣
p

(see Theorem 2.7),

� the statistical fluctuation
∣∣∣ 1
N

∑N
n=1 g(X̂n)− E (g(X ))

∣∣∣
p

(see Corollary 2.9).

To achieve this research program, we have to cope with two major difficulties, which makes
our contributions non trivial, interesting and new:

� In many applications, the samples (Yn, n ≥ 1) may not be independent and may not
have the target distribution of Y. Indeed, sampling Y may be possible only through a
MCMC scheme, see Section 3 below.
Along the mathematical analysis of the approximation of G(i), the c.d.f. of Y(i), we
will have to measure how fast the sampled Yn will (weakly) converge to the target
distribution and how well the statistical fluctuation of ergodic averages are controlled:
we will be working under standard assumptions of geometric ergodicity (via a Lyapunov
condition on the Markov kernel). We will provide simplified Lyapunov functions leading
to geometric ergodicity, see Section A.2, some of them being seemingly new to the best
of our knowledge. Fortunately (see Section A.2.2) these assumptions are also compatible
with standard i.i.d. sampler.
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� The quantile functions (F (i))−1 are far from being Lipschitz bounded (e.g. for a Pareto
distribution, it behaves as (1− u)−1/η as the quantile u → 1, see Example 2.2). Hence
the error on G(i) will propagate highly non-linearly on the sample of X : it may affect the
global rate of convergence, which instead of being N−1/2 for usual MC procedure may be
N−ζ with an order ζ < 1

2 depending on the trade-off between the singularity/growth of

the quantiles (F (i))−1 and the Lyapunov function. Our numerical experiments confirm
this trade-off (see Section 3).

To better understand the set of assumptions that will be used throughout this work, let us
now give some examples. The first example shows that a wide family of interesting copulas
are obtained as described above, but with unknown marginals. The second example exhibits
some of the statistics we are interested in this work.

1.2 Examples

Example 1.1 (Factor copula). We consider the factor copulas, investigated by [OP17], which
are the copulas for Y obtained as follows. Take a vector of factors M = (M(1), . . . ,M(J))
and idiosyncratic errors ε = (ε(1), . . . , ε(d)); the components of (M(1), . . . ,M(J), ε(1), . . . , ε(d))
are independent and those of (ε(i))di=1 are identically distributed (thus i.i.d.).
Then, for each 1 ≤ i ≤ d, set Y(i) := h(i)(M, ε) for some measurable function h(i) : RJ+d → R.
In the notations of our work, one can set D = J+d, Z := (M(1), . . . ,M(J), ε(1), . . . , ε(d)) and
Φ(i) := h(i) (1 ≤ i ≤ d).
More generally, one can also consider f : RD 3 Z 7→ (M(1), . . . ,M(J), ε(1), . . . , ε(d)) ∈ RJ+d

and Φ(i) := h(i) ◦ f (1 ≤ i ≤ d). This more general formulation will be used in our second
numerical example, see Section 3.2.
Several well known copulas can be retrieved through judicious choices ofM, ε and Φ (see Table
1). When Φ(i) is linear we have a particular sub-class of copulas, the linear factor copulas.
Even in the linear case, depending on the distributions of M and ε, the marginals of Y may
not be explicitly known.
To the best of our knowledge, the idea of using a factor model to extract the dependence struc-
ture was first proposed in [MDCL13], but only explored for Gaussian copulas. An application
can be found in [CMS15], where the authors use a linear, one-factor copula in the context
of mortality modeling of multiple populations. The models tested in [CMS15] are a combina-
tion of Gaussian, student t and skew-t (see Appendix A.3) distributions for the factor and
idiosyncratic shocks. A similar copula model is used in [BZ16], for modeling stock returns.
In Section 3.2 we follow the example from [OP17, Section 4.2] and use a one-factor, skew-t-t
copula.

Example 1.2 (Multivariate extreme risks). We are concerned with statistics of X when some
components are extreme: it takes usually the generic form

E
(
g(X ) | X (i) ≥ x(i), i ∈ I

)
, E

(
g(X )1X (i)≥x(i),i∈I

)
(1.2)

for some subset I ⊂ {1, . . . , d} and x(i) possibly large.
Various quantities of interest take this form:
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Copula h(i)(M, ε) FM Fε
Normal M+ ε(i) N (0, σ2

M) N (0, σ2
ε )

Student’s t M1/2ε(i) InvGa(ν/2, ν/2) N (0, σ2
ε )

Skew t λM+M1/2ε(i) InvGa(ν/2, ν/2) N (0, σ2
ε )

Clayton (1 + ε(i)/M)−α Γ(α, 1) Exp(1)

Gumbel −(logM/ε(i))α Stable(1/α, 1, 1, 0) Exp(1)

Table 1: Special cases of known copulas as one factor copulas (adapted from [OP17]).

1. (Stable tail dependence function (s.t.d.f.)). Assessing multivariate extreme risks is
closely related to estimate the extremal dependence structure, which is described by the
s.t.d.f. L given by

lim
t→+∞

t P
[
1− F (1)(X (1)) ≤ x1/t or . . . or 1− F (1)(X (1)) ≤ xd/t

]
= L(x1, . . . , xd),

∀x1 > 0, . . . , xd > 0. (1.3)

The existence of the above limit is discussed in [DF07, Chapter 7]. See [Hua92] for
pioneering works about s.t.d.f., [dR93] for statistical estimation, [Fal19] for a recent
account on multivariate extreme value theory.
Suppose we are able to generate a sample of X , as in the goal of this work. Then an
empirical version of (1.3) can be designed by taking t large; bias corrections (accounting
for finite t) are discussed in [BEGG16]. The resulting approximate s.t.d.f. L is then a
linear combination of quantities like the RHS of (1.2).

2. (Tail dependence coefficients). When x(i) are taken as a-quantiles, denoted in Risk

Management context by x(i) = VaRa

(
X (i)

)
=
(
F (i)

)−1
(a), we obtain several measures

of interest. For instance,

(a) Coefficients of upper and lower tail dependence ([MFE10, Section 7.2.4]):

λuij = lim
a→1−

P
[
X (i) > VaRa

(
X (i)

) ∣∣∣X (j) > VaRa

(
X (j)

)]
= lim

a→1−

Cij(1− a, 1− a)

1− a
,

λlij = lim
a→0+

P
[
X (i) < VaRa

(
X (i)

) ∣∣∣X (j) < VaRa

(
X (j)

)]
= lim

a→0+

Cij(a, a)

a
,

where Cij is the copula between X (i) and X (j). In Finance and Insurance one is
particularly interested in λuij, which is understood as the probability of asset i having
a very large loss given that asset j has had one itself.

(b) Coefficients of multivariate upper and lower tail dependence:

λu1,...,d = lim
a→1−

P
[
X (1) > VaRa

(
X (1)

) ∣∣∣X (2) > VaRa

(
X (2)

)
, . . . ,X (d) > VaRa

(
X (d)

)]
,

λl1,...,d = lim
a→0+

P
[
X (1) < VaRa

(
X (1)

) ∣∣∣X (2) < VaRa

(
X (2)

)
, . . . ,X (d) < VaRa

(
X (d)

)]
,
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see [DR12] for explicit computations with an Archimedean copula.

3. (Semi-correlation). The upper and lower semi-correlations were introduced in [AC02]
and [Gab05], respectively, as

ρ+
ij = Corr(X (i),X (j) | X (i) > 0, X (j) > 0),

ρ−ij = Corr(X (i),X (j) | X (i) < 0, X (j) < 0).

Here, the above quantities are of the form (1.2) but with non-large x(i).
Explicit computations in the Gaussian case can be found in [Joe14, Section 2.17].

4. (k-Expected Shortfall). If X is a vector of (negative) returns, a Risk Manager can be
interested in computing the expected return on its i-th position conditional on k+1 stocks
in the market having negative returns above some threshold C, i.e.

(k − ES)(i) = E

X (i)

∣∣∣∣∣
 d∑
j=1

1{X (j)≥C}

 > k

 .

This measure has been studied in [OP17] and is also discussed in Section 3.2, below.

1.3 Organization of the paper

In Section 2, we define the model and related notations, provide the sampling algorithm, and
state main convergence results under some assumptions. Extensions are also discussed. Sec-
tion 3 is dedicated to numerical experiments, to illustrate the algorithm and the convergence
rates derived in the previous section. Section 4 gathers the proofs of convergence results. We
conclude in Section 5 and collect some technical results in Appendice A.

Throughout the paper, the c.d.f. of the standard Gaussian random variable N ∼ N (0, 1) is
denoted by FN (x) = P [N ≤ x]. We recall Mill’s inequalities: for any x > 0,

x

x2 + 1

e−
x2

2

√
2π
≤ FN (−x) ≤ 1

x

e−
x2

2

√
2π
. (1.4)

2 Main results

2.1 Setting

On a probability space (Ω,F ,P), let Z be a D-dimensional random vector (D ≥ 1) with
distribution π, taking values in AZ ⊂ RD.
For a measurable map Φ = (Φ(i))di=1 : AZ → Rd, let Y := Φ(Z) be a d-dimensional random
vector. For each 1 ≤ i ≤ d, we denote by G(i) the i-th marginal c.d.f. of Y, which is not
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assumed to be known.

We set U :=
(
U (i)

)d
i=1

:=
(
G(i)(Y(i))

)d
i=1

and X :=
(
X (i)

)d
i=1

:=
((
F (i)

)−1 (
U (i)

))d
i=1

where,

for each 1 ≤ i ≤ d, F (i) is a fixed cumulative distribution function.
The relationships are summarized in the following diagram:

Z =

Z
(1)

...
Z(D)

 Φ→ Y =

Y
(1) = Φ(1)(Z)

...
Y(d) = Φ(d)(Z)

→ U =

U
(1) = G(1)

(
Y(1)

)
...

U (d) = G(d)
(
Y(d)

)
→


X (1) =

(
F (1)

)−1 (
U (1)

)
...

X (d) =
(
F (d)

)−1 (
U (d)

)
 = X .

To compute statistics on X , one needs to sample from Z and perform the transforms above.
One could, of course, use a crude Monte Carlo independent sample of Z (and empirical c.d.f.
approximations for G(i), 1 ≤ i ≤ d) to obtain an (approximately) independent sample of
X . However, as shown in Example 1.2, we might be interested in computing conditional
expectations with respect to a (rare) event A. A naive simulation scheme with acceptance-
rejection in A is inefficient, especially if the event A has a small probability, see [AG07, Chapter
6]. In case of a rare-event regime, one is better off using dedicated numerical schemes, one of
them being a MCMC sampler to approximate X conditionally to A; see [AB01], [GL15] for
instance. More generally, direct independent MC sampling of Z may not be feasible (because
its distribution is too complex) and the only alternative may be to sample a Markov chain
which on the long run has the same distribution of Z. These situations motivate our general
set-up where Z is sampled (possibly approximately) using a MCMC scheme.
Let us mention already that the set of assumptions under which we work will allow to consider
the independent sampler as well, see also Section A.2.2.
We now introduce the algorithm, making use of a MCMC sampler which invariant distribution
is the distribution of Z.

2.2 The algorithm

As explained above, we introduce aD-dimensional ergodic Markov chain
(
Zk = (Z(i)

k , 1 ≤ i ≤ D)
)
k≥0

,

AZ -valued, with Markov kernel P and invariant probability measure π.
As the marginal c.d.f.’s G(i) of Y(i) are not explicitly known, we cannot directly use Algorithm
1. The aim of this work is to study the following algorithm, analogous to Algorithm 1, where
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the G(i)’s are computed along the sampling scheme.

Algorithm 2: sampling of X via sampling of Z and approximation of G(i)

Input: (F (i))−1 the quantile of X (i), Z0 ∈ AZ (deterministic)

Output: Xk =
(
X (1)
k , . . . ,X (d)

k

)
for 1 ≤ k ≤ n.

for k ← 1 to n do
1 Sample Zk from P(Zk−1, ·).
2 Compute Yk = Φ(Zk).
3 Approximate and mollify G(i) by

G̃
(i)
k (y) :=

1

2
√
k

+

(
1− 1√

k

)(
1

k

k∑
`=1

1Y(i)
` ≤y

)
.

4 Set V
(i)
k := G̃

(i)
k

(
Y(i)
k

)
and Vk :=

(
V

(i)
k

)d
i=1

.

5 Set X (i)
k :=

(
F (i)

)−1
(
V

(i)
k

)
and Xk :=

(
X (i)
k

)d
i=1

.

For all 1 ≤ k ≤ n and 1 ≤ i ≤ d, we also define W
(i)
k := G(i)

(
Y(i)
k

)
for Wk =

(
W

(i)
k

)d
i=1

.

Heuristically, G̃
(i)
k (y) converges to G(i)(y) in Lp-sense as k → +∞, for any y (thanks to ergodic

properties of the MCMC sampler) and in fact, the convergence is uniform in y (see Theorem
2.5). Consequently, Vk and Wk will be close to each other (see Theorem 2.7), and the latter

is close in distribution to
(
G(i)

(
Y(i)

))d
i=1

as requested. The role of terms 1/
√
k in G̃(i) is to

slightly mollify the empirical c.d.f. to discard values 0 and 1 before generating X (i)
k : this is

somehow important for the algorithm stability (see Proposition 2.6) since the X (i) may be
unbounded (resulting in singular (F (i))−1 at 0 or 1).
Let g : Rd → R be a measurable map. Our interest lies in the approximation of E (g(X )).
Using this algorithm, we consider the two approximations

E (g(Xn)) and
1

n

n∑
k=1

g(Xk).

Under the hypotheses that we introduce in the next subsection, we quantify the convergence
rates of these two approximations.
We first obtain a weak convergence result, showing that the first approximation converges to
E (g(X )), see Corollary 2.8. We moreover prove that a strong convergence theorem holds for
the Monte Carlo averages, see Corollary 2.9.

2.3 Assumptions

(A-i) The transition kernel P of the Markov chain (Zk : k ≥ 0) satisfies the following:

� P is Ψ-irreducible aperiodic transition kernel on some measurable subset AZ ⊂ RD;
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� there exist some constants 0 ≤ ρ(P) < 1, b < ∞, ν > b
1−ρ(P) and a measurable

Lyapunov function L : AZ 7→ [1,∞) such that {L ≤ ν} is 1-small and satisfying to

PL ≤ ρ(P)L+ b. (2.1)

(A-ii) The initial point of Z0 ∈ AZ is deterministic.

(A-iii) There exists qmax ∈ [−1, 0) such that for all q > qmax and all i ∈ {1, . . . , d}, the map(
G(i) ◦ Φ(i)

)q
+
(
1−G(i) ◦ Φ(i)

)q
from AZ to R is bounded in L-norm, i.e.

sup
AZ

(
G(i) ◦ Φ(i)

)q
+
(
1−G(i) ◦ Φ(i))

)q
L

< +∞.

(A-iv) For each 1 ≤ i ≤ d, the marginal c.d.f. G(i) of Y(i) in the stationary regime is continuous.

(A-v) Let g : Rd → R such that

ϕ := g ◦
(

(F (1))−1, . . . , (F (i))−1, . . . , (F (d))−1
)

(2.2)

is measurable on [0, 1]d, continuous on (0, 1)d and that there exists a slowly varying1

function ` : (0, 1] → (0,∞) at 0, which is bounded on any closed interval of (0, 1], and
a parameter 0 ≤ γ < −qmax such that, for all (u, v) ∈ (0, 1)d × (0, 1)d,

|ϕ(u)− ϕ(v)| ≤
d∑
i=1

`(ui ∧ vi)|ui − vi|
(ui ∧ vi)γ+1

+

d∑
i=1

`(1− ui ∨ vi)|ui − vi|
(1− ui ∨ vi)γ+1

, (2.3)

|ϕ(u)| ≤
d∑
i=1

`(ui)

uγi
+

d∑
i=1

`(1− ui)
(1− ui)γ

. (2.4)

Remark 2.1. (a) Assumption (A-i) is natural in our setting in order to use geometric
convergence theorems which we recall in the Appendix, see Theorem A.1. Moreover, this
assumption is satisfied for the Gaussian sampler (see Section A.2.1), which allows us to
construct numerical examples in the spirit of Example 1.1. In addition, the independent
sampler (sampling i.i.d. Z) also satisfies to this assumption. See Section A.2.2 for
getting the Lyapunov function which is involved in the next assumptions.

(b) Assumption (A-iii) is a technical assumption which allows to show that, for each 1 ≤
i ≤ d and k ≥ 1, the random variable V

(i)
k have negative moments up to qmax, see

Proposition 2.6.
Note that for non-negative q, the inequality obviously holds since G(i) ∈ [0, 1] and L is
bounded from below by 1. Interesting values of q are those in the interval (qmax, 0).

1According to [BGT87, Section 1.2], ` is slowly varying in the Karamata sense if `(λu)
`(u)

→ 1 as u → 0 for
any λ > 0.
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(c) Assumption (A-iv) ensures that U (i) is uniformly distributed for all 1 ≤ i ≤ d.

(d) Assumption (A-v) is a quantitative control for the behaviour of ϕ near ui = 0 and ui = 1.
In the case where g is Lipschitz-continous, this is directly related to the heavyness of the
tails of X (i). This hypothesis is minimal in the sense that we include the marginals with
the heaviest tails which are approximated using a MCMC sampler satisfying the previous
assumptions. We have a particular view towards applications where X (i) is heavy tailed,
see Example 3.2.

We now compute, for some given functions g and F (i), the number γ from Assumption (A-
v). The particular example of a marginal Pareto distribution for X is explored in details in
Section 3.1.

Example 2.2 (Pareto distribution with index ηi > 0 for X (i)). Take F (i)(x) := 1−
(
x
xi

)−ηi
for x ≥ xi > 0. Then (F (i))−1(ui) = xi(1 − ui)

−1/ηi for ui ∈ (0, 1). For smooth g (with
bounded first derivative) and u = (u1, . . . , ud), we have

|∂uiϕ(u)| =
∣∣∣((F (i))−1)′(ui)

∣∣∣ ∣∣∣∂ig ((F (1))−1(u1), . . . , (F (d))−1(ud)
) ∣∣∣ ≤ |g′|∞

ηi
xi(1− ui)−1/ηi−1.

This gives γ = 1/min1≤i≤d ηi.
Had g been bounded with compact support, then we would assume

|ϕ(u)− ϕ(v)| ≤ C
d∑
i=1

|ui − vi|, |ϕ(u)| ≤ C,

meaning that γ = −1. This simpler case, not covered by Assumption (A-v), is discussed in
Section 2.5.

Example 2.3 (Exponential distribution for X (i)). Take F (i)(x) = 1 − exp(−x) for x ≥ 0.
Then (F (i))−1(u) = − ln(1 − u) for u ∈ (0, 1). For Lipschitz g, it corresponds to γ = 0 and
the slow varying function is like a log.

Example 2.4 (Gaussian distribution for X (i)). Take F (i)(x) =
∫ x
−∞

e−z
2/2

√
2π

dz. Then (F (i))−1(u) ∼
−
√

2 ln(1/u) for u → 0 (see [Dom03, Proposition 21]). For Lipschitz g, it corresponds to
γ = 0 and the slow varying function is like the square root of a log.

To summarize, as a rule of thumb, for Lipschitz g, the lighter the tails of X, the smaller the
parameter γ, the better the convergence orders in next results.

2.4 Main results

From now on, we assume that Assumptions (A-i)–(A-v) from Section 2.3 are in force. We
state the convergence of statistics from Algorithm 2. Owing to (2.2), note that

ϕ(U) = g(X ) and ϕ(Vk) = g(Xk),

thus stating convergence on ϕ or g is the same up to changing the function variables, we
prefer to consider ϕ.
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Theorem 2.5 (Uniform convergence of the c.d.f. of Y in Lp-norm). For any p ≥ 1, n ≥ 1
and i ∈ {1, . . . , d}, we have∣∣∣∣∣sup

y∈R
|G̃(i)

n (y)−G(i)(y)|

∣∣∣∣∣
p

≤ Cp,(2.5) n
− p

2(p+1) , (2.5)

for some finite constant Cp,(2.5).

Proposition 2.6 (Stability). Let q > qmax be fixed. For any i ∈ {1, . . . , d}, we have

sup
n≥1

E
(

[W (i)
n ]q

)
< +∞, sup

n≥1
E
(

[1−W (i)
n ]q

)
< +∞,

and

sup
n≥1

E
(

[V (i)
n ]q

)
< +∞, sup

n≥1
E
(

[1− V (i)
n ]q

)
< +∞.

For n ≥ 1 and 0 ≤ k ≤ d, define χkn :=

((
V

(i)
n

)k
i=1

,
(
W

(i)
n

)d
i=k+1

)
. Let 1 ≤ p < −qmax

γ (with

the convention −qmax

0 = +∞ if γ = 0). Then

sup
n≥1, 0≤k≤d

E
(
|ϕ(χkn)|p

)
< +∞.

Theorem 2.7 (Strong approximation). For all ι > 0 and any p ∈ [1, −qmax

γ ), there exists a
constant Cι,p > 0 such that, for any n ≥ 1,

|ϕ(Vn)− ϕ(Wn)|p ≤ Cp,ιn
− 1

2p
+ γ

2|qmax|
+ι
.

Corollary 2.8 (Weak convergence). For all ι > 0, there exists a constant Cι > 0 such that,
for any n ≥ 1,

|E (ϕ(Vn))− E (ϕ(U))| ≤ Cιn−
1
2

+ γ
2|qmax|

+ι
.

Corollary 2.9 (Convergence of Monte Carlo averages). For all ι > 0 and for any p ≥ 1

satisfying p ∨ 2 < |qmax|
γ , there exists a positive constant Cp,ι such that for any n ≥ 1,∣∣∣∣∣ 1n

n∑
k=1

ϕ(Vk)− E (ϕ(U))

∣∣∣∣∣
p

≤ Cp,ιn−
1
2p

+ γ
2|qmax|

+ι
.
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The exponent γ
2|qmax| in the convergence rate in Theorem 2.7, Corollary 2.8 and Corollary 2.9

is linked to the unboundedness of ϕ near the boundary of [0, 1]d and to the minimal negative

integrability of the random variables V
(i)
k (k ≥ 1 and 1 ≤ i ≤ d), see Proposition 2.6. When

γ tends to |qmax|, the growth rate for ϕ increases to the maximal allowed growth and this
results in the convergence order going to 0: one can observe that if γ = |qmax|, convergence
cannot occur as g(X ) = ϕ(U) is not integrable in general.

In Theorem 2.7 and Corollary 2.9, we observe that for 1 < p < |qmax|
γ , the exponent 1

2p

in the convergence rate is also smaller than the expected 1
2 . This is also connected to the

unboundedness of ϕ. From (2.4), if γ were to be negative, it is clear that ϕ would be bounded
on [0, 1]d, while its variations would still grow to infinity near the boundary of [0, 1]d, see
(2.3): this situation is somehow simpler and presented in extensions below.

2.5 Extensions

2.5.1 Negative γ

We introduce here a modification of the previous Assumption (A-v) to the case where γ is
negative.

(v’) There exists a slowly varying function ` : (0, 1] → (0,∞) at 0, bounded on any closed
interval of (0, 1], and a parameter −1 ≤ γ < 0 such that, for all (u, v) ∈ (0, 1)d × (0, 1)d,

|ϕ(u)− ϕ(v)| ≤
d∑
i=1

`(ui ∧ vi)|ui − vi|
(ui ∧ vi)γ+1

+

d∑
i=1

`(1− ui ∨ vi)|ui − vi|
(1− ui ∨ vi)γ+1

, (2.6)

|ϕ(u)| ≤
d∑
i=1

`(ui) +
d∑
i=1

`(1− ui).

In this situation, the counterpart to Theorem 2.7, Corollary 2.8 and Corollary 2.9 is the
following:

Theorem 2.10. (i) For all ι > 0 and any p ≥ 1, there exists a constant Cι,p > 0 such that,
for any n ≥ 1,

|ϕ(Vn)− ϕ(Wn)|p ≤ Cp,ιn
− 1

2(p(γ+1)−γ)+ι
.

(ii) For all ι > 0, there exists a constant Cι > 0 such that, for any n ≥ 1,

|E (ϕ(Vn))− E (ϕ(U))| ≤ Cιn−
1
2

+ι.

(iii) For all ι > 0 and for any p ≥ 1, there exists a positive constant Cp,ι such that for any
n ≥ 1,

E

(∣∣∣∣∣ 1n
n∑
k=1

ϕ(Vk)− E (ϕ(U))

∣∣∣∣∣
p)1/p

≤ Cp,ιn−
1

2(p(γ+1)−γ)+ι
.
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We indeed observe an improvement in the convergence rate. For γ = −1, we recover an
expected 1

2 convergence rate in p-norm for all p ≥ 1. Notice also that when γ → 0− in the
previous Theorem, we recover the rate of 1

2p from Theorem 2.7 and Corollary 2.9.
The proof of the first statement of this theorem is quite similar to the proof of Theorem 2.7,
and the convergence results (ii)–(iii) are deduced from (i) the same way Corollaries 2.8–2.9
are from Theorem 2.7. Thus we only provide the main differences for proving Theorem 2.10
(i) after the proof of Theorem 2.7, in Remark 4.2.

2.5.2 Conditional expectations

We now extend the previous results to the case where we want to approximate a conditional
expectation of the form E (g(X ) | A), where the event A takes the form

A := {Y ∈ AY} = {Z ∈ AZ}

with known sets AY and AZ (recall that X ,Y,Z are related to each other via the relation
X (i) = (F (i))−1(G(i)(Yi)) and Y = Φ(Z)). Observe that whenever a conditional distribution
of X is targeted, one needs the unconditional marginal c.d.f.’s of Y to obtain a X -sample.
Let us design an algorithm coherent with these conditional expectations. The Bayes formula
yields

G(i)(yi) = P
[
Y(i) ≤ yi

]
= P

[
Y(i) ≤ yi | A

]
P [A] + P

[
Y(i) ≤ yi | Ac

]
P [Ac] ; (2.7)

therefore, to extend Algorithm 2, one needs to compute two conditional c.d.f.’s and the proba-
bility P [A]. For these three quantities, combining three different sampling schemes is a priori
necessary. For the ease of presentation, we may skip the simplest quantity, i.e. P [A]: if A is
a rare (or a very likely) event, one should use dedicated methods, like splitting methods com-
bined with interacting particle system or MCMC methods, see [GL15] and references therein.
For other types of A, usual MC methods are sufficient.
We now assume that P [A] is accurately estimated during a first stage and we focus our dis-
cussion on the two conditional c.d.f.’s.. Assume that one can use a MCMC sampler for Z
with transition kernel P, that the related Markov Chain is symmetric with respect to the dis-
tribution π of Z: then, adding an acceptance-rejection step in the set AZ allows to generate a
Markov chain with stationary distribution given by the restriction of π to AZ (see [CDFG12,
Proposition 1]). In the case of the preconditioned Crank–Nicolson sampler as described in
Section A.2.1, assuming (A.4), the resulting Markov chain satisfies again to Assumption (A-
i) with some quadratic exponential Lyapunov functions, see Proposition A.2. Now, to get
the two conditional c.d.f.’s in (2.7), one can run synchronously two Markov chains, one with

12



acceptance-rejection in AZ , the other in (AZ)c. Algorithm 2 becomes as follows.

Algorithm 3: sampling of X | A via sampling of Z conditionally to Z ∈ AZ
and Z ∈ (AZ)c

Input: (F (i))−1 the quantile of X (i), Z0,A ∈ AZ , Z0,Ac ∈ (AZ)c

Output: Xk =
(
X (1)
k , . . . ,X (d)

k

)
for 1 ≤ k ≤ n.

for k ← 1 to n do
1 Sample Zk,A from P(Zk−1,A, ·) and accept the proposal if it is in AZ .
2 Compute Yk,A = Φ(Zk,A).
3 Sample Zk,Ac from P(Zk−1,Ac , ·) and accept the proposal if it is in (AZ)c.
4 Compute Yk,Ac = Φ(Zk,Ac).
5 Approximate and mollify G(i) by

G̃
(i)
k (y) :=

1

2
√
k

+

(
1− 1√

k

)((
1

k

k∑
`=1

1Y(i)
`,A≤y

)
P [A] +

(
1

k

k∑
`=1

1Y(i)
`,Ac≤y

)
P [Ac]

)
.

6 Set V
(i)
k := G̃

(i)
k (Y(i)

k,A) and Vk := (V
(i)
k )di=1.

7 Set X (i)
k :=

(
F (i)

)−1
(
V

(i)
k

)
and Xk := (X (i)

k )di=1.

The output of the algorithm enables to approximate E (g(X) | A) by 1
n

∑n
k=1 g(Xk). Let us

conclude with few comments.

� If A and Ac are not rare events, one could directly compute the c.d.f. of Y(i) as in
Algorithm 2, and keep only the samples Xk in A to compute the final empirical mean.
But in case of a rare A, this would be very inefficient, since only a few samples Xk would
be relevant. Also, the estimation of G̃(i) would be presumably very inaccurate in the
region of interest, whence two sampling schemes as in Algorithm 3.

� In the above algorithm, there is no reason for which Markov kernels for proposing Zk,A
and Zk,Ac should be the same, it was done just for the purpose of concise explanation.

� The convergence analysis of Algorithm 3 works really the same as for Algorithm 2, and
yields similar convergence rates, details are left to the reader.

3 Numerical experiments

3.1 Pareto independent marginals with pCN sampler

As a toy example, we want to compute statistics of a random vector X with independent
marginals with c.d.f. F (i), 1 ≤ i ≤ d. Using our machinery and especially Corollary 2.8, for a
measurable function g : Rd → R, we approximate E (g(X )) with

E
(
ϕ
(
G̃(1)
n (Y(1)

n ), . . . , G̃(d)
n (Y(d)

n )
))

, (3.1)
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where n ≥ 1 is fixed. In this example, D = d and Φ is the identity function on Rd = RD, and
(Zk, k ≥ 0) = (Yk, k ≥ 0) is a Markov chain which stationary distribution has independent
copula.
In practice, we approximate the expectation (3.1) with M ≥ 1 independent macro-runs. If
{(Ymk )k=0,...,n, 1 ≤ m ≤M} is a M -sample drawn with the Markov chain (Yk)k≥0, we compute

eMn :=
1

M

M∑
m=1

ϕ
(
G̃(1),m
n (Y(1),m

n ), . . . , G̃(d),m
n (Y(d),m

n )
)
. (3.2)

In view of Corollary 2.9, we also approximate
∣∣∣E (g(X ))− 1

n

∑n
k=1 ϕ

(
G(1)(Y(1)

k ), . . . , G(d)(Y(d)
k )
)∣∣∣
p

with

EMn :=

(
1

M

M∑
m=1

∣∣∣∣∣E (g(X ))− 1

n

n∑
k=1

ϕ
(
G̃

(1),m
k (Y(1),m

k ), . . . , G̃
(d),m
k (Y(d),m

k )
)∣∣∣∣∣
p) 1

p

. (3.3)

We consider here the case where X has Pareto marginals on [1+,∞) with index ηi > 0, so
that F (i)(x) = 1 − x−ηi for all 1 ≤ i ≤ d (see Example 2.2), and we consider the function g
defined by

g(x1, . . . , xd) :=

d∑
i=1

xi.

Since g is smooth with bounded first derivative, we obtain (see Example 2.2) that ϕ satisfies
to Assumption (A-v) with γ = 1/min1≤i≤d ηi. Moreover, we compute easily E (g(X )) =∑d

i=1
ηi
ηi−1 for the reference value.

The Markov chain (Yn)n≥0 we consider is the preconditioned Crank-Nicolson (pCN) sampler
[CRSW13], defined by

Yk = κYk−1 + εk, k ≥ 1,

Y0 deterministic,

where κ ∈ (−1, 1) and (εk)k≥1 is an i.i.d. sequence such that εk
d
= N (0, (1− κ2)Id).

Y0 is deterministic so Assumption (A-ii) is satisfied, and its stationary distribution is N (0, Id),
with independent and continuous marginals, so that (A-iv) is also verified in this context.
It is shown in Subsection A.2.1 that its associated transition kernel satisfies to Assumption
(A-i) with the Lyapunov functions from Proposition A.2, and we now show that Assumption
(A-iii) is satisfied with every qmax > −1, hence one can take the limit qmax → −1 in the
convergence rates we obtain in Corollary 2.8 and Corollary 2.9.

Proposition 3.1. For all qmax ∈ (−1, 0), there is a s ∈ (0, 1
2) such that Assumptions (A-i)-

(A-iii) are satisfied for the preconditioned Crank-Nicolson sampler with L(y) = esy
2
.
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Figure 1: Log-log plots of empirical errors.

Proof. Let 0 > q > qmax > −1 and 1 ≤ i ≤ d. Use the lower bound of Mill’s inequalities (1.4)
for G(i)(x) = FN (x): for − q

2 < s < 1
2 , and using G(i)(x) = 1−G(i)(−x), we get

sup
y∈Rd

G(i)(yi)
q +

(
1−G(i)(yi)

)q
L(y)

= sup
x≥0

G(i)(x)q +
(
1−G(i)(x)

)q
esx2

≤ sup
x≥0

(
2−qe−sx

2
+ (2π)−

q
2 (

x

x2 + 1
)qe−sx

2−qx2/2
)
< +∞.

We consider the case d = 1 with η1 = 10 so that γ = 0.1. The Gaussian sampler is considered

with κ = 0.5 and Y(1)
0 = 1 000.

We approximate E (g(X )) with (3.2) with 1 ≤ n ≤ 1 000 and M = 10 000.
Corollary 2.8 gives that the theoretical order of convergence for the weak error is 1

2 −
γ

2|qmax| =
0.45: this is confirmed in practice, as is shown in Figure 1a.
Corollary 2.9 states that the theoretical order of convergence for the time-average in Lp-norm
is 1

2p −
γ

2|qmax| : for p = 2, it equals 0.2 (in the limit qmax → −1−), very close to the empirical

one (see Figure 1b).

3.2 kES for factor skew t-t copula with t marginals

We now follow the example in [OP17, Section 4.2] and compute the kES for the constituents
of the S&P 100 index using the same range of dates: from April 2008 to December 2010.
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Table 2: Marginal parameters for the losses (negative of the returns).

Ticker
m

(×100)
s

(×100)
d.f. SIC

AA -0.01 2.67 2.95 3
AAPL -0.18 1.75 3.46 3
ABT -0.01 1.05 3.67 2
AEP -0.02 1.14 2.98 4
ALL -0.02 1.52 1.77 6
AMGN 0.02 1.16 2.49 2
AMZN -0.01 2.06 3.10 7
AVP -0.01 1.67 2.88 2
AXP -0.04 2.38 2.60 6
BA -0.02 1.85 3.87 3
BAC 0.14 2.60 1.82 6
BAX -0.06 1.14 3.63 3
BK 0.11 1.88 1.85 6
BMY -0.01 1.19 2.96 2
C 0.12 2.78 1.91 6
CAT -0.07 2.03 3.39 3
CL -0.03 0.93 2.62 2
CMCSA 0.01 1.77 3.00 4
COF 0.06 2.81 2.23 6
COP -0.07 1.49 2.38 2
COST -0.01 1.23 3.24 5
CPB -0.06 0.93 3.16 2
CSCO -0.03 1.52 2.80 3
CVS -0.02 1.47 3.42 5
CVX -0.07 1.30 2.56 2
DD -0.03 2.24 2.92 2
DIS 0.02 1.52 2.73 7
DVN -0.05 2.08 3.16 1
ETR 0.04 1.24 3.30 4
EXC 0.05 1.31 2.70 4

Ticker
m

(×100)
s

(×100)
d.f. SIC

F -0.09 2.71 2.72 3
FCX -0.21 3.00 3.28 1
FDX -0.02 2.09 4.43 4
GD 0.01 1.48 3.65 3
GE -0.02 1.68 2.22 3
GILD 0.07 1.40 3.23 2
GOOG -0.05 1.71 6.13 7
GS -0.00 1.85 2.16 6
HAL -0.17 2.39 3.24 1
HD 0.01 1.64 3.30 5
HNZ -0.05 0.86 2.52 2
HON -0.05 1.70 3.52 3
HPQ -0.06 1.37 2.73 3
IBM -0.06 1.11 2.86 3
INTC -0.02 1.73 3.92 3
JNJ -0.03 0.70 2.28 2
JPM 0.09 2.26 2.18 6
KO -0.04 0.95 2.61 2
LMT 0.00 1.44 5.00 3
LOW 0.03 1.94 3.96 5
MA -0.06 1.97 3.09 6
MCD -0.06 1.09 3.68 5
MDT -0.02 1.23 2.89 3
MET 0.01 2.19 1.80 6
MMM -0.06 1.27 3.18 3
MO -0.12 0.97 2.91 2
MRK -0.04 1.43 2.98 2
MS 0.01 2.37 2.00 6
MSFT -0.03 1.38 2.60 7
NKE -0.07 1.49 2.90 3

Ticker
m

(×100)
s

(×100)
d.f. SIC

NOV -0.21 2.52 2.62 3
NSC -0.09 1.90 3.65 6
NYX 0.03 2.15 2.21 6
ORCL -0.03 1.49 3.16 7
OXY -0.14 1.90 2.62 1
PEP 0.00 0.95 2.99 2
PFE 0.02 1.38 3.56 2
PG -0.03 0.88 2.43 2
PM -0.02 1.23 3.27 2
QCOM 0.01 1.55 2.92 3
RF 0.14 3.52 2.30 6
RTN 0.03 1.32 3.91 3
S 0.25 3.10 2.65 4
SLB -0.05 2.20 3.31 1
SO -0.03 0.82 2.74 4
T 0.02 1.09 2.57 4
TGT 0.01 1.56 2.49 5
TWX 0.00 1.72 2.91 7
TXN -0.11 1.83 4.64 3
UNH -0.01 1.90 2.83 6
UPS 0.00 1.29 2.66 4
USB -0.00 2.14 2.26 6
UTX -0.03 1.38 3.23 3
VZ -0.03 1.10 2.57 4
WFC 0.14 2.31 1.93 6
WMB -0.13 2.10 2.71 4
WMT -0.03 0.95 3.01 5
WY -0.05 2.27 3.48 2
XOM 0.02 1.13 2.38 2
XRX 0.03 2.04 3.18 3
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3.2.1 The model

Let us denote the negative daily returns (i.e., the losses) of the i-th stock by X (i). We assume
that

X (i) ∼ tνi(mi, si),

i.e., a t distribution with νi degrees of freedom, location mi and scale parameter si. The
stocks tickers and their marginal parameters can be found in Table 2.2

We assume the dependence structure to be given by the block equidependence copula of
[OP17]:

Y(i) = βS(i)M(0) + γS(i)M(S(i)) + ε(i), i = 1, . . . , d, S(i) ∈ {1, . . . , J − 1},

M(0) ∼ skew t(ν, λ),

M(S) iid∼ t(ν), S = 1, . . . , J − 1, with M(S) ⊥⊥M(0),

ε(i)
iid∼ t(ν), i = 1, . . . , d, ε(i) ⊥⊥M(j),

where S(i) denotes the industry group, extracted from the first digit of the SIC (Standard
Industrial Classification) for the i-th stock;M(0) is a common (market-wide) factor andM(S)

the sector specific factor. Using the notation from Example 1.1 the dimensions are d = 90,
J = 7 + 1 and D = 98. The copula parameters are given in Table 3.

Parameter Value

ν 10.08
λ -0.22

Parameter Value

β1 1.25
β2 0.88
β3 1.03
β4 0.91
β5 0.94
β6 1.07
β7 1.12

Parameter Value

γ1 1.09
γ2 0.22
γ3 0.17
γ4 0.27
γ5 0.55
γ6 0.57
γ7 0.39

Table 3: Copula parameters

To illustrate the flexibility of the factor copula model, we present the coefficients of lower
(Table 4) and upper (Table 5) tail dependence, computed using [OP17, Proposition 2]. From
these statistics one can see stocks in different sectors can have substantially different upper
and lower tail dependence, a feature that would be impossible to observe in any elliptically
symmetric copula (such as the Gaussian and the t copulas).
In Figure 2 we show the effect of this flexibility in a graphical way. Each plot is related to
either two assets (Freeport-McMoRan, Inc. – FCX – and Halliburton Company – HAL) in

2The daily returns were collected from Yahoo Finance using the R library quantmod [RUT+20]. Even though
10 stocks from the index couldn’t be retrieved (BHI, DELL, DOW, EMC, KFT, MON, NWSA, SLE, WAG)
by quantmod, we proceed to model the remaining 90 stocks, with no material loss for the numerical exercise
below.
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Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6 Sector 7

Sector 1 0.99 0.70 0.92 0.75 0.81 0.94 0.96
Sector 2 0.70 0.70 0.70 0.70 0.70 0.70
Sector 3 0.92 0.75 0.81 0.92 0.92
Sector 4 0.75 0.75 0.75 0.75
Sector 5 0.81 0.81 0.81
Sector 6 0.94 0.94
Sector 7 0.96

Table 4: Lower tail dependence for the factor copula of Section 3.2

Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6 Sector 7

Sector 1 0.33 0.02 0.07 0.02 0.03 0.09 0.14
Sector 2 0.02 0.02 0.02 0.02 0.02 0.02
Sector 3 0.07 0.02 0.03 0.07 0.07
Sector 4 0.02 0.02 0.02 0.02
Sector 5 0.03 0.03 0.03
Sector 6 0.09 0.09
Sector 7 0.14

Table 5: Upper tail dependence for the factor copula of Section 3.2
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Figure 2: First column: Copula density for (black) two assets in sector 1 and (red) one asset
from sector 7 and one from sector 2; Second column: Joint density for (black) two assets in
Sector 1 (red) one asset from sector 7 and one from sector 2, assuming standard Gaussian
marginals; Third column: Joint density of (black) two assets in sector 1 (FCX and HAL) and
(red) one asset from sector 7 (DIS) and one from sector 2 (AVP).

sector 1 (black curves) or one asset (Walt Disney Co – DIS) in sector 7 and the other one
(Avcorp Industries Inc. – AVP) in sector 2 (red curves), which are the two combinations with
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most distinctive tail coefficients. On the left-most image we show the contour plots of the
copula densities, where the differences in the tails can be readily seen. In the middle figure we
show the contour plots of joint distributions with the same copulas as in the previous plot, but
transformed to have standard Gaussian marginals. Although visually less pronounced, one
can still see some difference between the lower joint tails (when losses are very negative, i.e.,
both stocks present high positive returns) and the upper joint tails of these two distributions.
Finally, the right-most plot shows the empirical joint density for the two pairs of stocks.
Throughout this example we denote by Gν,λ(x) := P

[
M(0) ≤ x

]
and Gν(x) := P

[
M(1) ≤ x

]
,

respectively, the c.d.f.’s for the skew-t(ν, λ) and the t(ν) distributions.
Our interest is to compute, for some threshold C, the kES (see Example 1.2 item 4) when all
losses are larger than C:

(k − ES)(i) = E

X (i)

∣∣∣∣∣
 d∑
j=1

1{X (j)≥C}

 > d− 1


= E

(
X (i)

∣∣∣∣∣X (1) > C, . . . ,X (d) > C

)
.

We follow the strategy outlined in Section 2.5.2, which is now discussed in details.

� Interpretation of A in terms of Z.
Note that, since each F (i) is continuous, C is the quantile at level a(i) := F (i) (C) for the
distribution of X (i). Since G(i) is also continuous and F (i) and G(i) are non-decreasing,
we obtain, for y(i) the quantile at level a(i) for the distribution of Y(i),

A =
⋂

1≤i≤d
{X (i) ≥ C} =

⋂
1≤i≤d

{Y(i) ≥ y(i)} =
⋂

1≤i≤d
{Φ(i)(Z) ≥ y(i)},

where the last equality follows from the relationship between Z and Y.

In the sequel we use the following definitions:

{Y ∈ AY} :=
⋂

1≤i≤d
{Y(i) ≥ y(i)} and {Z ∈ AZ} :=

⋂
1≤i≤d

{Φ(i)(Z) ≥ y(i)}.

� Approximating P [A].
As discussed in Section 2.5.2, we assume that P [A] is estimated in a preliminary step.
Here we use a crude MC procedure for Y to estimate P [A] (see details below).

� Approximating P
[
Y(i) ≤ · | Ac

]
.

As we are interested in studying the proposed methodology for events A with low prob-
ability, we don’t create a Markov Chain to sample from Y | Y ∈ (AY)c (or, equivalently,
from Z | Z ∈ (AZ)c ). Instead, we generate i.i.d. samples from Y and reject those not
in (AY)c. As we only have one Markov Chain, we denote (Zk,A)k≥0 from Algorithm 3
as simply (Zk)k≥0.
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3.2.2 The sampler

We sample Z = (Z(1), . . . ,Z(D)) using a Markov Chain whose stationary distribution πAZ (z)dz
is Gaussian restricted to AZ , i.e.,

πAZ (z) :=
1AZ (z)π(z)∫
AZ π(t)dt

, with π(z) :=
e−
|z|2
2

(2π)D/2
. (3.4)

We use the preconditioned Crank-Nicolson sampler.
Moreover, we define M(0) := G−1

ν,λ ◦ FN (Z(1)), M(i) := G−1
ν ◦ FN (Z(i+1)) for i = 1, . . . , J − 1

and ε(i) := G−1
ν ◦ FN (Z(i+J)) for i = 1, . . . , d. In the notations of the paper, we then obtain

Y = Φ(Z) =
(
Φ(i)(Z)

)d
i=1

with, for 1 ≤ i ≤ d,

Φ(i) : RD → R,

z 7→ βS(i)G
−1
ν,λ ◦ FN (z(1)) + γS(i)G

−1
ν ◦ FN (z(S(i)+1)) +G−1

ν ◦ FN (z(i+J)) .

This sampler is studied in Appendix A.2.1, and we assume that the geometric Assumption
(A.4) is satisfied for the set AZ relevant to the example, namely defined by

AZ =
{
z ∈ RD

∣∣∣Φ(i)(z) ≥ y(i), 1 ≤ i ≤ d
}
.

Indeed, the proof can be made in the case where AZ is an polyhedron, while the set AZ in this
context looks like a polyhedron at infinity. A rigorous verification of (A.4) is left for further
research.
We now check that Assumption (A-iii) holds in this context, namely for the pCN sampler in
RD with invariant distribution N (0D, ID) restricted to AZ .

Proposition 3.2. Assume that βS , γS ≥ 0 for all 1 ≤ S ≤ J − 1. Then for all qmax > −1,
there exists a quadratic Lyapunov function L for which Assumption (A-iii) is satisfied.

Proof. For all 1 ≤ i ≤ d and z ∈ RD, we have (accounting for the signs of βS , γS)

G(i) ◦ Φ(i)(z) = P
[
Φ(i)(Z) ≤ Φ(i)(z)

]
≥ P

[
Z(1) ≤ z(1)

]
P
[
Z(S(i)+1) ≤ z(S(i)+1)

]
P
[
Z(i+J) ≤ z(i+J)

]
.

Similarly

1−G(i) ◦ Φ(i)(z) = P
[
Φ(i)(Z) ≥ Φ(i)(z)

]
≥ P

[
Z(1) ≥ z(1)

]
P
[
Z(S(i)+1) ≥ z(S(i)+1)

]
P
[
Z(i+J) ≥ z(i+J)

]
.

Now, let qmax > −1 be fixed. Let − q
2 < −

qmax

2 < s < 1
2 and consider L(z) := es

∑D
i=1 |z(i)|2 for

z ∈ RD. From Proposition A.2, since (A.4) is satisfied, this is a Lyapunov function for this
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sampler. Moreover, since L(z) ≥ es
(
(z(1))

2
+(z(S(i)+1))

2
+(z(i+J))

2
)
, we obtain,

sup
AZ

(G(i) ◦ Φ(i))q + (1−G(i) ◦ Φ(i))q

L

≤ sup
(u,v,w)∈R3

FN (u)qFN (v)qFN (w)q + FN (−u)qFN (−v)qFN (−w)q

es(u2+v2+w2)

≤ sup
(u,v,w)∈R3

+

2−3qe−s(u
2+v2+w2) + (2π)−

3q
2

uvw

(u2 + 1) (v2 + 1) (w2 + 1)
e−(s+ q

2)(u2+v2+w2) < +∞ ,

where we have used the lower Mill inequality (1.4) and s+ q
2 > s+ qmax

2 > 0.

3.2.3 Implementation details

For the results shown below, we use C = 0.01, meaning that (k − ES)(i) computes the expected
loss in the i-th asset when all assets experience losses larger than 1%. For completeness, Figure
3 presents the distribution of a(j), the C = 0.01 quantiles of X (j) (which can be computed, as
F (i) is perfectly known).

0.55 0.65 0.75 0.85

0
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10
15

20
25

Figure 3: Histogram of a(j)=P
[
X (j) ≤ C

]
for C = 0.01.

We estimate P [A] ≈ 1.42 × 10−4 using a crude MC procedure for Y, with sample size 106.
For computational speed, we use a subsample of size 104 only, to compute the empirical c.d.f.
conditional to Ac. Note that in our proposed approach we completely avoid sampling from
X , i.e., we don’t use Algorithm 1. Nevertheless, Algorithm 1, with a mollified c.d.f. G(i), is
used to compute the “ground truth”, with which the proposed estimator will be compared to.
Similarly to Section 3.1, we use M = 100 independent macro-runs of Algorithm 3, modified to
only consider one Markov Chain with values in AZ , as discussed at the end of Section 3.2.1.
The pCN sampler is used with parameters κ = 0.9 and Z0 = 0D. All the chains are iterated
for n = 20 000 steps.
As previously discussed, the quantity P

[
AZ
]

involved in Algorithm 3 and the ground truth

(k − ES)(i) can’t be computed exactly and can only be estimated in this example. Therefore,

21



the study of the convergence rates in this example is deemed unnecessary, due to the extra
source of noise added by these estimations.
Notwithstanding the fact that we don’t present a formal convergence analysis we are still able
to provide advices based on empirical observations. We point out that, even if the theoretical
properties of the algorithms are independent of parameters such as Z0 and κ, we observe in
practice a substantial impact in the chains and the empirical convergence rates.
In addition, the mollification terms of the form 1√

k
can be replaced with 1√

cmk
(for some

constant cm > 0) without theoretical implications, but we observe in practice an improvement
by good choice of cm, and the numerical results presented below were generated with cm =
100. Although the theoretical convergence rates are not impacted by these modifications, the
multiplying constants are and we suspect that it may cause some numerical instability with
respect to the parameters.

3.2.4 Results
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(a) Trace plot of (eMn )n for (k − ES). Black, red
and blue denote marginals i = 5, 1 and 2,
respectively. Solid colors denote the average
across all M chains. In light colors there are 5
chains for each marginal.
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(b) Acceptance rate as a function of the
iterations. Solid line: average across all M
Markov chains. Shaded area: 95% interval.

Figure 4: Qualitative analysis of the convergence.

In the sequel we discuss the results for three marginals: i = 5, 1 and 2. The 5th component,
i.e., the stock of The Allstate Corporation (ALL), was included due to its marginal degree of
freedom, which was estimated as 1.77. This is the smallest value in our sample and implies
that these losses have infinite variance (which happens whenever the d.f. is less than 2), but
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the mean is finite. This is a challenging case. The other two stocks have lighter tails and are
included for comparison.
As in the Pareto example of Section 3.1, we estimate (k − ES)(i) through Equation (3.2).
Figure 4a presents plot of (eMn )n for each one of the marginals (solid colors). The dashed
lines denote the estimate obtained by crude Monte Carlo using 106 samples. We can see
that after 10 000 iterations the estimates from the Markov chain are close to their true value
(computed through the Monte Carlo simulation with 106 samples). As previously mentioned,
even though we don’t present a formal convergence analysis here, we point out here that the
chain for marginal i = 5 takes longer to attain its correct value (illustrating once again that
heavy tails slow down convergence, coherently with our theoretical results – the case of large
α). Also in Figure 4a we present, in lighter colors, the estimates base on a single Markov
chain (instead of the average across M chains). Due to the mollification, we see the maximum
value of the estimates (with one chain) is an increasing function of the iteration, as expected.
Note that for each marginal there are 5 chains plotted in light colors.
For each one of the M Markov chains, we compute the acceptance rate at each up to the
n-th iteration. In Figure 4b we present three statistics for the acceptance rate across the M
chains: the mean (solid line) and its 2.5% and 97.5% quantiles (shaded area). The reader
is reminded the probability of the event A is of order 10−4, which would imply that about
0.01% of the samples would be accepted in a simple rejection Monte Carlo, in comparison
with about 30% accepted samples for the proposed MCMC scheme. We remind that targeting
20-50% acceptance rate is a common practice which is supported by theoretical results, see
e.g. [Ros11].

4 Proofs of the main results

4.1 Proof of Theorem 2.5

From Theorem A.1, we know that for any function ϕ : AZ → R bounded by 1,∣∣∣∣∣ 1n
n∑
k=1

ϕ(Zk)− E (ϕ(Z))

∣∣∣∣∣
p

≤

∣∣∣∣∣ 1n
n∑
k=1

ϕ(Zk)− E (ϕ(Z))

∣∣∣∣∣
p∨2

≤ Cp∨2,P
L1/(p∨2)(Z0)√

n

for a constant depending only on the Markov kernel P and the norm exponent p. This
inequality applied to ϕ(z) = 1Φ(i)(z)≤y and ϕ(z) = 1Φ(i)(z)<y (y ∈ R fixed) gives

∣∣∣Ĝ(i)
n (y)−G(i)(y)

∣∣∣
p
∨
∣∣∣Ĝ(i)

n (y−)−G(i)(y−)
∣∣∣
p
≤ Cp∨2,P

L1/p∨2(Z0)√
n

. (4.1)

Let ε > 0; now design a finite decreasing sequence y1, . . . , yk? of points which constitutes a ε/2-
covering of the c.d.f. G(i)(·), we proceed by induction. Let y1 = inf

{
y ∈ R : G(i)(y) ≥ 1− ε

2

}
,

and assume that y1, . . . , yk−1 are already constructed. IfG(i)(y−k−1) ≤ ε
2 , then stop. Otherwise,

we set yk := inf
{
y ∈ R : G(i)(y) ≥ G(i)(y−k−1)− ε

2

}
. Notice that for all k, we have G(i)(y−k ) ≤

1− k ε2 so that k? ≤ 2
ε .
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Now we prove that

sup
y∈R
|G(i)(y)− Ĝ(i)

n (y)| ≤ max
{∣∣∣G(i)(yk)− Ĝ(i)

n (yk)
∣∣∣ ∨ ∣∣∣G(i)(y−k )− Ĝ(i)

n (y−k )
∣∣∣ : 1 ≤ k ≤ k?

}
+
ε

2
.

(4.2)

For this, take y ∈ R.

� If y ∈ [yk+1, yk) for some 1 ≤ k < k?, we have, since G(i)(y) −G(i)(yk+1) ≤ G(i)(y−k ) −
G(i)(y−k ) + ε

2 = ε
2 ,

G(i)(y)− Ĝ(i)
n (y) ≤ G(i)(y)− Ĝ(i)

n (yk+1)

= G(i)(y)−G(i)(yk+1) +G(i)(yk+1)− Ĝ(i)
n (yk+1)

≤ G(i)(yk+1)− Ĝ(i)
n (yk+1) +

ε

2
,

and also, since G(i)(y)−G(i)(y−k ) ≥ G(i)(y−k )− ε
2 −G

(i)(y−k ) = − ε
2 ,

G(i)(y)− Ĝ(i)
n (y) ≥ G(i)(y)− Ĝ(i)

n (y−k )

= G(i)(y)−G(i)(y−k ) +G(i)(y−k )− Ĝ(i)
n (y−k )

≥ G(i)(y−k )− Ĝ(i)
n (y−k )− ε

2
.

Thus |G(i)(y)− Ĝ(i)
n (y)| ≤

(∣∣∣G(i)(y−k )− Ĝ(i)
n (y−k )

∣∣∣ ∨ ∣∣∣G(i)(yk+1)− Ĝ(i)
n (yk+1)

∣∣∣)+ ε
2 .

� If y ∈ [y1,+∞), we have, using G(i)(y) ≤ 1 and G(i)(y1) ≥ 1− ε
2 ,

G(i)(y)− Ĝ(i)
n (y) ≤ G(i)(y)−G(i)(y1) +G(i)(y1)− Ĝ(i)

n (y1) ≤ G(i)(y1)− Ĝ(i)
n (y1) +

ε

2
,

and

G(i)(y)− Ĝ(i)
n (y) ≥ 1− ε

2
− 1 = − ε

2
,

thus we deduce |G(i)(y)− Ĝ(i)
n (y)| ≤ |G(i)(y1)− Ĝ(i)

n (y1)|+ ε
2 .

� Similarly, if y ∈ (−∞, yk?),

G(i)(y)− Ĝ(i)
n (y) ≤ G(i)(y) ≤ ε

2
,

and

G(i)(y)− Ĝ(i)
n (y) ≥ G(i)(y)−G(i)(y−k?) +G(i)(y−k?)− Ĝ

(i)
n (y−k?) ≥ G

(i)(y−k?)− Ĝ
(i)
n (y−k?)−

ε

2
,

so
∣∣∣G(i)(y)− Ĝ(i)

n (y)
∣∣∣ ≤ ∣∣∣G(i)(y−k?)− Ĝ

(i)
n (y−k?)

∣∣∣+ ε
2 .
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All in all, we have justified (4.2). Furthermore, we deduce that{
sup
y∈R

∣∣∣G(i)(y)− Ĝ(i)
n (y)

∣∣∣ > ε

}
⊂

k?⋃
k=1

({∣∣∣G(i)(yk)− Ĝ(i)
n (yk)

∣∣∣ > ε

2

}
∪
{∣∣∣G(i)(y−k )− Ĝ(i)

n (y−k )
∣∣∣ > ε

2

})
.

We then have, using Markov inequality, the bound (4.1) and the fact that k? ≤ 2
ε ,

P

[
sup
y∈R

∣∣∣G(i)(y)− Ĝ(i)
n (y)

∣∣∣ > ε

]
≤

k?∑
k=1

(
P
[∣∣∣G(i)(yk)− Ĝ(i)

n (yk)
∣∣∣ > ε

2

]
+ P

[∣∣∣G(i)(y−k )− Ĝ(i)
n (y−k )

∣∣∣ > ε

2

])

≤ 2p

εp

k?∑
k=1

(
E
(∣∣∣G(i)(yk)− Ĝ(i)

n (yk)
∣∣∣p)+ E

(∣∣∣G(i)(y−k )− Ĝ(i)
n (y−k )

∣∣∣p))

≤ 4

ε
Cpp∨2,PL

p/p∨2(Z0)
2p

εp
1

n
p
2

=:
Cp,P,Z0

εp+1n
p
2

.

Last, ∣∣∣∣∣sup
y∈R

∣∣∣G(i)(y)− Ĝ(i)
n (y)

∣∣∣∣∣∣∣∣
p

p

=

∫ ∞
0

P

[
sup
y∈R

∣∣∣G(i)(y)− Ĝ(i)
n (y)

∣∣∣ > ε
1
p

]
dε

≤ ε0 +
Cp,P,Z0

n
p
2

∫ ∞
ε0

1

ε
p+1
p

dε

= ε0 + p
Cp,P,Z0

n
p
2

ε
− 1
p

0 .

Thus, taking p-roots and setting ε0 = n
− p2

2(p+1) , we obtain∣∣∣∣∣sup
y∈R

∣∣∣Ĝ(i)
n (y)−G(i)(y)

∣∣∣∣∣∣∣∣
p

≤ (1 + pCp,P,Z0)
1
p n
− p

2(p+1) .

To conclude, notice that∣∣∣∣∣sup
y∈R

∣∣∣G̃(i)
n (y)−G(i)(y)

∣∣∣∣∣∣∣∣
p

≤

∣∣∣∣∣sup
y∈R

∣∣∣G̃(i)
n (y)− Ĝ(i)

n (y)
∣∣∣∣∣∣∣∣
p

+

∣∣∣∣∣sup
y∈R

∣∣∣Ĝ(i)
n (y)−G(i)(y)

∣∣∣∣∣∣∣∣
p

≤ 1

2
√
n

+ (1 + pCp,P,Z0)
1
p n
− p

2(p+1) ≤
(

1

2
+ (1 + pCp,P,Z0)

1
p

)
n
− p

2(p+1) ,

as we observe that∣∣∣G̃(i)
n (y)− Ĝ(i)

n (y)
∣∣∣ =

∣∣∣∣ 1

2
√
n
− 1√

n
Ĝ(i)
n (y)

∣∣∣∣ ≤ 1

2
√
n
≤ 1

2
n
− p

2(p+1) , a.s. .

We are done.
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4.2 Proof of Proposition 2.6

We start first a simple lemma.

Lemma 4.1. Let (In)n≥1 be a sequence of measurable sets with In ⊂ [0, 1] and such that
Leb.(In) ≤ cn−γ for some c, γ > 0 independent of n. We then have, for a constant C > 0
independent of n,

sup
i∈{1,...,d}

P
[
W (i)
n ∈ In

]
≤ Cn−γ .

Proof. Let n ≥ 1 and 1 ≤ i ≤ d. Note that W
(i)
n = G(i)(Y(i)

n ) = G(i)(Φ(i)(Zn)). Then, apply
Theorem A.1, inequality (A.2), to the function Φn(·) = 1G(i)◦Φ(i)(·)∈In : since G(i)(Φ(i)(Z)) is
uniformly distributed on [0, 1] (Assumption (A-iv)), we get

P
[
W (i)
n ∈ In

]
≤ Leb.(In) + C(A.2)L(Z0)ρn.

Using that Leb.(In) ≤ cn−γ and exploiting that the ρn-term is negligible compared to the
other one, we get the result.

Now let us go back to the proof of Proposition 2.6. Let n ≥ 1 and q ∈ (qmax, 0) be given (the
case q ≥ 0 is obvious).

• We prove that E
([
W

(i)
n

]q)
and E

([
1−W (i)

n

]q)
are bounded uniformly in n: we only

justify the first statement, one can deal with the second quantity similarly. First, we have

E
([
W (i)
n

]q)
= E

([
G(i)(Y(i)

n )
]q)

= E
([
G(i)(Φ(i)(Zn))

]q)
.

Thus, from Theorem A.1, we have, for some C(A.2) ≥ 0 and ρ ∈ (0, 1), since G(i)(Φ(i)(Z)) =

G(i)(Y(i)) is uniformly distributed on [0, 1],

E
([
W (i)
n

]q)
≤
∫ 1

0
xqdx+ C(A.2)

(
sup
AZ

(
G(i) ◦ Φ(i)

)q
L

)
L(Z0)ρn.

Since supAZ
(G(i)◦Φ(i))

q

L is finite by Assumption (A-iii), the above quantity is bounded uni-
formly in n.

• Let us now handle the proof of the uniform bound on E
([
V

(i)
n

]q)
, the one on E

([
1− V (i)

n

]q)
is quite similar and left to the reader. Since

0 ≤ E
([
V (i)
n

]q)
≤ E

(∣∣∣[V (i)
n

]q
−
[
W (i)
n

]q∣∣∣)+ E
([
W (i)
n

]q)
,

it is enough to prove E
(∣∣∣[V (i)

n

]q
−
[
W

(i)
n

]q∣∣∣) is upper bounded, uniformly in n.
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Let us fix J =
⌈
n

1−q
4

⌉
and h := 1

J , so that cn
q−1
4 ≤ h ≤ n

q−1
4 for some 0 < c < 1 independent

of n. We estimate the quantity of interest according to the partitioning event {jh < W
(i)
n ≤

(j + 1)h} for j = 0, . . . , J − 1.

We start with the term j = 0. We have, since V
(i)
n ∈

[
1

2
√
n
, 1− 1

2
√
n

]
and using Lemma 4.1,

for some C > 0,

E
(∣∣∣[V (i)

n

]q
−
[
W (i)
n

]q∣∣∣1
W

(i)
n ≤h

)
≤ E

([
V (i)
n

]q
1
W

(i)
n ≤h

)
+ E

([
W (i)
n

]q
1
W

(i)
n ≤h

)
≤
(

1

2
√
n

)q
P
[
W (i)
n ≤ h

]
+ E

([
W (i)
n

]q
1
W

(i)
n ≤h

)
≤ Cn−

q
2h+ E

([
W (i)
n

]q
1
W

(i)
n ≤h

)
≤ Cn−

q+1
4 +

∫ h

0
xqdx+ C(A.2)

(
sup
AZ

(
G(i) ◦ Φ(i)

)q
L

)
L(Z0)ρn,

which is bounded uniformly in n.
We consider the case 0 < j < J . Using the Hölder inequality for p > 1 (to be chosen later),

Lemma 4.1 and Theorem 2.5 as
∣∣∣V (i)
n −W (i)

n

∣∣∣ ≤ supR

∣∣∣G̃(i)
n −G(i)

∣∣∣, we get, for some C > 0,

E
(∣∣∣[V (i)

n

]q
−
[
W (i)
n

]q∣∣∣1
jh<W

(i)
n ≤(j+1)h

1∣∣∣V (i)
n −W

(i)
n

∣∣∣≤h2
)

≤ E
(∣∣∣V (i)

n −W (i)
n

∣∣∣ (W (i)
n ∧ V (i)

n

)q−1
1
jh<W

(i)
n ≤(j+1)h

1∣∣∣V (i)
n −W

(i)
n

∣∣∣≤h2
)

≤ (j − 1

2
)q−1hq−1E

(∣∣∣V (i)
n −W (i)

n

∣∣∣p) 1
p P
[
jh < W (i)

n ≤ (j + 1)h
] p−1

p

≤ C(j − 1

2
)q−1hq−1n

− p
2(p+1)h

p−1
p .

In addition, using the Markov inequality for r ≥ 1 (to be chosen later),

E
(∣∣∣[V (i)

n

]q
−
[
W (i)
n

]q∣∣∣1
jh<W

(i)
n ≤(j+1)h

1∣∣∣V (i)
n −W

(i)
n

∣∣∣>h
2

)
≤ 2r

((
1

2
√
n

)q
+ (jh)q

) E
(∣∣∣V (i)

n −W (i)
n

∣∣∣r)
hr

≤ 2rCrr,(2.5)

((
1

2
√
n

)q
+ (jh)q

)
n
− r2

2(r+1)h−r.

Summing over 0 < j < J , by our choice of p, r and since
∑

j≥1(j − 1
2)q−1 < +∞ and∑J−1

j=1 j
q = O(h−q−1) as −1 < q < 0, one obtains for some positive constant C (changing from
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term to term),

E
(∣∣∣[V (i)

n

]q
−
[
W (i)
n

]q∣∣∣1
W

(i)
n >h

)
≤ Chq−1+ p−1

p n
− p

2(p+1) +Cn
− q

2
− r2

2(r+1)h−r−1+Cn
− r2

2(r+1)h−r−1.

Because q < 0, the third term can be neglected compared to the second term.
After replacing h by its lower bound, the first term can be bounded by Cn[... ] with an exponent
equal to

q − 1

4
(q − 1

p
)− p

2(p+ 1)
:

as p → +∞, it converges to q(q−1)
4 − 1

2 < 0 (here we use q ∈ (−1, 0)). Therefore, for p large
enough, the first term is uniformly bounded in n.
Similarly, the second term is bounded by Cn[... ] with an exponent equal to− q

2−
r2

2(r+1)−
q−1

4 (r+

1): when r → +∞, it is equivalent to −(1
2 + q−1

4 )r → −∞. Therefore, for r large enough,

the second term is uniformly bounded in n. We are done with the bounds on E
(

[V
(i)
n ]q

)
and

E
(

[1− V (i)
n ]q

)
.

• We now turn to the proof for the last statement. Let n ≥ 1, 0 ≤ k ≤ d and 1 ≤ p < −qmax

α
(with the convention −qmax

0 = +∞ if α = 0). Then there exists ε > 0 such that 1 ≤ p < −qmax

α+ε .
As the function ` in the definition of ϕ (see Assumption (A-v)) is slowly varying at 0 and
bounded on any interval excluding u = 0, it follows from [BGT87, Proposition 1.3.6 (v)] that

|`(u)| ≤ C`,εu−ε, ∀u ∈ (0, 1]. (4.3)

Furthermore, by Jensen’s inequality (
∑d

i=1 xi +
∑d

i=1 x
′
i)
p ≤ (2d)p−1

(∑d
i=1 x

p
i +

∑d
i=1(x′i)

p
)

for non-negative xi, x
′
i. Putting these results together, we obtain

E
(∣∣∣ϕ(χkn)

∣∣∣p) ≤ (2d)p−1Cp`,ε

[
k∑
i=1

(
E
((

V (i)
n

)−p(α+ε)
)

+ E
((

1− V (i)
n

)−p(α+ε)
))

+
d∑

i=k+1

(
E
((

W (i)
n

)−p(α+ε)
)

+ E
((

1−W (i)
n

)−p(α+ε)
))]

.

Since −p(α+ ε) =: q > qmax, the first part of the proposition implies that the above quantity
is bounded independently of k, n.

4.3 Proof of Theorem 2.7

We fix 1 ≤ p < −qmax

α (recall that −qmax

0 = +∞). For each 0 ≤ k ≤ d, we define χkn =((
V

(i)
n

)k
i=1

,
(
W

(i)
n

)d
i=k+1

)
. In particular, χ0

n = Wn and χdn = Vn. By the Minkowski in-

equality, we have

|ϕ(Vn)− ϕ(Wn)|p ≤
d∑

k=1

∣∣∣ϕ(χkn)− ϕ(χk−1
n )

∣∣∣
p
.

28



We now fix 1 ≤ k ≤ d and we estimate the corresponding term above.
Let b ∈ (0, 1

2) close enough to 1
2 so that b(1 + pα

qmax
) ≥ 1

2 + pα
2qmax

− pι
2 and b

p ≥
1
2p −

ι
2 . We fix

J =
⌈
nb
⌉

and h = 1
J so that n−b ≥ h ≥ 1

2n
−b for any n ≥ 1.

Using the Hölder inequality for some 1 < p1 <
−qmax

pα (we recall the convention −qmax

0 = +∞,

and that 1 ≤ p < −qmax

α so there exists such p1),∣∣∣ ∣∣∣ϕ(χkn)− ϕ(χk−1
n )

∣∣∣ (1
W

(k)
n ≤h

+ 1
W

(k)
n >1−h

)∣∣∣
p

≤
∣∣∣ϕ(χkn)

(
1
W

(k)
n ≤h

+ 1
W

(k)
n >1−h

)∣∣∣
p

+
∣∣∣ϕ(χk−1

n )
(
1
W

(k)
n ≤h

+ 1
W

(k)
n >1−h

)∣∣∣
p

≤
[∣∣∣ϕ(χkn)

∣∣∣
p1p

+
∣∣∣ϕ(χk−1

n )
∣∣∣
p1p

] ∣∣∣1
W

(k)
n ≤h

+ 1
W

(k)
n >1−h

∣∣∣
p

p1
p1−1

, (4.4)

and the term in brackets is bounded by a non-negative constant Cp1 independent of n by
Proposition 2.6. Using Lemma 4.1 with the set In = [0, h] ∪ (1− h, 1], we obtain∣∣∣ ∣∣∣ϕ(χkn)− ϕ(χk−1

n )
∣∣∣ (1

W
(k)
n ≤h

+ 1
W

(k)
n >1−h

)∣∣∣
p
≤ Cp1 (2h)

p1−1
p1p ≤ Cp1n

−b (p1−1)
p1p ,

where we have used 1
2n
−b ≤ h ≤ n−b. We have p1−1

p1
= 1− 1

p1
< 1+ pα

qmax
and limp1→−qmax

pα

p1−1
p1

=

1 + pα
qmax

, thus taking p1 close enough to −qmax

pα so that p1−1
p1
≥ 1 + pα

qmax
− pι

2b gives the existence
of C1(ι) > 0 such that∣∣∣ ∣∣∣ϕ(χkn)− ϕ(χk−1

n )
∣∣∣ (1

W
(k)
n ≤h

+ 1
W

(k)
n >1−h

)∣∣∣
p
≤ C1(ι)n

−b( 1
p

+ α
qmax

− ι
2b

)
.

By our choice of b, we obtain∣∣∣ ∣∣∣ϕ(χkn)− ϕ(χk−1
n )

∣∣∣ (1
W

(k)
n ≤h

+ 1
W

(k)
n >1−h

)∣∣∣
p
≤ C1(ι)n

− 1
2p

+ α
2|qmax|

+ι
. (4.5)

We now fix 0 < j < J − 1. Owing to the bounds (2.3) and (4.3) on ϕ and `, we have, for any
ε ∈ (0,−qmax − α),∣∣∣ ∣∣∣ϕ(χkn)− ϕ(χk−1

n )
∣∣∣1

jh<W
(k)
n ≤(j+1)h

1|V (k)
n −W (k)

n |≤h2

∣∣∣
p

≤ C`,ε
∣∣∣∣((V (k)

n ∧W (k)
n

)−α−ε−1
+
(

1− V (k)
n ∨W (k)

n

)−α−ε−1
) ∣∣∣V (k)

n −W (k)
n

∣∣∣1
jh<W

(k)
n ≤(j+1)h

1|V (k)
n −W (k)

n |≤h2

∣∣∣∣
p

≤ C`,εh−α−ε−1

((
j − 1

2

)−α−ε−1

+

(
J − j − 3

2

)−α−ε−1
)∣∣∣ ∣∣∣V (k)

n −W (k)
n

∣∣∣1
jh<W

(k)
n ≤(j+1)h

∣∣∣
p
,

where we used that V
(k)
n ,W

(k)
n ∈ [jh− h

2 , (j+ 1)h+ h
2 ] on the event {jh < W

(k)
n ≤ (j+ 1)h}∩

{|V (k)
n −W (k)

n | ≤ h
2}. Now apply Hölder inequality with some p2 > 1, use Theorem 2.5 and
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Lemma 4.1 with In = (jh, (j + 1)h]: it readily follows (with a constant Cp2 changing from
line to line)∣∣∣ ∣∣∣ϕ(χkn)− ϕ(χk−1

n )
∣∣∣1

jh<W
(k)
n ≤(j+1)h

1|V (k)
n −W (k)

n |≤h2

∣∣∣
p

≤ Cp2h−α−ε−1

((
j − 1

2

)−α−ε−1

+

(
J − j − 3

2

)−α−ε−1
)
n
− p2p

2(p2p+1)h
p2−1
p2p

≤ Cp2nb(α+ε+1)

[(
j − 1

2

)−α−ε−1

+

(
J − j − 3

2

)−α−ε−1
]
n
− p2p

2(p2p+1)
−b p2−1

p2p . (4.6)

Now sum over 0 < j < J − 1: the sum of terms in [...] is bounded by 2
∑

j≥1(j − 1
2)−α−ε−1

which is finite since α+ ε > 0. This gives (for a new constant)∣∣∣ ∣∣∣ϕ(χkn)− ϕ(χk−1
n )

∣∣∣1
h<W

(k)
n ≤1−h1|V (k)

n −W (k)
n |≤h2

∣∣∣
p
≤ Cp2n

b(α+ε+1− 1
p

+ 1
p2p

)− p2p
2(p2p+1) . (4.7)

As p2 → +∞ and ε→ 0, the above exponent of n converges to b(α+1− 1
p)− 1

2 = bα− b
p+b− 1

2 ,
and therefore by our choice of b and for some appropriate choices of p2 and ε (depending on
b and ι), we get∣∣∣ ∣∣∣ϕ(χkn)− ϕ(χk−1

n )
∣∣∣1

h<W
(k)
n ≤1−h1|V (k)

n −W (k)
n |≤h2

∣∣∣
p
≤ Cp2n

bα− b
p

+b− 1
2

+ ι
2 ≤ Cp2n

− 1
2p

+ α
2|qmax|

+ι

(4.8)

where we have used the crude estimates b < 1
2 ≤

1
2|qmax| and b− 1

2 < 0 at the last inequality.

Last, using Hölder inequality with some p3 ∈ (1, −qmax

pα ), Proposition 2.6, Markov inequality
and Theorem 2.5, for all r ≥ 1 we get (with a constant Cp3 changing from line to line)∣∣∣ ∣∣∣ϕ(χkn)− ϕ(χk−1

n )
∣∣∣1|V (k)

n −W (k)
n |>h

2

∣∣∣
p
≤ Cp3

(
P
[
|V (k)
n −W (k)

n | >
h

2

]) p3−1
p3p

≤ Cp3
(
nbrE

(
|V (k)
n −W (k)

n |r
)) p3−1

p3p

≤ Cp3
(
n
br− r2

2(r+1)

) p3−1
p3p

.

Since b < 1
2 the exponent of n goes to −∞ as r goes to +∞ (whatever the value of p3 > 1 is);

therefore, obviously for r large, we obtain, for some C3(ι) > 0,∣∣∣∣∣∣ϕ(χkn)− ϕ(χk−1
n )

∣∣∣1|V (k)
n −W (k)

n |>h
2

∣∣∣
p
≤ C3(ι)n

− 1
2p

+ α
2|qmax|

+ι
. (4.9)

Combining (4.5)-(4.8)-(4.9), we obtain

sup
k=1...d

∣∣∣ϕ(χkn)− ϕ(χk−1
n )

∣∣∣
p
≤ Cp,ιn−

1
2p

+ α
2|qmax|

+ι

for some constant Cp,ι.
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Remark 4.2. 1. We notice that the terms contributing the more to the overall error are

the border terms (associated to W
(k)
n ≤ h or W

(k)
n > 1 − h, see (4.4)). One could argue

that instead of using the bound assumption (2.4) on ϕ, one would have better to leverage the
regularity assumption (2.3): in fact, for border terms, the regularity assumption does not bring
any valuable information. Indeed the superiority of the regularity assumption would write as
|v−w|

(v∧w)α+1 � 1
(v∧w)α , which is equivalent to |v − w| � v ∧ w: the latter inequality likely does

not hold for v = V
(k)
n and w = W

(k)
n , since to the best of our knowledge, their difference is

approximately of order n−1/2 and V
(k)
n ≥ 1

2n
−1/2.

2. In the case where −1 ≤ α < 0, see Theorem 2.10 and the assumption above it, one can
indeed make use of the regularity assumption (2.6) to improve the convergence rate, leading to
the result in Theorem 2.10 (i). Since the above proof is quite similar to the proof of Theorem
2.7, we only provide a sketch of proof and leave details to the reader.
Let 1 ≤ p < ∞, and we are interested as above in

∣∣ϕ(χkn)− ϕ(χk−1
n )

∣∣
p
. We fix h = n−b with

b ∈ (0, 1
2).

� Following the arguments above, the term

∣∣∣∣∣∣ϕ(χkn)− ϕ(χk−1
n )

∣∣1∣∣∣V (k)
n −W (k)

n

∣∣∣>h
2

∣∣∣∣
p

goes to 0

faster than any negative power of n.

� For 0 < j < J − 1, we similarly obtain (4.6). When summing over j, since α + ε < 0

for small ε, the sum
∑J−1

j=1

(
j − 1

2

)−α−ε−1
is upper bounded by O(J−α−ε) = O(hα+ε),

so the upper bound in (4.7) becomes O(n
b
(

1− 1
p

+ 1
p2p

)
− p2p

2(p2p+1) ), and the exponent goes to

b
(

1− 1
p

)
− 1

2 as p2 →∞.

� We introduce 0 < h′ < h so that n−b
′ ≥ h′ ≥ 1

2n
−b′ with 0 < b < 1

2 ≤ b′, and we study

the two terms
∣∣∣ ∣∣ϕ(χkn)− ϕ(χk−1

n )
∣∣ (1

W
(k)
n ≤h′

+ 1
W

(k)
n >1−h′

)∣∣∣
p

and∣∣∣ ∣∣ϕ(χkn)− ϕ(χk−1
n )

∣∣ (1
h≥W (k)

n >h′
+ 1

1−h<W (k)
n ≤1−h′

)∣∣∣
p
. As in the proof of the theorem,

the first term is dealt with using the bound assumption (2.4), leading to an upper bound

of the form O(n
−b′ (p1−1)

p1p ). Here p1 ∈ (1,∞) owing to the boundedness of ϕ, so the
exponent goes to b′

p as p1 → ∞. The second term is dealt with using the regular-
ity assumption (2.3) and then following the same steps as above, and we obtain the

upper bound O(n
b′(α+1+ε)− p1p

2(p1p+1)
−b p1−1

p1p ) for all 1 < p1 < ∞. The exponent goes to
b′ (α+ 1 + ε)− 1

2 −
b
p as p1 →∞.

� We then choose (with ε → 0) b′ =
1
2

+ b
p

α+1+ 1
p

and b = p(α+1)
2(p(α+1)−α) < 1

2 , so that all the

previous exponents are equal. Then we have b′ = p
2(p(α+1)−α) ≥

1
2 , and we obtain a

convergence order 1
2(p(α+1)−α) − ι for all ι > 0. We are done with Theorem 2.10 (i).
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4.4 Proof of Corollary 2.8

Let n ≥ 1 and let ι > 0. We have

|E (ϕ(Vn))− E (ϕ(U))| ≤ |E (ϕ(Vn))− E (ϕ(Wn))|+ |E (ϕ(Wn))− E (ϕ(U))| (4.10)

and we estimate the two terms separately.
• Firstly, we have, by Theorem A.1, with Φ = ϕ

(
G(1) ◦ Φ(1), . . . , G(d) ◦ Φ(d)

)
,

|E (ϕ(Wn))− E (ϕ(U))| = |E (Φ(Zn))− E (Φ(Z))| ≤ C(A.2)L(Z0)

(
sup
AZ

|Φ|
L

)
ρn. (4.11)

Let us check that Φ has a finite L-norm. Since ` is slowly varying, we can use the bound (4.3)
available for any ε > 0. Let ε ∈ (0,−α− qmax) (we recall that α < −qmax is assumed): then,
the ϕ-assumption bound (2.4) yields

sup
AZ

|Φ|
L
≤ C`,ε

d∑
i=1

sup
AZ

(
G(i) ◦ Φ(i)

)−α−ε
+
(
1−G(i) ◦ Φ(i)

)−α−ε
L

.

The above bound is finite by assumption (A-iii) about the sampler owing to −α− ε > qmax.
• Secondly, invoking Theorem 2.7 with p = 1, we have

|E (ϕ(Vn))− E (ϕ(Wn))| ≤ E (|ϕ(Vn)− ϕ(Wn)|)
= |ϕ(Vn)− ϕ(Wn)|1
≤ C1,ιn

− 1
2

+ α
2|qmax|

+ι
, (4.12)

for some positive constant C1,ι.
• To conclude, using estimates (4.11)-(4.12) in (4.10) and exploiting that the ρn-term in
negligible compared to the other one, we obtain the announced result.

4.5 Proof of Corollary 2.9

We have, by the Minkowski inequality,∣∣∣∣∣ 1n
n∑
k=1

ϕ(Vk)− E (ϕ(U))

∣∣∣∣∣
p

≤ 1

n

n∑
k=1

|ϕ(Vk)− ϕ(Wk)|p +

∣∣∣∣∣ 1n
n∑
k=1

ϕ(Wk)− E (ϕ(U))

∣∣∣∣∣
p

. (4.13)

By Theorem 2.7 we have, for each k ≥ 1,

|ϕ(Vk)− ϕ(Wk)|p ≤ Cp,ιk
− 1

2p
+ α

2|qmax|
+ι
, (4.14)

thus,

1

n

n∑
k=1

|ϕ(Vk)− ϕ(Wk)|p ≤
Cp,ι
n

n∑
k=1

k
− 1

2p
+ α

2|qmax|
+ι

32



≤ Cp,ιn−
1
2p

+ α
2|qmax|

+ι
, (4.15)

since the exponent of k in (4.14) is strictly larger than −1. Here the constant Cp,ι has changed.
We now deal with the second term. Using (A.1) from Theorem A.1 and the fact that, if p < 2,
the Lp-norm is controlled by the L2-norm, we obtain∣∣∣∣∣ 1n

n∑
k=1

ϕ(Wk)− E (ϕ(U))

∣∣∣∣∣
p

≤

∣∣∣∣∣ 1n
n∑
k=1

ϕ ◦
(
G(1), . . . , G(d)

)
◦ Φ(Zk)− E

(
ϕ ◦

(
G(1), . . . , G(d)

)
◦ (Z)

)∣∣∣∣∣
p∨2

≤ Cp∨2n
− 1

2 , (4.16)

provided that ϕ ◦
(
G(1), . . . , G(d)

)
◦ Φ is of finite L

1
p∨2 -norm. This is indeed the case as we

have, owing to the bound (2.4) on ϕ and to the bound (4.3) on `,

sup
AZ

ϕ ◦
(
G(1), . . . , G(d)

)
◦ Φ

L
1
p∨2

≤ 2

d∑
i=1

sup
AZ

(
`(G(i) ◦ Φ(i))

(G(i) ◦ Φ(i))αL
1
p∨2
∨ `(1−G(i) ◦ Φ(i))

(1−G(i) ◦ Φ(i))αL
1
p∨2

)

≤ 2C`,ε

d∑
i=1

sup
AZ

(
(G(i) ◦ Φ(i))−(p∨2)(α+ε)∨(1−G(i) ◦ Φ(i))−(p∨2)(α+ε)

L

) 1
p∨2

< +∞,

since −(p ∨ 2)(α+ ε) > qmax for ε small enough (remind that p ∨ 2 > − qmax

α ).
The theorem is proved using the estimates (4.15) and (4.16) in (4.13), and observing that the
bound (4.15) dominates that of (4.16).

5 Conclusion

In this work, we studied the theoretical and numerical properties of a transform MCMC
scheme developed to efficiently compute expectations, conditional to rare events, in which
the unconditional distribution is given by an intractable copula. The intractability of the
copula arises from the fact that it is defined as a copula of a different random vector, for
example obtained with a factor model, which leads to the so-called factor copulas. Under
mild and natural hypotheses, we are able to derive the convergence rates for our proposed
estimators, which are reproduced in a simulation example. We also revisit the computation
of a challenging statistic originated in the financial risk management literature.

A Appendix

A.1 Geometric convergence rate for Markov chains

We recall here some useful results.
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Theorem A.1 ([MT09, Theorem 15.0.1], [FM03, Proposition 2]). Assume that the Markov
kernel P satisfies Assumptions (A-i) and (A-ii). Then, for any p ≥ 2, for any function
Φ : AZ ⊂ RD → R bounded in L1/p-norm,∣∣∣∣∣ 1n

n∑
k=1

Φ(Zk)− E (Φ(Z))

∣∣∣∣∣
p

≤ Cp,P
(

sup
AZ

|Φ|

L
1
p

)
L1/p(Z0)√

n
(A.1)

for a constant depending only on the Markov kernel P and the norm exponent p.
In addition, there exists ρ ∈ (0, 1) and a finite constant C(A.2) > 0 such that for any function

measurable function Φ : AZ → R bounded in L-norm,

|E (Φ(Zn))− E (Φ(Z))| ≤ C(A.2)

(
sup
AZ

|Φ|
L

)
L(Z0)ρn. (A.2)

For an up-to-date overview of the literature, see the recent book [DMPS18], in particular
Chapter 15.

A.2 Lyapunov functions for some usual schemes

A.2.1 The preconditioned Crank-Nicolson sampler

In our applications, Z is often Gaussian distributed (possibly with restriction on a set AZ
in the case of conditional computations). We collect here related MCMC results available in
this Gaussian context. Define

Zk = (κZk−1 + εk)1AZ (κZk−1 + εk) + Zk−11(AZ)c (κZk−1 + εk) , k ≥ 1, (A.3)

Z0 ∈ AZ deterministic,

where κ ∈ (0, 1) and εk
d
= N (0, (1− κ2)ID) independently of everything else.

We assume that AZ is a measurable subset of RD with nonempty interior.
Its Markov transition kernel is defined, for y ∈ AZ and B ⊂ AZ measurable, by

P(y,B) =

∫
AZ

1B(z)p(y, z)dz + δy(B)

∫
(AZ)c

p(y, z)dz,

where p is the (unconditional) transition density (w.r.t. the Lebesgue measure), given by, for
y, z ∈ RD,

p(y, z) = exp

− D∑
j=1

|zj − κyj |2

2(1− κ2)

 (2π(1− κ2))−D/2.

Since πAZ (z)p(y, z) = πAZ (y)p(z, y) for all y, z ∈ AZ , where πAZ (defined in (3.4)) is the
density with respect to the Lebesgue measure of the standard Gaussian distribution N (0, ID)
restricted to AZ , this process is an autoregressive process with acceptance-rejection and which
stationary distribution has density πAZ .
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In the MCMC literature, the sampler (A.3) is called preconditioned Crank-Nicolson (pCN). It
can be defined in infinite dimension too. This is not the only MCMC scheme available: let us
mention the random walk Metropolis (RWM), the Metropolis Adjusted Langevin Algorithm
(MALA), Hybrid Monte-Carlo (HMC) among some well known schemes, see [CRSW13] for a
broad overview. However, pCN is among the simplest ones and it is more robust to increasing
dimension and generally improves upon naive RWM, see [CRSW13] and [HSV14].
We now assume, in addition, that there exists δ ∈ (0, 1) such that

sup
y∈AZ

∫
(AZ)c

p(y, z)dz ≤ δ. (A.4)

The above condition, which reads as a lower bound on the acceptance rate, is standard in the
MCMC literature, see [FGM17, Corollary 3]. The condition below, although not surprizing,
is seemingly less usual to the best of our knowledge: we could not find a reference.

Proposition A.2 (The quadratic exponential Lyapunov function). The Markov kernel P is
a Ψ-irreducible aperiodic transition kernel on AZ for which any compact subset C of AZ with
nonzero Lebesgue measure is an accessible petite set.
Let s ∈ (0, 1

2) and set

L(z) = es
∑D
i=1 |zi|2 .

This is a Lyapunov function satisfying the drift condition (2.1) and results of Theorem A.1
holds with this L.

A similar statement with L(z) = es
∑D
i=1 |zi| would be presumably much more standard (see

e.g. [DMPS18, p.318–319]), but having a quadratic exponential growth instead of linear one
plays an important role for enlarging the scope of applicability of our method (in view of
assumption (A-iii)).

Proof. The proof that P is Ψ-irreducible, aperiodic, and that any compact subset with positive
Lebesgue measure is an accessible petite set is standard and thus omitted.
It remains to prove that (2.1) holds and that {L ≤ ν} is 1-small for some ν > b

1−ρ(P) .

We first prove (2.1). Starting from the quadratic exponential form for L and using (A.4), we
get

PL(y) =

∫
AZ
L(z)p(y, z)dz + L(y)

∫
(AZ)c

p(y, z)dz

≤ L(y)

(∫
RD

p(y, z)
L(z)

L(y)
dz + δ

)

= L(y)

 D∏
j=1

∫
R

1√
2π(1− κ2)

exp

(
−(zj − κyj)2

2(1− κ2)

)
es|zj |

2−s|yj |2dzj + δ

 . (A.5)

A direct computation shows

−(zj − κyj)2

2(1− κ2)
+ s|zj |2 − s|yj |2
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= −(
1

2(1− κ2)
− s)z2

j +
κyjzj

(1− κ2)
−

κ2y2
j

2(1− κ2)
− s|yj |2

= −(
1

2(1− κ2)
− s)

(
zj −

κyj
2(1− κ2)

1

( 1
2(1−κ2)

− s)

)2

−
κ2y2

j

2(1− κ2)
− s|yj |2

+ (
1

2(1− κ2)
− s)

(
κyj

2(1− κ2)

1

( 1
2(1−κ2)

− s)

)2

= −(
1

2(1− κ2)
− s) (zj − [· · · ]yj)2 −

κ2y2
j

2(1− κ2)
− s|yj |2 +

κ2y2
j

2(1− κ2)(1− 2s(1− κ2))
,

−θ :=− κ2

2(1− κ2)
− s+

κ2

2(1− κ2)(1− 2s(1− κ2))

=
−κ2(1− 2s(1− κ2))− 2s(1− κ2)(1− 2s(1− κ2)) + κ2

2(1− κ2)(1− 2s(1− κ2))

=
2κ2s(1− κ2)− 2s(1− κ2)(1− 2s(1− κ2))

2(1− κ2)(1− 2s(1− κ2))

=
κ2s− s(1− 2s(1− κ2))

(1− 2s(1− κ2))

= −s(1− κ2)− 2s(1− κ2)

(1− 2s(1− κ2))
= −(1− κ2)s(1− 2s)

(1− 2s(1− κ2))
,

hence θ > 0 since 1− 2s(1− κ2) > 1− 2s > 0 and 1− κ2 > 0. Plugging this in the previous
equalities and integrating in zj the new Gaussian density in (A.5), we get

PL(y) ≤ L(y)

(
1

(1− 2s(1− κ2))D/2
e−θ|y|

2
+ δ

)
.

Let ρ(P) ∈ (0, 1) be given arbitrarily. Because θ > 0 and 0 < δ < 1, for any |y| > R with R
large enough, we get

PL(y) ≤ ρ(P)L(y), ∀|y| > R.

On the other hand, PL(y) is readily uniformly bounded on the compact set {y : |y| ≤ R}.
Therefore, the inequality (2.1) is proved.
We now prove the small set assumption. Let ν > b

1−ρ(P) , and notice that C := {z ∈ AZ :L(z) ≤

ν} = {z : |z| ≤ s−
1
2

√
ln(ν)} ∩ AZ , so that

∫
C π(z)dz > 0 for ν large enough, where π is the

standard Gaussian density (3.4). We set

πC(dz) :=
1Cπ(z)dz∫
C π(z)dz

,

and we compute, for y ∈ C and any measurable subset B of AZ ,

P(y,B) ≥
∫
AZ

1B(z)p(y, z)dz

36



=

∫
AZ

1B(z)
p(y, z)

π(z)
π(z)dz

≥ inf
(y,z)∈C2

(
p(y, z)

π(z)

)∫
C
1B(z)π(z)dz= inf

(y,z)∈C2

(
p(y, z)

π(z)

)
π(C)πC(B).

Since C is bounded, it is clear that the above infimum is nonzero, and the proof is complete.

A.2.2 The independent sampler

Here the sequence of (Zk)k≥1 is i.i.d. with distribution π:

Zk
d
= π(.), P(z,dz′) = π(dz′).

We quickly justify the following.

Proposition A.3. The resulting “Markov” kernel P satisfies the assumption (A-i) with some
Lyapunov function L given in the proof.

Proof. First, obviously there is a closed ball C0 = B(0, R0) with radius R0 > 0 such that
π(C0) > 0, provided that R0 is large enough.

� P is π-irreducible [MT09, Proposition 4.2.1 (ii)], since

A ∈ B(RD), z ∈ RD : π(A) > 0 =⇒ P(z,A) > 0

(owing to P(z,A) = π(A)).

� The set C0 is a π1-small set [MT09, Section 5.2], hence a petite set [MT09, Proposition
5.5.3] since obviously,

A ∈ B(RD), z ∈ C0 : P(z,A) ≥ π(A).

� P is strongly aperiodic (and thus aperiodic), as a consequence of the existence of the
π1-small set C0 with π1(C0) > 0 and irreducibility, see [MT09, p. 114].

� The set C0 is clearly accessible [MT09, p. 86] since from any starting point z ∈ RD, the
probability of hitting C in finite time is strictly positive P [τC < +∞] ≥ π(C0) > 0.

We now exhibit a candidate for the Lyapunov function L, which goes from RD to [1+,∞),
is radial and non-decreasing w.r.t. the radius, goes to infinity at infinity, and such that
E (L(Z)) ≤ 2. We distinguish two cases.

1. Z is a bounded random variable, hence integrable. Define L(z) = 1 + |z|
1+E(|Z|) : this

function L clearly meets our requirements.
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2. Z is unbounded. The construction of L requires more work. For any t ≥ 0, there is a
l(t) ≥ 0 such that

P [|Z| ≤ l(t)] ≥ 1− 1

(1 + t)2
. (A.6)

We take the smallest of such l(t): this is the quantile of |Z| at level 1− 1
(1+t)2

∈ [0, 1).

The function l. is càglàd non-decreasing, from R+ to R+ [EH13, Proposition 2.3, item
(2)]. Since Z is unbounded, l(t)→ +∞ as t→ +∞.
Set L(z) := l−1(|z|) + 1 where l−1 is the generalized inverse of l (see [EH13]): L is a
measurable function from RD to [1,∞), going to infinity at infinity. Then,

E (L(Z)− 1) =

∫ ∞
0

P [L(Z)− 1 > t] dt

=

∫ ∞
0

P
[
l−1(|Z|) > t

]
dt ≤

∫ ∞
0

P [|Z| > l(t)] dt ≤
∫ ∞

0

1

(1 + t)2
dt = 1,

where we have used at the first inequality [EH13, Proposition 2.3, item (5)] and (A.6)
at the second one. Therefore, E (L(Z)) ≤ 2.

Now, taking advantage of E (L(Z)) ≤ 2, we verify the inequality PL ≤ ρ(P)L+ b1C for some
ρ(P), b, C. Actually we can take any ρ(P) ∈ (0, 1), b = 2 and C = C0 with R0 large enough to
have L(z) ≥ 2/ρ(P) for any z such that |z| = R0: indeed,

� on the one hand for z ∈ C0,

PL(z) = E (L(Z)) ≤ 2 = b1C0(z) ≤ ρ(P)L(z) + b1C0(z);

� on the other hand, for z /∈ C0 (i.e. |z| > R0), we have

PL(z) = E (L(Z)) ≤ 2 ≤ ρ(P)L
(
z

|z|
R0

)
≤ ρ(P)L(z) = ρ(P)L(z) + b1C0(z).

We are done.

A.3 The skew-t distribution

We follow [Han94] and for ν ∈ (2,∞) and λ ∈ (−1, 1) we say that Z ∼ st(ν, λ) has skew-t
distribution with ν degrees of freedom and parameter of asymmetry λ if its density is given
by

fZ(z; ν, λ) =


bc

(
1 + 1

ν−2

(
bz+a
1−λ

)2
)−(ν+1)/2

, z < −a/b

bc

(
1 + 1

ν−2

(
bz+a
1+λ

)2
)−(ν+1)/2

, z ≥ −a/b
,

where a = 4λc
(
ν−2
ν−1

)
, b =

√
1 + 3λ2 − a2 and c =

Γ( ν+1
2 )

Γ( ν2 )
√
π(ν−2)

.
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