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Abstract 

This paper aims to develop a variable-node multiscale extended finite element method 

(V-XFEM) for dynamic fracture analysis of the linearly uncoupled and coupled physical 

phenomena in a compact formula. The general governing equations for the linearly uncoupled and 

coupled physical phenomena are presented in a compact form. The local mesh refinement technique 

for modeling cracks is used to improve the accuracy and efficiency, in which variable-node 

elements without modifying the system matrix or impose additional boundary conditions are taken 

to connect/link different scale elements. In addition, the time-dependent equations are solved by the 

unconditionally stable implicit Newmark time integration method, and the dynamic intensity factors 

(DIFs) are derived from the domain forms of the interaction integrals. Numerical results of the 

linearly elastic and piezoelectric problems show that V-XFEM is an efficient numerical approach to 

simulate the dynamic fracture problems of the linearly uncoupled and coupled physical phenomena. 
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Nomenclature 

a , b  
physical field subscripts 

ijK  
magnetoelectric moduli 

i, j space subscripts 
( )h

aw x  
enriched field 

)iJaJ (  
general stress tensor (components) 

( )iNa x  
standard FE shape functions 

)iEaE (  
general strain tensor (components) i

aw  
nodal vectors 

)waW (  
general displace vector 

(components) 

j
aa , k

Iab  
Enriched unknown variables of 

nodes 

( )i jLa b  
general elastic tensor (components) 

, ,s cut tipN N N  
set of all nodes in the whole 

discretized domain, associated 

with crack-faces and the crack-tips 

( )i jMa b  
general compliance tensor 

(components) 
( )H x  

modified Heaviside step function 

ijs
 

Stress components 
( )IF x  

crack-tip branch enrichment 

functions 

ije
 

Strain components tD  time increment 

di electric displacement components x ,h   
local coordinates in the 

isoparametric element 

hi electric field vector components 
,I IIK K  

elastic stress intensity factor 

mi magnetic flux components 
IVK  

electrical displacement intensity 

factor 

ai magnetic field vector components dyn
IK  

dynamic stress intensity factor 

ijklC  
elastic moduli 

IK
 

normalized stress intensity factors 

ijD  
dielectric moduli a Crack length 

ijH  
magnetic permeability moduli j  electric potential  

kijÕ  
piezoelectric moduli y  magnetic potential 

kijL  
piezomagnetic moduli   

 

 

 



1. Introduction 

An accurate description of the singular fields near the crack-tip is often of great importance in 

modeling of fracture mechanics problems. However, in contrast to the static loading conditions, 

numerical simulation of the dynamic fracture problems remains a challenge in many practical 

engineering applications. Song et al. [1] investigated three finite element methods for dynamic 

crack propagation, it shows that XFEM and interelement method show similar crack speeds and 

crack paths, and element deletion method is unable to predict crack branching. The extended finite 

element method (XFEM) [2, 3] is a very powerful numerical tool for modeling arbitrary cracks 

without remeshing. Recently, it has received much attention in a wide range of engineering 

problems including the dynamic fracture mechanics problems, e.g., see [4-6]. A detailed overview 

on the application of extended finite element method in modeling of arbitrary discontinuities can be 

found in Refs. [7,8]. 

In fracture mechanics problems, a fine mesh is often required in order to accurately describe 

the singular fields near the crack-tip and model crack growth path. However, the region containing 

cracks is usually only a small portion of the whole structure, it is unreasonable to adopt a 

small-scale mesh in the whole structure due to the computational efficiency. Therefore, numerous 

multiscale methods which adopt a locally refined mesh have been proposed. In multiscale methods, 

two-scale meshes are nonconforming, how to link or connect meshes at different level and scales is 

the main challenge. Guidault et al. [9,10] decomposed the structure into two substructures with 

distinct scales and linked the two distinct scale meshes by transmitting interactions at multiscale 

interfaces. Based on a two-scale decomposition, Loehnert and Belytschko [11] proposed a 

multiscale projection method for macro/microcrack simulations in which macrocracks and 

microcracks are taken into account by the XFEM. Zhou and Yang [12] and Holl et al. [13,14] 

adopted the multiscale projection method to simulate propagation and coalescence of multiple 

cracks. Murotani et al. [15] proposed an adaptive finite element using a hierarchical mesh and 

applied it to crack propagation analysis. Hettich et al. [16] proposed a variational multiscale method 

to model failure, in which the Lagrange multipliers was adopted to connect the large and small 

scales meshes. Dhia and Rateau [17] used the Arlequin method to link fine scale model and a large 

scale model for simulating crack propagation through the XFEM. For 3D crack propagation in large 

structures, Rannou et al. [18] developed a local multigrid approach to coupe the grids at different 



scales within the XFEM framework. Gibert et al. [19] presented a multi scale approach coupling the 

X-FEM method with automatic adaptive mesh refinement for 2D and 3D fatigue crack propagation. 

But, a projection of the mechanical state from one mesh to another during the propagation is 

necessary. Fries et al. [20] proposed a XFEM with locally refined mesh through two kinds of 

hanging nodes which have or have no degrees of freedom. Budarapu et al. [21] developed an 

adaptive multiscale method in which the different scales are connected by ghost atoms. Patil et al. 

[22] constructed a multiscale XFEM for modeling heterogeneous materials using the multiscale 

basis functions as a bridge between two scales. Teng et al. [23] integrated the virtual node polygonal 

elements with XFEM for modelling dynamic crack growth. Kumar et al. [24] developed a 

homogenized multigrid XFEM for the crack growth simulations in ductile materials, in which the 

domain contains the microstructural defects is simulated by fine mesh while other domains are 

simulated by coarse mesh with homogenized properties. Among those methods, extra efforts such 

as modification on the system matrix or imposing additional boundary conditions are unavoidable. 

To overcome this numerical problem, the variable-node elements [25] with an arbitrary 

number of nodes on each of their edges were developed based on the generic point interpolation, 

which can provide a flexibility to connect different scale meshes without modify the system matrix 

or impose additional boundary conditions. Recently, the variable-node XFEM (V-XFEM) has been 

developed for modeling cracks, voids, and inclusions in both 2D and 3D elastic mediums [26-28] 

by introducing the variable-node elements into the traditional XFEM codes. Due to its advantages 

of having no additional constraints, the variable-node elements can be conveniently embedded into 

the traditional XFEM codes. The V-XFEM has been proved to be a general and efficient approach 

in the framework of multiscale methods, and achieves a faster convergence rate in energy norm 

error than the standard XFEM [28]. Ding et al. [29, 30] present a Matlab object-oriented 

implementation of an efficient V-XFEM for the problems of multiple crack growth simulation and 

strong and weak discontinuities. Han et al. [31] proposed a triangular extended stochastic finite 

element method (T-XSFEM) for simulation of random void problems with the aid of variable-node 

elements to couple/link different mesh-scales. More recently, the V-XFEM are extended for 

detection of multiple complicated flaw clusters in large structures [32]. Even much efforts in the 

fracture analyses, to the best of the authors’ knowledge, the attention has not been paid to the 

dynamic fracture problems. 



Piezoelectric materials have been widely used as actuators, transducers or sensors because of 

the inherent coupling effect between mechanical and electric fields. Piezoelectric materials possess 

many advantages but suffer the brittleness and low fracture toughness. As the growing demand for 

wide range of applications of piezoelectric materials, the dynamic fracture problem has been a 

serious concern nowadays for the design engineers of piezoelectric structures. Li and Mataga [33] 

studied transient response of a semi-infinite, anti-plane crack propagating in a hexagonal 

piezoelectric medium by transform methods together with the Wiener-Hopf and Cagniardde Hoop 

techniques. However, deriving analytical solutions for time dependent problems of cracks under 

dynamic impact loading condition are very restricted and numerical methods are required for 

practical application of piezoelectric structures. Therefore, Enderlein et al. [34] applied finite 

element method (FEM) to model dynamic fracture problems in piezoelectric materials. Studies on 

fracture problems in piezoelectric materials under dynamic loading have also modeled by other 

numerical approaches including the BEM [35,36], meshless methods[37], scaled boundary finite 

element method (SBFEM) [38] and the extended finite element method (XFEM)[4-6, 39]. Bechet et 

al. [40] devised an enrichment scheme with six crack tip functions based on the asymptotic 

expansion around a crack tip in piezoelectric materials.  

    In the present paper, we extend the applicability of V-XFEM to the dynamic fracture analysis 

for the linearly uncoupled and coupled physical phenomena in a compact formula by introducing 

the general governing equations. The time-dependent equations to be solved by the unconditionally 

stable implicit Newmark time integration method and the dynamic intensity factors (DIFs) are 

derived from the domain forms of the interaction integrals. The numerical results of the elastic and 

piezoelectric problems considered as illustrated examples are discussed in order to show the 

efficiency and accuracy of V-XFEM. Thus, the main features of the present work consists of: (i) 

extension of V-XFEM to the dynamic fracture simulation, (ii) treatment of problem for all the linear 

uncoupled phenomena as an uncoupled problem in a unified and compact way. 

    The rest of the paper is structured as follows. The formulation of general governing equations 

is given in Section 2. Considering piezoelectric structures as illustrated examples, the V-XFEM is 

elaborated in detailed for dynamic crack problem including solution of dynamic fracture, 

variable-node elements and evaluation of generalized dynamic intensity factors in Section 3. 

Section 4 the numerical illustrations are given for several elastic and piezoelectric problems, which 



show that the obtained solutions agree well with results available in the literature and V-XFEM has 

more efficient than the standard XFEM. Finally, some conclusions are summarized in Section 5. 

 

2. General governing equations 

In this section, we present general governing equations for the linearly uncoupled and coupled 

physical phenomena. Firstly, we introduce two 3D vector fields aJ  and aE  written by  

( ), ,i idiv J ta a ag==J                                (1) 

a aw=ÑE  or , .i iEa aw=                            (2) 

Then, the constitutive relations for all the known linearly uncoupled phenomena like elasticity and 

the linearly coupled phenomena like piezoelectricity and magneto-electro-elasticity can be written 

in a unified way (see, e.g. [41, 42]) 

a ab b=J L E  or i i j jJ L Ea a b b=                          (3) 

where the Greek letters a  and b  indicate field subscripts assuming the values 1 to r, the Latin 

letters i and j represent space subscripts taking the values 1 and 2 for two dimensional problem or 1, 

2 and 3 for three dimensional problem, and aw  are the components of an r-dimensional potential 

vector w . It is often rewritten as 

=J E                                 (4) 

where J  and E  can be viewed as two vectors of 3r components and  is a 3r×3r matrix such 

that 
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Here, an element abL of  is a 3×3 matrix. In addition, the matrix  is invertible, so that 

the dual expression of (4) is 

E= J                                  (6) 

with 1-= . It should be noted that these above formulations allow us to systematically treat the 

problem for all the linear uncoupled phenomena as an uncoupled problem. 



Let us consider the magneto-electro-elasticity as an example for the foregoing formulation Eq. 

(4). The constitutive law of this problem is usually defined by (see, e.g. [43]) 

ij ijkl kl kij k kij k

i ikl kl ij j ij j

i ikl kl ij j ij j

C h a

d D h K a

m K h H a

s e

e

e

ì = -Õ -L
ï

= Õ + +í
ï

= L + +î

                           (7) 

where ijs  and ije  are the components of the stress and strain tensors; di and hi are the 

components of the electric displacement and electric field vectors; mi and ai are the components of 

the magnetic flux and magnetic field vectors. Here, ijklC , ijD  and ijH  are the elastic, dielectric 

and magnetic permeability moduli; kijÕ , kijL  and ijK  are the piezoelectric, piezomagnetic and 

magnetoelectric moduli. These material moduli have the following symmetry properties: 

ijkl ijlk klijC C C= = , ij jiD D= , ij jiH H= , 

ij jiK K= , kij kjiÕ = Õ , kij kjiL = L                           (8) 

The strain, electric field, and magnetic fields can be derivable from a displacement field u , electric 

potential j , and magnetic potential y , respectively, as follows: 

( ), ,

1

2
ij i j j iu ue = + , ,i ih j= - , ,i ia y= -                        (9) 

In addition, for simplifying our analysis, inertia effects are considered and other unsteady effects are 

ignored. Thus, the stress tensor , the electric displacement vector d and the magnetic flux vector 

b satisfy: 

2

, 2
i

ij j

u

t
s r

¶
=

¶
, , 0i id = , , 0i ib =                           (10) 

The magneto-electro-thermo-elastic constitutive law (7) can be recast into the compact form Eq. (5) 

as a coupled field phenomena with five coupled fields ( 5r = ). More precisely, the following 

definitions are adopted: 

1 1i iJ s= , 2 2i iJ s= , 3 3i iJ s= , 4i iJ d= , 5i iJ b=                  (11) 

,i iEa aw= , ( )1 2 3

T
u u u j yw =                      (12) 
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with 

( )
2

2
,0,0 .

u
t

t
g r

æ ö¶
ç ÷

¶è ø

i=                                 (14) 

    The general prescribed conditions on the boundary S consisting of SJ and Sw can be expressed 

by 

( ) ( )i i J wJ J n J on S and on Sa a a a a= = =w w                  (15) 

where n is the unit outward normal on S. And, the crack-faces in this study are assumed to be 

general traction-free, i.e.  

0i iJa u =                                 (16) 

Here,  is the unit vector normal to the crack-faces Sc . 

    The weak form of the general governing equations is gained from Hamilton’s variational 

principle: 

( ) ( )
1 1

0 0

21 1
[ ] 0
2 2

dVdt J dta ad r d- +ò ò ò
t t

t V t
u E E w =                   (17) 

After doing some basic calculus, the above equation finally yields the weak form as follows: 

( )
1 1

0 0

2[ ] 0dVdt J dta ar d d d+ò ò ò
t t

t V t
- u u + E E w =                     (18) 

Here, the superscript ·  means the derivative with respect to time. 

    It should be noted that the general weak form for the linearly uncoupled and coupled physical 

phenomena is expressed in a compact form. In the following, the elastic and piezoelectric problems 

will be considered as linearly uncoupled and coupled physical examples, respectively, for the 

dynamic fracture analysis. 

 

3. V-XFEM for dynamic crack problem in linearly elastic and piezoelectric structures 

    Now, we proceed to elaborate a V-XFEM to simulate the dynamic fracture in the problem 

formulated in the previous section. Thus, we particularize the general governing equations to the 



linearly elasticity and piezoelectricity. It should be noted that the linearly piezoelectric problems can 

reduce to linearly elastic problems by ignoring the coupled piezoelectric tensor and suppressing the 

electric field and the electric displacements. In order not to be redundant, the corresponding 

formulations associated to piezoelectricity are only described in the following. 

 

3.1. Enriched field approximation 

In the X-FEM [2, 3], the standard finite element approximation is enriched by additional 

functions based on the partition of unity to model the field discontinuities. For piezoelectric 

materials, Bechet et al. [40] devised an enrichment scheme with six crack tip functions. A 

comparison of the normalized dynamic intensity factors with the six crack tip enrichments and the 

standard four crack tip enrichments is presented in this paper. It shows that the results are matched 

very well and consistent with the conclusion of Bechet et al [40] that the four-fold enrichment is 

almost as efficient, concerning accuracy both in energy and in the SIFs. However, the four-fold 

enrichment is simpler to implement and involves less computational overhead, because it adds only 

four degrees of freedom (dofs) per regular dof, instead of six. Therefore, the four-fold enrichment is 

adopted in this paper. With general governing equations, the enriched field ( )h
aw x  can be 

expressed in the form: 

( ) ( ) ( ) ( ) ( ) ( )
4

1

.
s cut tip

h i j k
i j k I I

Ii N j N k N

N N H N Fa a a a a a a
=Î Î Î

= + +å å å åw wx x x x a x x b         (19) 

In the above equation, ( )iNa x  are the standard finite element shape functions; i
aw  are the nodal 

vectors defined in standard finite elements; j
aa  and k

Iab are the enriched unknown variables of 

nodes; 
sN , 

cutN  and 
tipN  are the set of all nodes in the whole discretized domain, the set of 

enriched nodes associated with crack-faces and the set of the enriched nodes associated with the 

crack-tips, respectively; ( )H x is a modified Heaviside step function (jump function), which takes 

the value of +1 above the crack while -1 below the crack; ( )IF x  is the crack-tip branch 

enrichment functions. 

Obviously, in the piezoelectric problem, four vector fields (r = 4) involves with 



( )1 2 3

T
u u ua jw = . In this case, the enriched displacements and electrical potential 

approximation for the crack problem involve. That means Eq. (19) can be rewritten by  

( ) ( ) ( ) ( ) ( ) ( )
4

1

,
s cut tip

h
i i j j k I kI

Ii N j N k N

N N H N F
=Î Î Î

= + +å å å åu x x u x x a x x b         (20a) 

( ) ( ) ( ) ( ) ( ) ( )
4

1

.
s cut tip

h
i i j j k I kI

Ii N j N k N

N u N H a N Fj * * *

=Î Î Î

= + +å å å åx x x x x x b         (20b) 

In addition, with reference to these works [4, 44], the corresponding crack-tip branch enrichment 

functions are taken as 

( ){ }
4

1
sin cos sin sin cos sin

2 2 2 2
I I

F r r r r
q q q q

q q
=

ì ü
í ý
î þ

=x           (21) 

where r and q  are the usual crack-tip polar co-ordinates. 

We need to emphasize that Eq. (19) can similarly be reduced to some prescribed formulation 

associated to the linearly physical phenomena under consideration.  

 

3.2. Numerical discretization 

In order to discretize the linearly piezoelectric problem, in the case of neglecting of damping, 

substituting the enriched approximated functions in Eq. (20) into the weak-form of the equilibrium 

equations as illustrated in [45] and after some appropriate manipulations, a system of discretized 

piezoelectric XFEM equations can be obtained as follows: 

+ = ，M K F                                   (22) 

where  denotes the nodal unknowns, and M , K  and F  are the generalized global mass 

matrix, global stiffness matrix and external force vector, respectively, with 
0

0 0
=
é ù
ê ú
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M
M , =
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=
mech

elec

ì üï ï
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ï ïî þ

F
F

F
, and [ ]=

T
u a b , * * *=

T
é ùë ûu a b .  Analogously, substituting the enriched 

approximated functions in Eq. (19) into the weak-form of the general equilibrium equations, a 

system of discretized equations for all the linear uncoupled phenomena as an uncoupled problem 

can be obtained by introducing the corresponding number of physical fields. 

     In the linearly piezoelectric problem, the element contribution to mass and stiffness matrices 



(superscript e) are as follows: 
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where  

( )=
Tuu

ij i jdr
W
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( )2=
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ij i jH dr
W
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ij I i jF dr
W

Wò=m N N ; ( 1, 2,3,4I = )                 (24c) 

( )=
Tua

ij i jH dr
W

Wòm N N                           (24d) 

( )
Tub

ij I i jF dr
W

Wò=m N N ; ( 1, 2,3,4I = )                    (24e) 

( )
Tab

ij I i jHF dr
W

Wò=m N N ; ( 1, 2,3,4I = )                    (24f) 

and  

( )=
e

Trs r s
ij i j d

W
Wòk B DB ; ( , , ,=r s u a b )                     (25) 

with  

,

,

, ,

,

,

0 0

0 0

0

0 0

0 0

i x

i y

u
i y i xi

i x

i y

N

N

N N

N

N

é ù
ê ú
ê ú
ê ú=
ê ú
ê ú
ê ú
ë û

B                            (26a) 

,

,

, ,

,

,

0 0

0 0

0

0 0

0 0

i x

i y

a
i y i xi

i x

i y

HN

HN

HN HN

HN

HN

é ù
ê ú
ê ú
ê ú=
ê ú
ê ú
ê ú
ë û

B                          (26b) 

1 2 3 4b b b b b
i i i i i

é ù= ë ûB B B B B                         (26c) 



( )

( )

( ) ( )

( )

( )

,

,

, ,

,

,

0 0

0 0

0

0 0

0 0

i I x

i I y

bI
i I i Ii y x

i I x

i I y

N F

N F

N F N F

N F

N F

é ù
ê ú
ê ú
ê ú

= ê ú
ê ú
ê ú
ê ú
ë û

B                      (26d) 

where D is generalized elastic coefficient matrix in eq. (13). 

    Additionally, the element contribution to external force vector mechF  is given by 

Tmech u a b
i i i i

é ù= ë ûf f f f                            (27) 

in which  

,
e

u
i i d

¶W
= Gòf N t                                (28a) 

,
e

a
i iH d

¶W
= Gòf N t                               (28b) 

e

bI I
i iF d

¶W
= Gòf N t ; ( 1, 2,3, 4.I = )                      (28c) 

The external nodal charge vector elecF  can be computed in a similar manner as above. 

It is noted that the Gauss quadrature scheme is employed for non-enrich elements and 4×4 

Gauss quadrature is employed for blending elements. To obtain an accurate integration for crack tip 

elements and elements cut by crack the triangular sub-domain technique [46] is used in the same 

way as that of the XFEM. 

    In this study, the unconditionally stable implicit Newmark method is adopted to solve the 

discrete dynamic equilibrium equations of Eq. (22). At time step n, the discretized equations Eq. (22) 

is thus rewritten as 
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t
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in which the velocity and displacement can be evaluated by  
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where tD  denotes the time increment at the present time-step and the unconditionally stable 

parameter are 0.5a =  and 0.25b = . 



3.3. Variable-node elements 

    In order to improve computing efficiency and accuracy, multiscale mesh, i.e., mesh locally 

refined in the vicinity of cracks, is used and the variable-node elements [23, 26] are adopted to as 

linking elements (or transition elements) between large scale elements and small scale elements, 

which is schematically sketched in Fig. 1.  

 

Fig. 1. Illustration of multiscale mesh. 

    The advantage of variable-node elements is any number of nodes can be attached to the edges 

of the quadrilateral isoparametric element which is shown in Fig. 2 and the interpolation property 

between any two adjacent nodes remains linear as the number of nodes in an element increases. 

Therefore, variable-node elements are suitable for linking between small scale mesh and large scale 

mesh.  

 



 

Fig. 2. Illustration of an (4 + k + l + m + n)-node element. 

    The approximation displacement ( )h xu  of the variable-node element is given as: 

( ) ( ) ( )
1

=
pN

h T
i i

i=

=åu N u a p                        (31) 

where pN  is the number of nodes; 
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N is the shape function matrix with iN  is the 

shape function of the i-th node; [ ]=
T

i i iu vu is the i-th nodal displacement vector; Ta is the 2 pN´  

unknown coefficients matrix and ( )p  is a column vector of the polynomial basis given by [23]  
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in which x  and h  are the local coordinates in the isoparametric element.  

    Using the point interpolation, the approximated displacements is rewritten as  

( ) ( ) ( )1=h T T -=u a p U q p                          (33) 

where ( ) ( )1 4,..., k l m n+ + + +é ùë ûq = p p and [ ]1 4,...,=T
k l m n+ + + +U u u . From Eqs (31) and (33), the shape 

functions can be derived as follow 

[ ] ( )1
1 4,...,

T

k l m n
-

+ + + + =N N q p                           (34) 

The shape functions for electrical potential field j  can be computed in a similar manner as above. 

    Additionally, according to Eq. (34), the slope discontinuity of the shape functions appears at 

extra nodes. Herein, the integration technique applied to sub-triangles [46] for cracked elements in 

the XFEM is used for variable-node elements. 

In this study, we define refined zone artificially instead of based on posteriori error estimation. 

The reason is that it would be cumbersome to compute posteriori error in every step of crack growth. 



In each time step, mesh is refined around cracks by partitioning original large-scale elements. The 

crack element is easy to obtain by level set method. And the variable-node elements are generated 

accompanied with the mesh refinement. Once the small-scale elements are created, variable-node 

elements should be defined at the outermost layer of the refined area to work as transition between 

small and large elements. 

 

3.4. Evaluation of generalized dynamic intensity factors 

    In the present work, the domain-form of the contour interaction integral is used to accurately 

calculate the generalized dynamic intensity factors in the piezoelectric materials, which can be 

found in [4] for details. The path independent electro-mechanical J-integral for a cracked 

piezoelectric materials is given by 

( ) ( ),1 ,1 1 , ,1ij i j j j i
A A

J u D W q dA uu qdAs j d r= + - -ò ò                    (35) 

where ( ) / 2= ij ij j jW D Es e -  is the electric enthalpy density; A is the area inside an arbitrary 

contour enclosing the crack-tip and q is a smooth weight function, which has a value of unity at the 

crack-tip, zero along the boundary of the domain A, and a smooth linear variation in-between. 

    Let us now consider two independent dynamic equilibrium states of a piezoelectric cracked 

body. The first state 
( ) ( ) ( ) ( ) ( )( )1 1 1 1 1

, , , ,ij ij j j ju D Es e  corresponds to the actual state, whereas the second 

one 
( ) ( ) ( ) ( ) ( )( )2 2 2 2 2

, , , ,ij ij j j ju D Es e  is an auxiliary state. The interaction integral for the two states is 

obtained by superposition of these two states which leads to another dynamic equilibrium state. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )1,2 1 2 2 1 1 2 2 1 1,2 1 2

,1 ,1 ,1 ,1 1 , ,1ij ij j j j j i
A A

I u u D D W q dA u u qdAs s j j d r= + + + - +ò ò        (36) 

where  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1,2 1 2 2 1 2 1 1 21

2
= ij ij ij ij j j j jW D E D Es e s e+ - - .                  (37) 

    For linear piezoelectric solids, the electro-mechanical J-integral is equal to the energy release 

rate. Applying J-integral to the two states (1) and (2) and then the interaction integral 
( )1,2

I  can be 

rewritten as 
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By choosing the auxiliary state 2 as the crack opening mode with ( )2
1IK = ; ( ) ( )2 2

0II IVK K= = , then the 

interaction integral is obtained as  

( ) ( ) ( ) ( )1, 1 1 1

22 12 23=
I

I II IVI K Y K Y K Y+ +                        (39) 

Similarly, other modes can be obtained as 

( ) ( ) ( ) ( )1, 1 1 1

12 11 13=II

I II IVI K Y K Y K Y+ +                        (40) 

( ) ( ) ( ) ( )1, 1 1 1

23 13 33=
IV

I II IVI K Y K Y K Y+ +                        (41) 

    As a consequence, the generalized dynamic intensity factors are finally obtained by solving the 

following linear algebraic equations 
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4. Numerical results 

In this section, several benchmark numerical examples for stationary dynamic cracks in linear 

elastic and piezoelectric structures are presented to illustrate the accuracy and efficiency of the 

elaborated V-XFEM. The accuracy and efficiency is numerically confirmed through the comparison 

of the present approach with analytical solutions and the standard XFEM. Plane-strain condition 

and the impermeable crack-face boundary condition are assumed throughout the study. 

 

4.1. Dynamic fracture of edge crack in the semi-infinite domain  

The first numerical example for dynamic fracture analysis deals with a semi-infinite mode-I 

crack loaded by a tensile stress perpendicular to the crack-face. Due to the computational limits, a 

limited domain is modeled for analysis, whose geometry is sketched in Fig. 3. The dimensions of 

the limited plate are: length L =10m, half-height H=2m and crack length a=5m; The material 



parameters are: 210E = GPa, 0.3n = , 8000r = kg/m3. The top of the plate is subject to a tensile 

stress of 0 500s = MPa. To avoid the reflection when the tensile stress wave reaches the crack-tip, 

the valid time for the simulation is t≤3tc=3H/cd=1.009×10-3s[4], where cd is the dilatational wave 

speed. 

 

Fig. 3. Geometry of a semi-infinite mode-I crack 

 

For convenience, the dynamic stress intensity factor (DSIF) is normalized by 

0= /dyn
I IK K as p . Regardless of the crack propagation, the analytic solution of the mode-I DSIF 

can be written as [46]: 
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The relative error of normalized dynamic stress intensity factor is defined as: 

100%
analytic

I I
analytic
I

K K
err

K

-
= ´                                   (44) 

where IK  and 
analytic
IK  are the normalized dynamic stress intensity factor of numerical solution 

and analytical solution, respectively. 

 

4.1.1. Validation and accuracy 

    In order to validate the elaborated V-XFEM and demonstrate its performance in modeling 

dynamic fracture problems, Fig. 4 and Fig. 5 present, respectively, the comparative study of the 

normalized mode-I DSIFs and their percentage errors with the standard XFEM and the analytical 

solution. In variable-node XFEM, the original coarse mesh use 65×25 elements as shown in Fig. 

6(a), and the local mesh refinement with 3× 3 small scale elements are generated in where crack 



locates (see Fig. 6(b)), the total number of degree of freedom (Dof) is 6812. For comparison, the 

standard XFEM with uniform structured meshes of 65×25 (Dof is 3592), 79×41 (Dof is 6908) and 

195×75 (Dof is 30212) elements are considered, in which the small mesh of 195×75 elements (see 

Fig. 6(c)) is the same as variable-node XFEM local refined mesh in the vicinity of crack. 

 

 

Fig. 4. Comparison of the normalized mode-I DSIFs among different methods. 

 

 
Fig. 5. Comparison of percentage errors for the normalized mode-I DSIFs among different methods. 



 

 

(a) 

 

(b) 

 
(c) 

Fig. 6. Mesh of edge crack in the semi-infinite domain:(a) original coarse mesh, (b) variable-node local refined 

mesh, (c) standard small scale mesh. 

 

    As shown in Figs. 4 and 5, the normalized values of the DSIFs achieved by the V-XFEM 

match well to the analytical solution and the standard XFEM with the small mesh of 195×75 



elements (Dof is 30212). Nevertheless, the V-XFEM with 6812 Dofs has a higher accuracy than 

standard XFEM with 3592 Dofs (65×25 elements) and 6908 Dofs (79×41 elements). It can be 

concluded that the V-XFEM has a higher accuracy than standard XFEM. 

 

4.1.2. Numerical efficiency 

    For comparison of the numerical efficiency, Table 1 presents a comparative study of the 

CPU-time consumed for three standard XFEM meshes and the variable-node XFEM mesh. As can 

be seen in Table 1 that the variable-node XFEM (see Fig. 6(b)) needs less computational cost than 

the standard XFEM with fine mesh (see Fig. 6(c)).  

Table 1. Comparison of numerical efficiency between the variable-node XFEM and standard XFEM. 

Methods Nodes Elements Dofs CPU Time(s) 

XFEM 

1716 1625 3592 36.4263 

3360 3239 6908 48.7061 

14896 14625 30212 179.4868 

Variable-node 

XFEM 
3196 3025 6812 72.1416 

 

4.2. Dynamic fracture of the bevel edge crack plate 

In order to prove the applicability and reliability of the V-XFEM for dynamic fracture problems, 

a mixed-mode crack is thus considered. A rectangular plate with an inclined edge crack as depicted 

in Fig. 7 is examined. The geometry of the plate are L =44mm, H=32mm, D=16mm, crack length 

a=22.63mm, and the incline angle of crack =45a ° . The material parameters are set to be modulus 

of elasticity E=29.4GPa, Poisson's ratio =0.286n  and the density 3=2450kg/mr . The left, top 

and bottom of plate supported in normal direction, as shown in Fig.7, the right end is subjected to a 

step impact loading ( )0H ts , where H(t) represents the Heaviside step function. The total 

computation time is 3×10−5 s and the number of iterations is 50 times. As shown in Fig. 8(a), the 

variable-node mesh with 15×8 coarse elements and 3×3 small scale elements in the vicinity of crack 

is used for dynamic fracture problems with inclined edge crack. For validation purpose, the 

computed result is then compared with those obtained from standard XFEM with fine mesh of 

45×25 elements as shown in Fig. 8(b). Figs. 9 shows that the normalized mixed-mode DSIFs 



achieved by the V-XFEM agree well to XFEM with a fine mesh. 

 

 

Fig. 7. Geometry of a rectangular plate with an inclined crack. 

 

 

(a) 



 
(b) 

Fig. 8. Mesh of the inclined edge crack plate: (a) variable-node local refined mesh, (b) standard small scale mesh. 

 

 
Fig. 9. Comparison of the normalized mixed-mode DSIFs for a rectangular plate with a inclined edge crack. 

 

4.3. Dynamic fracture of a center crack in a piezoelectric structure 

In this dynamic study, we extend the V-XFEM to piezoelectric structure. Now, we consider a 

PZT-5H piezoelectric plate contains a central crack of length 2a, as depicted in Fig. 10. The 

geometry of the plate is h=20mm and a = 2.4 mm. The material parameters of PZT-5H are set as: 



11 126.0C = GPa, 13 84.1C = GPa, 33 117.0C = GPa, 44 23.0C = GPa, 2
31 6.5C/ me = - , 

2
33 23.3C/ me = , 2

15 17.0C/ me = , ( )11 15.04C/ GVmk = , ( )33 13.0C / GVmk = , density 

37500kg / mr = . Both impact mechanical ( ) ( )0=t H ts s  and electrical ( ) ( )33 33 0= /D t k e H tl s  

loadings are considered in the study, where l  is electrical impact loading parameter. The total 

computation time is L5 /t h c=  and the time-step is L0.1 /t h cD = , in which 

( )2
L 33 33 33/ /c C e k r= + is the velocity of the longitudinal wave along the second principal material 

axis. A comparison of the normalized dynamic intensity factors with the six crack tip enrichments 

[36] and the standard four crack tip enrichments is presented in Fig 11. It can be seen that the results 

are matched very well and consistent with the conclusion of Bechet et al [36] that the four-fold 

enrichment is almost as efficient, concerning accuracy both in energy and in the SIFs. However, the 

four-fold enrichment is simpler to implement and involves less computational overhead, because it 

adds only four degrees of freedom (dofs) per regular dof, instead of six. Therefore, the four-fold 

enrichment is adopted in the rest of this paper. 

 

Fig. 10. A rectangular piezoelectric plate with a central crack under impact loading. 

 



  

Fig. 11. Comparison of the normalized dynamic intensity factors for different crack-tip enrichment functions 

The problem is solved by variable-node XFEM with 19×39 coarse elements and 3×3 small scale 

elements in the vicinity of crack (see in Fig. 12a), and standard XFEM with a regular fine mesh of 

50×100 quadrilateral elements for comparison (see in Fig. 12b). 

 

   

(a)                           (b) 

Fig. 12. Mesh of the rectangular piezoelectric plate with a central crack: (a) variable-node local refined mesh, (b) 

standard small scale mesh. 



We first consider the plate only subjected to an impact mechanical loading i.e. =0l . Fig. 13 

presents a comparison of the V-XFEM results for the normalized dynamic stress intensity factors 

0= /dyn
I IK K as p  and normalized dynamic electrical displacement intensity factors 

33 33 0= /dyn
IV IVK K k e as p  with those obtained by the standard XFEM, which shows very good 

agreement with each other. It also can be confirmed here that a pure mechanical impact causes an 

electrical field in the considered piezoelectric solids.  

 

 

(a) 



 

(b)  

Fig. 13. A comparison of the normalized dynamic intensity factors (a) normalized dynamic stress intensity factor, 

(b) normalized dynamic electrical displacement intensity factor. 

 

Now we consider the plate only subjected to an impact electrical loading. The computed results 

for the normalized dynamic intensity factors are presented in Fig. 14 in comparison with the 

standard XFEM solutions with small scale mesh. The present results match well with the standard 

XFEM solutions. It can be observed that the amplitude of the normalized dynamic intensity factors 

is the same when changing the direction in the electrical loading and the only change is their sign. It 

is worth noting that a pure electrical impact also induces a dynamic stress intensity factor. In Fig. 13, 

under a pure mechanical loading, the normalized dynamic stress intensity factors 0IK ¹  until the 

mechanical wave impinges on the crack at the time around t = 1.0. This is because the elastic waves 

induced by the mechanical impact require some time to reach and open the crack. However, due to 

the quasi-electrostatic assumption for the electrical field, the variation of the IK  starts from t=0 

under an pure electric loading. It means that the cracked plate is immediately subjected to an 

electrical impact and the crack thus opens at t=0. 

 



 

(a) 

 

(b) 

Fig. 14. A comparison of the normalized dynamic intensity factors (a) normalized dynamic stress intensity factor, 

(b) normalized dynamic electrical displacement intensity factor. 

 

    For the fracture behavior of piezoelectric materials, the most important and interesting issue is 

the investigation of the effects induced by both the mechanical and electrical loading on the 



dynamic fracture parameters. Here, we consider the same example but subjected simultaneously to 

a combined mechanical and electrical impact load. First, the intensity of the electrical impact =1l  

is studied and the computed results for the normalized dynamic intensity factors are shown in Fig. 

15. A good agreement with each other is found, which further confirms the effective of the present 

variable-node XFEM. Next, we discussed the effects of the intensity of the electrical impact loading 

on the normalized dynamic intensity factors. The electrical loading parameter l  is varied and the 

normalized dynamic intensity factors are evaluated individually and then depicted in Fig. 16. It can 

be seen that the maximum values of the normalized dynamic intensity factors are reduced as 

increase l  and the electrical impact affects the normalized dynamic stress intensity factors 

significantly. It also can be concluded that the normalized dynamic electrical displacement intensity 

factor seems weakly dependent on the time but has a strong dependence on the load parameter l , 

which is also a consequence of the quasi-electrostatic assumption of the electrical field. 

 

 

(a) 



 

(b) 

Fig. 15. A comparison of the normalized dynamic intensity factors (a) normalized dynamic stress intensity factor, 

(b) normalized dynamic electrical displacement intensity factor. 

 

 

(a) 



 

(b) 

Fig. 16. Normalized dynamic intensity factor (a) normalized dynamic stress intensity factor, (b) normalized 

dynamic electrical displacement intensity factor. 

    Finally, the influence of the orientation of the material poling direction on the normalized 

dynamic intensity factor is discussed here. Fig. 17 shows a comparison of the normalized dynamic 

intensity factors derived from both methods for different poling direction. It can be observed in Fig. 

17 that the normalized dynamic intensity factors have a significant dependence on the poling angle 

q . Beside, the electrical displacement intensity factors increase as the poling angle increase, and 

they are equal to zero when q  = 90°, due to the piezoelectric effect vanishes for a crack parallel to 

the poling direction. 

 



 

(a) 

 

(b) 

Fig. 17. Normalized dynamic intensity factor for different poling direction (a) normalized dynamic stress intensity 

factor, (b) normalized dynamic electrical displacement intensity factor. 

 



4.4. Crack propagation simulation in piezoelectric materials 

The last numerical example studied a homogeneous finite 2-D rectangular piezoelectric plate 

with size H=2mm having an edge crack for crack propagation under electro-mechanical loading. 

The initial crack length a=0.4mm has been considered for simulation. The piezoelectric domain 

along with boundary conditions prescribed on the plate has been indicated in Fig. 18. The former  

H=2mm

a 2H
=

4m
m

0s

α 

 

Fig. 18. Piezoelectric Plate with an edge crack. 

 

piezoelectric material PZT-5H is taken for this study and the poling angle q  = 90°. Both 

mechanical and electrical loadings are considered in the study. Although there are lot of crack 

growth criteria [48, 49] available to determine the direction of crack propagation in structural 

materials, appropriate exact crack growth criteria for piezoelectric solids are still being developed 

due to their complicated inherent coupled electro-mechanical characteristics and material 

anisotropic features. As the main aim of this paper is to implement V-XFEM approach for modeling 

crack growth for piezoelectric solids, the modified hoop SIF criterion [50] is utilized as the fracture 



criterion in order to predict crack growth direction. The local refined area is obtained by extending 

3 layers from initial elements where crack locates and then 3×3 small scale elements are generated 

in the refined zone. The crack increment length is set to be 0.12 which is about twice the initial 

element size. The crack growth profiles for the first, second, fourth and the fifth crack increment 

steps which corresponds to critical crack length is presented in Fig. 19. It can be see that the 

V-XFEM can effectively simulate crack propagation. 

     

(a) The first crack increment step.                (b) The second crack increment step. 

 



     

(c) The fourth crack increment step.               (d) The fifth crack increment step. 

Fig. 19. The crack growth profiles for the first, second, fourth and the fifth crack increment steps 

 

5. Conclusions 

    This paper elaborates the V-XFEM to simulate dynamic fracture problems subjected to impact 

loads for linearly uncoupled and coupled phenomena. The linearly elastic and piezoelectric 

problems are considered as illustrated examples in order to show the efficiency and accuracy of 

V-XFEM. A dynamic XFEM integrated with variable-node elements as well as the implicit time 

integration scheme is developed for this purpose. An interaction integral for linear piezoelectric 

materials utilizing the domain-form is implement to extract the relevant dynamic intensity factors. 

To illustrate the accuracy and efficiency of the proposed method, numerical results for the 

normalized dynamic intensity factors are presented and compared with the standard XFEM with 



refined mesh and analytical solution. The effects of the combined mechanical and electrical impacts, 

polarization direction on the normalized dynamic intensity factors is analyzed and discussed in 

details. Some important features are concluded as follows: 

l The numerical results predicted by the V-XFEM agree well with analytical solution and 

standard XFEM with refined mesh, as expected. 

l It can be concluded that the V-XFEM has a higher accuracy and more and efficiency than 

standard XFEM. 

l For piezoelectric structures, numerical results show that the normalized dynamic intensity 

factors have a significant dependence on the poling direction and electrical impact loading. 

l Because of a unified way for all single and coupled linear phenomena, the proposed V-XFEM 

has the potential to simulate all the linearly physical phenomena.  
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