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Abstract. A statistical appearance model of blood vessels based on
variational autoencoder (VAE) is well adapted to image intensity varia-
tions. However, images reconstructed with such a statistical model may
have topological defects, such as loss of bifurcation and creation of unde-
sired hole. In order to build a 3D anatomical model of blood vessels, we
incorporate topological prior into the statistical modeling. Qualitative
and quantitative results on 2567 real CT volume patches and on 10000
artificial ones show the efficiency of the proposed framework.

Keywords: Statistical model · Topological data analysis · Variational
autoencoder · Vasculature.

1 Introduction

A statistical model, which represents a variation in shape and intensity of an
organ with a small number of parameters, plays a key role as priors for medi-
cal image analysis [5, 8]. Many statistical shape models have been proposed for
parenchymatous organs, such as the liver [1, 3, 14]. However, as far as we know,
less study made for building a statistical appearance model that accurately rep-
resents variations of blood vessels, whose geometrical and appearance features
are useful for the diagnosis of diseases, e.g. pneumonia. This is due to the fact
that a simple statistical model is not suitable to describe diverse variations of
vessels including difference in not only direction and diameter but also topology
such as branching. For example, Principal Component Analysis (PCA), which is
a classical statistical analysis method, cannot deal with such complicated distri-
bution. Recently proposed methods, such as manifold learning and deep learning
[2], might solve the problem in the modeling of blood vessels. Along this line,
the approach employing a Variational AutoEncoder (VAE) [12] and its extension
β-Variational AutoEncoder (β-VAE) [9] was previously proposed to build a sta-
tistical model of vasculatures of lung CT volumes [13]. Nevertheless, it has been
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Fig. 1. Cross sections of an original volume patch of 9 × 9 × 9 [voxel] of vasculatures
(top) and its failed reconstruction (missing bifurcation marked by the red arrow) by a
statistical model based on β-VAE [13] (bottom).

pointed out that the images generated by the statistical model suffer from topo-
logical artifacts, such as disconnection of vessels, undesired holes, false cycles,
and missing bifurcations (see Fig. 1).

This article proposes a method for building a statistical intensity model of
pulmonary vasculatures in CT volume patches that incorporates topological
prior of vasculatures in the statistical modeling, which is an incremental con-
tribution over the previous work [13]. We use persistent homology [6] to give
topological constraints in neural network [4], which result in topologically cor-
rect representation of vasculatures. In particular, in the case of bifurcations and
undesired hole artifacts, qualitative and quantitative evaluations show that tak-
ing topological prior into account during learning indeed allows for improving
the topological soundness of reconstructed images while keeping a satisfying ap-
pearance level. We also investigate its combination with a multi-scale approach
based on mathematical morphology [15] when the topological correction (hole
closing or vessel re-connection) forced by the topological loss is too “thin”.

2 Appearance model of 3D blood vessels based on β-VAE

Statistical variations of vessels in chest CT volume patches are modeled in two
steps: modeling appearance of vessels using a conventional network, or β-VAE,
as a baseline model and incorporating topological prior to the model. In this
section, we explain the first step.

Vessel appearance in a volume patch is modeled by the β-VAE (Fig. 2) [13]
that consists of four layers, or two fully connected layers with 200 units followed
by a rectified linear unit (ReLU), a latent layer, and a fully connected layer with
729 units followed by a sigmoid function to generate an output vector. Note that
a volume patch of 9 × 9 × 9 [voxel] is transformed into a vector of size 729 for
the input and the output vector is reconstructed to a volume patch.

Let us consider some dataset X = {x(i)}Ni=1 of size N . Given a volume patch
x(i) and its reconstruction y(i), the loss function of β-VAE is defined by

Lβ-VAE = −β
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where µ(i) and σ(i) are the mean and variance of the latent space variables
z(i), both of which are computed using the training data and x(i). Note that j
represents the dimensional index of z(i), and J is the dimension of the latent
space. The first term on the right-hand side is the Kullback-Leibler distance
between the predicted distribution in the latent space and the Gaussian distri-
bution N (0, I), while the second term is the reconstruction error of x(i). The
weight β determines a balance between the two terms.

This statistical model allows us to describe vessels using a small number of
parameters and to generate vessels by changing latent parameters. The encoder
of the trained β-VAE has the former function, while the decoder has the latter
function. Thanks to these two functions, this model enables us to compress a
given vessel and also to generate a vessel.

3 Topological loss function based on persistent homology

The second step of the statistical modeling is to incorporate topological prior
into the appearance model of Section 2. To this end, computational topology
[6] is used to fine-tune the network. We focus on persistent homology [17] and
incorporate the topological loss function [4] in the fine-tuning phase.

3.1 Persistent homology

Persistent Homology (PH) aims at describing the topological features of data [6].
Given a function or image defined over a simplicial complex, PH represents the
evolution of the topological features of the lower level sets (also called threshold
sets) of this function. Thus, the image resulting from the previously presented
network must be first converted into a weighted simplicial complex before com-
puting PH. In a complex of dimension d, each topological feature has a dimension
between 0 and d − 1 and, for each dimension k, the number of topological fea-
tures of dimension k is known as the k-th Betti number, denoted by βk. In a 3D
space, the features of dimension 0 (resp. 1, and 2) correspond to the connected
components (resp. to the tunnels, and to the cavities) of the complex. When
browsing the successive threshold sets of a weighted complex, at each level, it is
possible to track the new topological features that appear, those that disappear
at this level, and those that persist from the previous level. Therefore, for each
topological feature, it is possible to compute the level at which it appears and

Fig. 2. Network architecture of β-VAE [13] for statistical modeling of vessels
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Fig. 3. Persistence barcode (top, left) and diagram (top, right) of a 3D bifurcated
vessel image with a frame padded (bottom)

the one at which it disappears. These levels are called the birth and death times
of the topological feature, respectively. PH then produces a Persistence Barcode
(PB) such as the one shown in Fig. 3, where a bar is displayed for each topologi-
cal feature and where the starting and ending points of the bar correspond to the
birth and death times of the considered feature. In the figure, blue (resp. green
and red) bars represent the features of dimension 0 (resp. 1 and 2) composing
the Betti number β0 (resp. β1 and β2). A Persistence Diagram (PD) can also be
drawn where each feature is represented as a point whose coordinates correspond
to its birth and death times. The length of a bar in a PB indicates the lifetime
of each topological feature. When the lifetime is long, the corresponding point of
a PD is plotted close to the upper left corner and considered as a stable feature.
In this example, blue and red points are at stable positions. When the lifetime
is short, the corresponding points are plotted close to the diagonal line and such
components are considered as noise.

3.2 Topological loss functions and priors

Based on the idea presented in [4], we assume that topological information of
3D blood vessels is known a priori, and incorporate this knowledge into deep
learning based modeling.

Let us consider the l-th longest bar of the k-th Betti number of PB, whose
birth and death times are denoted by bk,l and dk,l, respectively. Suppose that we
have the topological prior such that the PB contains β∗k long bars for the k-th
Betti number. In other words, those corresponding points of PD are located far
from the diagonal line and close to the upper left corner. With such topological
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prior, the topological loss function is defined by
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where λ∗k and λk are weights for the first and second terms with respect to k-th
Betti number, respectively. Note that we assume that the first β∗k long bars are
the “correct” ones. Given topological prior β∗k for each k, this loss function is
minimized during the learning process. Note that minimizing this loss implies
increasing the lengths of the β∗k long bars of each k-th Betti number on PB (the
first term of (2)) and decreasing the lengths of the rest (the second term of (2)).
This will encourage the β∗k points of PD in the first term to move to the upper
left point while the rest moves to the diagonal line.

This article is aimed at modeling 3D blood vessels in volume patches. Toward
this end, we consider various topological loss functions. First, we propose to set

– (β∗0 , β
∗
1 , β
∗
2) = (1, 0, 0) in order to favor one connected component

existing in a volume patch, denoted by Ltopo(1, 0, 0). As this topological prior
is not sufficient to distinguish a single tube and a bifurcation structure, we also
consider the padded volume patches with a one-voxel border of value 1 (see Fig.3
(bottom)), to which we propose to set

– (β∗0 , β
∗
1 , β
∗
2) = (1, 1, 1) for a single tube structure, and

– (β∗0 , β
∗
1 , β
∗
2) = (1, 2, 1) for a single bifurcation structure (Y-shaped)

as the topological priors, denoted by L�
topo(1, 1, 1) and L�

topo(1, 2, 1). A similar
idea of using padded images for 2D image segmentation can be seen in [10].

In some cases, the topological correction (hole closing or vessel re-connection)
forced by the topological loss is too “thin” compared to the width of the vessel
(see Fig. 4–line 4). It is then desirable to also consider a topological loss applied to
an erosion of the generated image (insertion of an erosion layer before computing
the topological loss), leading to multi-scale topological loss functions, where the
scale is given by the size of the structuring element used in the erosion. The
effect of this multi-scale loss function can be seen in Fig. 4–line 5 where the
topological correction is thick enough.

4 Incorporating topological priors into statistical model

The topological priors proposed in the previous section are incorporated into the
deep learning generator by using the following loss function

L = Lβ-VAE + Ltopo (3)

instead of simply using Lβ-VAE of (1). Note that the effect of homology based
loss on the total loss can be controlled by setting values of weights λ∗k and λk
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inserted in Ltopo (see Eq. (2)). In this article, the function Ltopo can be ei-
ther the topological function that defines the number of connected components
Ltopo(1, 0, 0), the structure of non-bifurcation L�

topo(1, 1, 1), the structure of bi-

furcation L�
topo(1, 2, 1), their multi-scale version, or their linear combination. It

should be noted that such a combination allows us to represent more complex
shapes while it provides more parameter tuning and more computation time.

5 Experiments

The network is pre-trained with only the β-VAE loss (1) and fine-tuned by adding
the topological loss (2). The idea behind this strategy is that the network is first
optimized coarsely with the β-VAE loss and then refined with the topological
loss. This is because the topological loss is likely to provide many local optimums
everywhere in the search space. The method is evaluated in the following two
contexts: blood vessels containing (1) hole artifacts, created in image acquisition
process such as random noise, and (2) bifurcations. The topological priors are
chosen depending on the contexts. Volume patches of size 9× 9× 9 are treated
and intensities of every patch are normalized to [0, 1]. Both in the pre-training
and the fine-tuning, the number of epochs is decided such that the validation
loss becomes minimum.

5.1 Blood vessels containing hole artifacts

Datasets Artificial images of blood vessels containing hole artifacts are gen-
erated from spatial lines with a Gaussian intensity profile whose center is posi-
tioned on the lines and whose parameter values are tuned (no hole image). For
each image, a hole is then generated by reversing the intensity values of a ball,
whose center is on the centerline of a blood vessel (hole images) and which is
located inside the blood vessel. Among the generated images, 6000, 2000 and
2000 volume patches are used for training, validation and testing.

Chosen topological loss function and parameter setting The chosen
topological prior is of one connected component Ltopo(1, 0, 0). The latent di-
mensions J of β-VAE was set to 6, and the parameters of the loss function were
set to β = 0.1 and λ∗k = λk = 60000. Adam [11] was used with α = 10−5, β1 =
0.9, β2 = 0.999 as the optimization method, where the batch size was set to 128.
The number of epochs was set to 3072 (resp. 371) for the pre-training (resp. the
fine-training).

Evaluation strategies The performance of the statistical model for intensity
distributions was evaluated by the following two indices, generalization, which
measures the ability to represent unknown data correctly, and specificity, which
measures the ability to eliminate an unnatural shape [16]; they are made by com-
parison with test images and their reconstructed images. Note that the smaller
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Table 1. Evaluations of the three methods (Pre, Fine and Fine with erosion) on their
reconstructions of a volume containing a hole artifact (see Fig. 4) with three measures
based on generalization, specificity and topological loss function.

Generalization Specificity Topology

Pre 0.00251 0.0134 0.430
Fine 0.00478 0.0143 0.0976
Fine + Erosion 0.00728 0.0156 0.00139

index leads to better performance since they measure the distances between the
image generated by the model and the original images.

For evaluating the topological performance of the model, the topological loss
function was calculated with λ∗k = λk = 1 (the smaller the index, the better
the performance). The null hypothesis that the values achieved by each method
(Pre, Fine and Fine (Erosion)) have the same distribution was tested: Wilcoxon’s
signed quartiles test was used for generalization and topological loss function,
and Mann-Whitney’s U test was used for specificity.

Results The method without topological prior is denoted as Pre while the pro-
posed one with topological prior without/with multiscale is denoted as Fine and
Fine (Erosion), respectively. Table 1 shows that Fine is inferior to Pre in the
evaluation of intensity values, but it improves the performance in the evaluation
of topology. However, the 4th row of Fig. 4 shows that the result still contains
an artifact. With the multiscale version of this topological loss, this is improved
qualitatively (the 5th row of Fig. 4) and quantitatively with topological eval-
uation (Table 1). Null hypothesis (H0: there is no difference in performance
between any pair of the three methods, Pre, Fine and Fine (Erosion)) was re-
jected (p < 0.01) for all evaluation measures, except for the specificity between
Fine and Fine (Erosion).

Fig. 4. Modeling of a volume containing a hole artifact (Input): resulting reconstruction
without/with topological prior (Pre/Fine), and with the multiscale version (Erosion).
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Table 2. Evaluations of the two methods (Pre and Fine) on their reconstructions of a
volume containing a bifurcation (see Fig. 5) with three measures based on generaliza-
tion, specificity and bottleneck distance with the original image via the PDs.

Generalization Specificity Bottleneck distance

Pre 0.00704 0.0283 0.288
Fine 0.0102 0.0410 0.236

5.2 Blood vessels with bifurcations

Datasets CT images taken at Tokushima University Hospital (TUAT Ethics
Committee Application No. 30-29) were used in the experiments. From 47 cases,
volume patches of size 9×9×9 containing Y-shaped blood vessels with a thickness
of approximately from 1 to 4 mm, located between the hilar and peripheral
regions, were extracted using a method based on Hessian filter [7]. Among them,
1533, 517 and 517 volume patches are used for training, validation and testing.
The training images were augmented by flipping the original volume patches
with probability 0.5 before inputting to the network.

Chosen topological loss function and parameter setting The network was
pre-trained with only the β-VAE loss (1) and fine-tuned by adding topological
prior (2) of bifurcation case L�

topo(1, 2, 1). The latent dimensions J of β-VAE was
set to 22, which corresponds to the number of axes of PCA whose cumulative
contribution exceeds 0.8 using the training and validation data. The parameters
of the loss function were experimentally set to β = 0.1 and λ∗k = λk = 50.
Adam [11] was used with α = 10−3, β1 = 0.9, β2 = 0.999 as the optimization
method, where the batch size was set to 128. To reduce the computational cost,
the topological loss was calculated using 1

10 of the batch size. The number of
epochs was set to 346 (resp. 36) for the pre-training (resp. the fine-training).

Evaluation strategies Similarly to the previous experiment, generalization
and specificity were calculated. For evaluating the topological performance of

Fig. 5. Modeling of a volume containing a bifurcation (Original): resulting reconstruc-
tion without/with topological prior (Pre/Fine)
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Fig. 6. PDs of the original (left) and reconstructed images of Fig. 5: Pre. (middle) and
Fine (right).

the model, the Bottleneck distance [6] between the PDs of the original and re-
constructed images was used rather than the topological loss function, which
is simpler to be calculated, as we consider in this experiment that the recon-
struction must be close to the original. Note that the smaller the distance, the
better the performance. Wilcoxon’s signed quartiles test was used for Bottle-
neck distance as well as generalization while Mann-Whitney’s U test was used
for specificity.

Results The method without topological prior is denoted as Pre and the pro-
posed method with topological prior is denoted as Fine. Table 2 shows that the
Fine is inferior to the Pre in the evaluation of intensity values, but it improves
the performance in the evaluation of topology. Null hypothesis (H0: there is no
difference in performance between Pre and Fine) was rejected (p < 0.01) for all
evaluation measures.

The reconstructed images are shown in Fig. 5 with the red arrows which
indicate the typical difference between the two methods. The arrows confirm that
the proposed model (Fine) improves the representation of bifurcation compared
to the conventional model (Pre).

The PDs corresponding to the original and reconstructed images in Fig. 5
are shown in Fig. 6. In the original (left) and the Fine (right), two green points
are positioned close to the left corner point (0, 1) and apart from other noise
components close to the diagonal line. On the other hand, in the Pre (middle)
there is only one stable green point that is not a noise component. This indicates
that the Pre cannot represent bifurcations of blood vessels, while the Fine, which
incorporates the topological prior, can construct a model that generates blood
vessels with bifurcations closer to the ones of the original.

6 Conclusion

In this article, we tackled the problem of modeling blood vessels with topo-
logical correctness based on a statistical appearance model, which has been a
challenge for conventional methods. In order to incorporate topological priors
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of bifurcations and undesired hole existence into statistical modeling, we inte-
grated topological loss into the deep generative model (β-VAE). More precisely,
the network is pre-trained with only the β-VAE loss and fine-tuned by adding
the topological The topological loss is indeed used for refining the network as
it may provide local optimums everywhere in the search space. In the experi-
ments, we used a dataset of vascular patches with bifurcation structures to build
a model using the proposed method. The experimental results showed that the
proposed method improved the performance of the topology evaluation values
while the performance of the intensity evaluation value decreased. Qualitatively,
we also identified improvements of hole closing and representation of bifurcation
structures in the reconstructed volumes. Future work would be to apply the con-
structed statistical appearance model of blood vessels to associated tasks such
as vessel segmentation and super-resolution.
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