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Voice quality is known to be an important factor for the characterization of a speaker's voice, both in terms of physiological features (mainly laryngeal and supralaryngeal) and of the speaker's habits (sociolinguistic factors). This paper is devoted to one of the main components of voice quality: phonation type. It proposes neural representations of speech followed by a cascade of two binary neural network-based classifiers, one dedicated to the detection of modal and nonmodal vowels, and one for the classification of nonmodal vowels into creaky and breathy types. This approach is evaluated on the spontaneous part of the PTSVOX database, following an expert manual labelling of the data by phonation type. The results of the proposed classifiers reaches on average 85 % accuracy at the framelevel and up to 95 % accuracy at the segment-level. Further research is planned to generalize the classifiers on more contexts and speakers, and thus pave the way for a new workflow aimed at characterizing phonation types.

Introduction

Voice quality is considered in the literature to have great implications for the characterization of speakers [START_REF] Gold | International practices in forensic speaker comparison[END_REF]. It can be a permanent component of a speaker's voice due to physiological particularities (mostly laryngeal and supralaryngeal) or speaker habits (sociolinguistic factors), but it may also be subject to intra-speaker variability, notably speech style or emotion [START_REF] Nolan | Forensic speaker identification and the phonetic[END_REF]. Some known examples of voice quality are nasality, tenseness/laxness, dark/clear voice, phonation type, etc.

In this study, we focus on phonation type, which is the mode of vibration of the vocal folds during voiced phonation. It is typically regarded as an articulatory continuum between closed and open glottal state, respectively for speech from creaky to modal and finally breathy voice [START_REF] Gordon | Phonation types: a cross-linguistic overview[END_REF][START_REF] Wright | Voice quality types and uses in north american english[END_REF]. Phonation type can be a phonological feature in quite a few languages. For example, Jalapa Mazatec has creaky/modal/breathy /i/, /a/, /ae/, /o/, /u/, but other languages can be mentioned such as Hindi or Tsonga. Phonation type has also been demonstrated to be used for phonetic purposes: for example, creak can be an allophone of intervocalic unvoiced stops in British English [START_REF] Garellek | Acoustic differences between english /t/ glottalization and phrasal creak[END_REF], and breathiness can be used to signal prosodic finality in French [START_REF] Smith | Marking the boundary: utterance-final prosody in french questions and statements[END_REF], hence a potential role of phonation type as speaker stylistic marker. Obviously, phonation type can be used in the phonetic characterization of a speaker or a group of speakers: women are said to exhibit a more breathy voice than men in British English [START_REF] Henton | Language, speech, and mind: Studies in honour of Victoria A[END_REF], high prestige speakers in Edinburgh have been reported to use more creaky voice [START_REF] Esling | The identification of features of voice quality in social groups[END_REF], see also [START_REF] San Segundo | The use of the vocal profile analysis for speaker characterization: Methodological proposals[END_REF] for a review.

Voice quality, including phonation type, is often studied perceptually due to limitations in phoneticians' understanding of which acoustic parameters are most relevant, and how exactly they should be measured [START_REF] Keating | Acoustic analysis of creaky voice[END_REF][START_REF] Katharina Klug | Analysing breathy voice in forensic speaker comparison. using acoustics to confirm perception[END_REF]. We aim in this article at developing a neural-network system allowing for the automatic detection of these three phonation types (modal, creaky, breathy) as they are known to be useful for the characterization of speakers' voices. The system is designed to help phoneticians learn more about phonation types. This knowledge can be easily fed back into the system, to build a virtuous circle.

Section 2 describes the system. The corpus, including the manual annotations dedicated to the targeted task, is described in Section 3. Then, Section 4 presents the experimental protocol and Section 5 the corresponding experimental results. Finally, Section 6 proposes some takeaways and future work.

PASE-MLP phonation type detection system

Our goal is to provide an automatic system able to predict the type of phonation for a given speech frame or segment. The system must be bootstrapped on a small set of monitored data because manual annotation of this type of phenomenon takes time. Its ability to use large amounts of unlabelled data later is also of great importance to improve generalization.

At the feature extraction level, the system should allow great flexibility since discovering the relevant features is a part of the task. In addition, the knowledge gathered by the expert thanks to the system should be easily reinjected into the system. The problem-agnostic speech encoder (PASE) [START_REF] Pascual | Learning Problem-Agnostic Speech Representations from Multiple Self-Supervised Tasks[END_REF] looks promising for this purpose. PASE is a variant of autoencoder [START_REF] Ng | Sparse autoencoder[END_REF][START_REF] Lu | Speech enhancement based on deep denoising autoencoder[END_REF], a kind of neural network trained without supervision to reproduce input to output. During the operating phase, a vector, the "embedding", is extracted from the weights of the central layer for each audio signal frame. PASE is trained for multitasking: the embedding extractor is optimized to achieve different objectives, materialized by a set of "workers", such as retrieving the waveform, cepstral coefficients, the phoneme or certain prosodic parameters. So, the embedding is a compressed information capable of satisfying each worker. In this work we use the PASE+ [START_REF] Ravanelli | Multi-task self-supervised learning for Robust Speech Recognition[END_REF] encoder with a set of workers we consider most useful for the task (MFCC, waveform, prosody, LIM and GIM). By selecting other workers or by defining new workers based on new knowledge, it will be possible to modify the extraction characteristics to take new knowledge into account. PASE is trained with 6609 audio files from PTSVOX [START_REF] Chanclu | Ptsvox: une base de données pour la comparaison de voix dans le cadre judiciaire," in 6e conférence conjointe Journées d'Études sur la Parole[END_REF]. The outputted frames (the embeddings) have a size of 256 coefficients, with a frame rate of 1/100s.

For the classification part of the system, we built a cascade of two binary neural network-based classifiers. The first one aims to detect modal and nonmodal frames (nonmodal frames are frames labelled creaky or breathy) in a vowel segment. 

Corpus

This work is using audio data extracted from the PTSVOX [START_REF] Chanclu | Ptsvox: une base de données pour la comparaison de voix dans le cadre judiciaire," in 6e conférence conjointe Journées d'Études sur la Parole[END_REF] corpus. A specific expert-based annotation process was applied to enrich the meta information of the corpus in terms of phonation type, for the prepausal vowels. The remainder of this section shows the details of the data and the annotation process.

PTSVOX

The PTSVOX database is composed of French audio recordings. It is specifically designed to study the factors of inter-and intra-speaker variability in forensic voice comparison. These factors include speaking style (reading or spontaneous speech), recording equipment (microphone or telephone), gender, and various information about the speaker (smoking, health issues, etc.). All recordings are re-sampled to 16000Hz.

PTSVOX contains 369 speakers split in two sets: Intra composed of 24 speakers recorded multiple times and Inter, with 345 speakers recorded only once. For this work, we selected the microphone recordings of spontaneous speech from the Intra set. This set is composed of 12 female and 12 male speakers recorded once a month, using a microphone and a telephone, over a 3-month period (approximately 8 to 10 minutes per speaker whose excerpts were transcribed and segmented manually).

Voice quality annotation on prepausal vowels

More specifically, we focused on prepausal vowels because they contain linguistic key points since they occur at prosodic prominences, and they are perceptually important in communication. Prepausal vowels were perceptually annotated by one of the authors in three categories: creaky, modal, and breathy. For this annotation process, we automatically isolated vowels immediately followed by a pause for each speaker with a threshold of 50 ms for minimum vowel and pause duration. Then, by visualizing spectrograms and listening to the vowels, labels were assigned to them (see Figure 1). A single vowel could have two labels if it contained a change in voice quality. The 'other' label was assigned to ambiguous or noisy cases, which were then discarded. As there can be more than one label within a vowel, we use the term segment to refer to the labels within the vowel. The resulting corpus contains 10,361 segments for 8,889 vowels.

Experimental protocol

We decided to evaluate the two binary classifiers separately: modality detection between modal and nonmodal labels and voice quality detection between creaky and breathy labels. In the rest of this section, we present the reference system we defined, the split of the data into training and testing sets and the decision rules.

MFCC-SVM reference system

In order to serve as a baseline, we built a classical MFCC+SVM recognizer. Acoustic features are composed of 30 MFCC parameters with a 0-8kHz bandwidth, extracted using torchaudio. The window length is 20 ms with an overlap of 10 ms between 2 consecutive windows, giving a frame rate of 100 frames per second. We used a support vector machine (SVM) with a radial basis function. Similarly to our MLP system, the models were trained on a balanced and randomized amount of data between classes.

Training and test subsets

For each gender, we randomly selected two speakers and used the corresponding audio data to form a fully separated test set. The selected speakers for the test set are LG001 and LG009 for female speakers and LG012 and LG024 for male speakers. 20 % of the remaining data are then randomly selected to form a validation set, and the rest is dedicated to the training set. The speakers of the test set are never seen in the training or in the validation sets. The train and validation sets contain recordings spoken by the same speakers. 1 presents the number of annotated prepausal vowel segments and the corresponding duration (in number of frames) for both sets and vowel label.

Scoring rules

The predictions are done frame by frame for both tasks (modal/nonmodal and creaky/breathy) and both recognizers, with a rate of 100 frames per second (recall that the parameterization steps of the two recognizers used a signal window longer than 1/100s to compute a given frame). Decisions were made using an simple rule: if the score was higher than 0.5, the rec-ognizer answered yes, and no otherwise (there was no threshold setting at all). Performance at the segment-level was also computed. To predict voice quality classification at the segmentlevel, we first performed a prediction at the frame-level. Then we computed the mean prediction over all frames of the segment before applying the same decision rule as previously.

Results

We first present the results for the modal/nonmodal task before moving on to those of the creaky/breathy classification task. Performance is presented using confusion matrices for a clearer visualization of class imbalance in the test set. Performance on the test set only (i.e. using data coming from speakers never seen during the training) is shown.

Modal/nonmodal classification

Table 2 presents the performance of the modal/nonmodal classifiers at the frame-level. 87 % of the modal frames and 76 % of the nonmodal frames are well classified with the PASE-MLP system (κ = 0.62). The reference system shows lower performance with, respectively, 79 % and 72 % (κ = 0.49). Table 3 shows the performance for the same task but gathered at the segment-level. Overall, the same difference between our system PASE-MLP and the baseline appears. As expected, the general level of performance is significantly higher than for the framelevel, with up to 93 % of good classification for modal frames (κ = 0.76). We can notice the performance of the baseline system at the segment-level is close to the performance of our PASE-MLP system at the frame-level (κ = 0.65). 

Creaky/breathy classification

Table 4 presents the performance of the creaky/breathy classifiers at the frame-level. The baseline system has a good recognition rate for breathy frames (88 %) but shows a clear weakness for creaky frames with 67 % of correct recognition (κ = 0.51).

Our PASE-MLP approach outperforms the baseline with 85 % for creaky frames and 88 % for breathy frames (κ = 0.73). This favours the cascade architecture: it seems easier to separate breathy and creaky frames than modal and nonmodal frames, although additional experiments are required before a definitive conclusion can be reached. Table 5 shows the results of similar experiments to Table 4 but at the segment-level. The performance confirms our previous findings. The performance at the segment-level for this task with our PASE-MLP system appears very promising, with about 95 % of correct classification (κ = 0.88, and κ = 0.67 for MFCC-SVM). 

Discussion and conclusion

This article aims to lay the foundations of a new workflow dedicated to voice quality, and more precisely to phonation type. The final objective is to propose an automatic tool to help phoneticians to improve their understanding of phonation phenomena.

We started here at a low level by defining a new neural network solution to automatically detect three phonation types (modal, creaky and breathy) on prepausal vowels. We implemented a cascade of two binary classifiers, based on a representation learning approach, PASE, for feature extraction and a classical MLP for classification. These choices were driven by two wishes: to be able to generalize the knowledge gathered from the -limited in size-manual annotation provided by phoneticians, and to embed easily the phoneticians understanding in the system, following a virtuous circle model. The proposed solution yielded very satisfactory performance, with on average ≈84 % of correctly labelled frames for both classifiers. The performance reached ≈91 % when the decision was taken at the segment level. Our neural network-based solution, PASE-MLP, clearly outperformed a classical MFCC-SVM approach (≈75 % on average at the frame level for the latter, to be compared to ≈85 % for the PASE-MLP system). More importantly, the performance of PASE-MLP system appeared more stable than the MFCC-SVM solution.

The results open the door for further investigation. First, the PASE-MLP system should be generalized to more phonetic contexts and speakers. Our next step is to use transfer learning [START_REF] Pan | A survey on transfer learning[END_REF] to pretrain both PASE and MLP modules (it will use the current system to propose initial labels as suggested in [START_REF] Gresse | Learning Voice Representation Using Knowledge Distillation For Automatic Voice Casting[END_REF]). It will allow us to apply the system on all the PTSVOX data as well as on other, larger, databases. Second, the system will provide expert phoneticians with the best subset of examples for perceptual study and the possibility to incorporate their feedback. Finally, we wish to help expert phoneticians to study speaker phonotypes on a large scale, including intra-speaker variability, thanks to the automatic tools we will provide.
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 1 Figure 1: Labelling example of a creaky vowel

Table 1 :

 1 Number of segments and duration (in 1/100s frames) for the train and test subsets

		Train & Val		Test
		Seg.	Frames Seg. Frames
	modal	4,090 89,478	687	15,773
	nonmodal 2,220 33,554	464	7,410
	creaky	1,088 17,441	251	3,569
	breathy	1,132 16,113	213	3,841
	Table			

Table 2 :

 2 Confusion matrices between modal and nonmodal frames in the test set for both systems

			PASE-MLP	
		modal	nonmodal	Total
	modal	13,640 (87 %) 2,133 (13 %) 15,773
	nonmodal	1,768 (24 %)	5,642 (76 %)	7,410
			MFCC-SVM	
	modal	12,430 (79 %) 3,343 (21 %) 15,773
	nonmodal	2,070 (28 %)	5,334 (72 %)	7,410

Table 3 :

 3 Confusion matrices between modal and nonmodal segments in the test set for both systems

		PASE-MLP	
		modal	nonmodal	Total
	modal	638 (93 %)	49 (7 %)	687
	nonmodal	80 (17 %)	384 (83 %)	464
		MFCC-SVM	
	modal	595 (87 %)	92 (13 %)	687
	nonmodal 102 (22 %) 362 (78 %)	464

Table 4 :

 4 Confusion matrices between creaky and breathy frames on the test set for both systems

			PASE-MLP	
		creaky	breathy	Total
	creaky	3,048 (85 %)	521 (15 %)	3,569
	breathy	465 (12 %)	3,376 (88 %) 3,841
		MFCC-SVM	
	creaky	2,376 (67 %) 1,193 (33 %) 3,569
	breathy	586 (15 %)	3,255 (85 %) 3,841

Table 5 :

 5 Confusion matrices between creaky and breathy segments on the test set for both systems

		PASE-MLP	
		creaky	breathy	Total
	creaky	235 (94 %)	16 (6 %)	251
	breathy	11 (5 %)	202 (95 %)	213
		MFCC-SVM	
	creaky	193 (77 %)	58 (23 %)	251
	breathy	19 (9 %)	194 (91 %)	213
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