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Abstract. We describe the long time behavior of small non-smooth solutions to the nonlinear
Klein-Gordon equations on the sphere S

2. More precisely, we prove that the low harmonic en-
ergies (also called super-actions) are almost preserved for times of order ε−r, where r ≫ 1 is an
arbitrarily large number and ε ≪ 1 is the norm of the initial datum in the energy space H1

×L2.
Roughly speaking, it means that, in order to exchange energy, modes have to oscillate at the same
frequency. The proof relies on new multilinear estimates on Hamiltonian vector fields to put the
system in Birkhoff normal form. They are derived from new probabilistic bounds on products of
Laplace eigenfunctions that we obtain using Levy’s concentration inequality.
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1. Introduction

The linear Klein-Gordon equation classically appears as a natural first candidate to describe a
relativistic version of quantum mechanics [BjDr64, Ch. 1] and it can be written on the sphere as

∂2
tΦ(t, x) = ∆Φ(t, x)− µΦ(t, x)

where µ > 0 is an external parameter referred as the mass1, x ∈ S
2 (the Euclidean unit sphere of

R
3), t ∈ R, Φ(t, x) ∈ R and ∆ denotes the Laplace–Beltrami operator on the sphere. As usual,

we rewrite this evolution equation as a first order system

∂t

(

Φ
∂tΦ

)

=

(

0 1
∆− µ 0

)(

Φ
∂tΦ

)

and the change of variable

(1) u := (µ −∆)1/4Φ+ i(µ−∆)−1/4∂tΦ

2010 Mathematics Subject Classification. 35Q40, 35Q75, 37K45, 37K55 .
Key words and phrases. Birkhoff normal forms, low regularity, Hamiltonian PDE, Klein–Gordon, random Hilber-

tian basis.
1Physically speaking, µ is rather the square of the mass, up to taking c = 1 and ~ = 1.
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makes the linear Klein–Gordon equation diagonal

i∂tu =
√

µ−∆u.

Indeed, it is well known that the spherical harmonics (i.e. the restriction to S
2 of homogeneous

harmonic polynomials on R
3) make the Laplace–Beltrami operator diagonal :

(2) L2(S2;R) =
⊕

ℓ∈N
Eℓ where Eℓ = Ker(∆ + ℓ(ℓ+ 1)IdL2) ≃ R

2ℓ+1

is the space of spherical harmonics of degree ℓ. In other words, the linear Klein–Gordon equation
rewrites

∀ℓ ∈ N, i∂tΠℓu = ωℓΠℓu where ωℓ :=
√

ℓ(ℓ+ 1) + µ

and Πℓ denotes the orthogonal projector on Eℓ.
On the one hand, it is relevant to note that the following quantities are constants of motion for

the linear Klein–Gordon equation

Iv(u(t)) =
∣

∣

∣

∫

S2

u(t, x)v(x)dvolS2(x)
∣

∣

∣

2
with ℓ ∈ N, v ∈ Eℓ.

Actually, they describe accurately its dynamics (up to the exact values of the frequencies ωℓ).
However, they are too sharp to survive to perturbations of the linear Klein–Gordon equation.
Indeed, due to the multiplicities of the eigenvalues of the Laplace–Beltrami operator (Eℓ is of
dimension 2ℓ + 1), one could design spectral perturbations commuting with its vector field but
destroying completely these constants of the motion (and so a fortiori we also expect the same
phenomenon in the nonlinear case as in [GV11, GT12]).

On the other hand, the harmonic energies (also called super-actions)

Jℓ(u(t)) := ‖Πℓu(t)‖2L2 =: Eℓ(Φ(t), ∂tΦ(t))
are much more robust constants of motion because they do not describe the energy exchanges
inside the clusters Eℓ. They only encode the energy preservation of each cluster. Note that they
rewrite (in the original variables (Φ, ∂tΦ)) as

(3) Eℓ(Φ(t), ∂tΦ(t)) := (ℓ(ℓ+ 1) + µ)1/2 ‖ΠℓΦ(t)‖2L2 + (ℓ(ℓ+ 1) + µ)−1/2 ‖Πℓ∂tΦ(t)‖2L2 .

In this paper, we address the question of their preservation by a nonlinear perturbation of the
linear Klein–Gordon equation. More precisely, we consider the nonlinear Klein-Gordon equation

(KG) ∂2
tΦ(t, x) = ∆Φ(t, x)− µΦ(t, x) + g(x)(Φ(t, x))p−1

where p ≥ 3 is an integer and g ∈ L∞(S2;R) is a given factor making the equation possibly

inhomogeneous. The equation is naturally equipped with initial data Φ(0) ∈ H1(S2;R) and Φ̇(0) ∈
L2(S2;R), i.e.

∀x ∈ S
2, Φ(0, x) = Φ(0)(x) and ∂tΦ(0, x) = Φ̇(0)(x).

Focusing only on small solutions, ε := ‖Φ(0)‖H1 + ‖Φ̇(0)‖L2 ≪ 1, (KG) is a perturbation of the
linear Klein–Gordon equation and the question of the preservation of the harmonic energies (3)
makes sense.

Since (KG) is locally well-posed (see subsection 6.1 for details), the dynamics of (KG) remain

close to the dynamics of the linearized equation for times of order ε−(p−2). As a consequence, on
such a time scale, the super-actions are almost preserved. However, their conservation on longer
time scales is nontrivial. Actually, there exist counter-examples for similar systems : the cubic
wave equation on T

2 [GGMP21] and the cubic Klein–Gordon equation on S
3 with a unit mass

[BCEHLM17, CEL17]. Nevertheless, they are closely related to the existence of resonances (i.e.
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the frequencies ωℓ have to be rationally linked) which only hold for exceptional values of the mass
µ.

For generic values of the mass µ, in [BDGS07] , Bambusi, Delort, Grébert and Szeftel prove the
almost preservation, for very long times, of the harmonic energies of the nonlinear Klein–Gordon
equations on Zoll manifolds (which include S

d for all d ≥ 2). Nevertheless, their result only hold
for very smooth solutions (in particular g has to be smooth). More precisely, they prove2 that for
all r ≫ 1 chosen arbitrarily large, there exists s0(r) such that for all s ≥ s0(r), provided that ε

(the norm of the initial datum (Φ(0), Φ̇(0)) in Hs+1/2 ×Hs−1/2) is small enough, while |t| < ε−r,
the solution to the nonlinear Klein–Gordon equation exists and it satisfies

(4) |t| ≤ ε−r ⇒
∑

ℓ∈N
〈ℓ〉2s

∣

∣Eℓ(Φ(t), ∂tΦ(t))− Eℓ(Φ(0), Φ̇(0))
∣

∣ . εp.

The main flaw of this result is the smoothness assumption s ≥ s0(r). Indeed, in their construction,
the smoothness parameter s0(r) grows at least linearly with respect to r. In other words, the
longer the time during which they prove the preservation of the super-actions is, the smoother the
solutions have to be. This smoothness assumption is crucial in their proof and is systematically
used to prove similar results – see e.g. [Bou96, Bam03, BG06, CHL08a, Del12, Ime13, Del15,
BFG20b]. Nevertheless, on simpler models, numerical experiments strongly suggest that this
assumption is irrelevant (i.e. s0(r) should not depends on r), see e.g. [CHL08a, CHL08b] for
discussions about (KG) on T.

Actually, in [BDGS07], the authors are interested in the preservation of super-actions because
they aim at proving the almost global well-posedness of the equation (i.e. well-posedness for times
of order ε−r with r arbitrarily large). Roughly speaking, since

‖u(t)‖2Hs =
∑

ℓ∈N
〈ℓ〉2sEℓ(Φ(t), ∂tΦ(t)),

they proceed by bootstrap : assuming that ‖u(t)‖2Hs ≤ 2‖u(0)‖2Hs ≃ ε2, they control the variations
of the super-action using (4) and, as a corollary, they deduce the sharper estimate

‖u(t)‖2Hs = ‖u(0)‖2Hs +O(‖u(0)‖pHs ).

However, in low dimension (d ≤ 2), it is well known that smoothness is not required to obtain
solutions for very long times. Indeed, the preservation of the Hamiltonian

(5) H(Φ, ∂tΦ) =

∫

S2

|∇Φ(x)|2
2

+ µ
(Φ(x))2

2
+

(∂tΦ(x))
2

2
− g(x)(Φ(x))p

p
dvolS2(x)

provides an a priori global control of the energy norm (H1 × L2) of small solutions (see Lemma
6.1). Hence, one can derive the global well-posedness of the Cauchy problem associated with (KG)
(provided that the initial data are small enough; see Proposition 6.2 for details). Therefore, it
is all the more natural to try to remove the smoothness assumption s ≥ s0(r) of [BDGS07] to
control the variations of the harmonic energies.

In the following theorem, which is the main result of this paper, we control, without regularity
assumption, the variations of the low super-actions:

2Actually, they only prove a ℓ∞ instead of the ℓ1 estimate (4) (see Remark 3.21 of [BDGS07]). Indeed, since
they are only really interested in the variations of the Hs norm, they do not have written a sharp estimate on the
variation of the super-actions. Nevertheless, estimate (4) would be a direct corollary of their proof.
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Theorem 1.1. For all r ≥ p, all ν > 0 and almost all µ > 0, there exist ε0 > 0, C > 0 and
αr > 0 (depending only on r) such that, provided that ε := ‖Φ(0)‖H1 + ‖Φ̇(0)‖L2 < ε0, the global
solution to (KG) satisfies

|t| < ε−r ⇒ ∀ℓ ∈ N,
∣

∣Eℓ(Φ(0), Φ̇(0))− Eℓ(Φ(t), ∂tΦ(t))
∣

∣ ≤ C〈ℓ〉αrεp−ν .

Let us compare this result with the one of [BDGS07] (i.e. (4)). For low super-actions (i.e.
ℓ ≃ 1), Theorem 1.1 is much better as it provides the same control on the variations of the super-
actions (up to the ε−ν loss) without requiring any smoothness assumption. Conversely, contrary
to (4), due to the 〈ℓ〉αr loss, our result does not provide any information about the variation of

the very high super-actions (i.e. ℓ ≫ ε−(p−2)/αr ). Nevertheless, since the loss with respect to ℓ
is polynomial, Theorem 1.1 provides a nontrivial control of the variations of some “quite high”
super-actions (i.e. 1 ≪ ℓ ≪ ε−(p−2)/αr ).

Using this optimization and the a priori control on the energy norm of the solutions, we derive
the following corollary which can be viewed as a kind of weak orbital stability result.

Corollary 1.2. For all r ≥ p, s < 1/2 and almost all µ > 0, there exist ε0 > 0, C > 0 and δ > 0

(which does not depend on µ) such that, provided that ε := ‖Φ(0)‖H1 + ‖Φ̇(0)‖L2 < ε0, the global
solution of (KG) satisfies

|t| < ε−r ⇒ ‖u(t)−
∑

ℓ∈N
e−iHℓ(t)Πℓu(0)‖Hs ≤ Cε1+δ

where Hℓ(t) : Eℓ ⊗ C → Eℓ ⊗ C are Hermitian maps and u ∈ C0(R;H1/2) is defined by (1).

Further bibliographical comments. The question of the stability of the linear dynamics makes
sense for most nonlinear partial differential equations on confined domains. In high regularity,
Birkhoff normal forms lead to many important successes in proving the stability of several other
interesting systems : [Bou96, BG06, GIP09, FGL13, YZ14, BD17, BMP20, FI20, FI21] in the
non-resonant case and [Bam99, Bou00, BFG20a, BG20] in the resonant case.

For Klein–Gordon, the papers [Bou96, Bam03, BG06, CHL08a, Del12, Ime13, Del15, BFG20b]
provide results similar to the one of Bambusi, Delort, Grébert and Szeftel [BDGS07] (i.e. preser-
vation of the super-actions up to times of order ε−r with r arbitrarily large) but hold on other
manifolds or with quasi-linear perturbations. The works [DS04, DS06, Del09, FZ10, DI17, FGI20]
only reach shorter times of stability but improve the one given by the local well-posedness (i.e.
they get stability for |t| < ε−q with q > p − 2 but not arbitrarily large). On some manifolds, for
high modes, due to the quasi-resonance (i.e. when the small divisors are too small), some of these
time scales seem so far to be optimal.We also mention the recent works [GP16, BB20] about the
existence of KAM tori for the nonlinear Klein–Gordon equations.

Very recently, in [BG21], the first two authors have introduced a new way of performing Birkhoff
normal forms for Hamiltonians PDEs which, contrary to the previous results, allows to deal
with non-smooth solutions. As in Theorem 1.1, they prove almost-conservation, for very long
times, in low regularity, of the low (super-)actions of several nonlinear dispersive PDEs on tori or
boxes (including nonlinear Klein–Gordon equations on [0, π] with homogeneous Dirichlet boundary
conditions). Nevertheless, as discussed below, to be extended to more general domains (like
spheres), this result require nontrivial multilinear vector field estimates. The derivation and the
proof of these estimates on the sphere S2 are the main technical novelties of this paper (see Sections
2 and 4).
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Comments about the results. • The arbitrarily small loss ε−ν in Theorem 1.1 is the same as
the one of Theorem 1.21 in [BG21] (about nonlinear Schrödinger equations on T

2). It is due to
the fact that, in dimension 2, H1 is not an algebra.
• Reasoning as in Corollary 1.14 of [BG21], we could prove that Corollary 1.2 holds in the critical

case s = 1/2 provided that the initial data are a little bit smoother : ε = ‖Φ(0)‖H1+η + ‖Φ̇(0)‖Hη

for some η > 0 (and δ would depend on η).
• We could consider much more general nonlinearity in (KG) (e.g. nonlocal or nonpolynomial).
Actually, we chose g(x)(u(x))p−1 for simplicity.
• We are quite confident that our results could be extended to Zoll surfaces. Nevertheless, it would
generate a lot a technicalities. It seems to us that we could adapt our multi-linear estimates by
considering clusters of quasi-modes (as in [BDGS07]) but the cohomological equations would be
much harder to solve (because they would not be diagonal). Moreover, it would raise several
interesting questions which deserve further investigations. For example, is it possible to prove the
preservation of the low actions (i.e. not only the super actions) for very long times on a generic
Zoll manifold and with a generic mass ? Somehow, it would be one way to prove the stability of
the linear dynamics.
• Conversely, it is not clear if a similar result could be proven in higher dimension (for example
on S

3). First, the equation would not be necessarily well-posed. Moreover, our method is strongly
related to the fact that H1 is an algebra (or almost an algebra like on S

2). Indeed, roughly
speaking, the Birkhoff normal procedure generates vector fields of arbitrarily large order which
are somehow similar to (Φ, ∂tΦ) 7→ Φn with p ≤ n ≤ r+ p. Hence it looks unavoidable to require
that the energy space is an algebra.

Comments about the proof. The proof of our results follow the new Birkhoff normal form
strategy introduced by the first two authors (see [BG21, §1.4] for an informal description of this
new strategy). Roughly speaking, compared with [Bam03, BG06], it consists in removing terms
which are usually small thanks to the smoothness assumption (and so which are unsolved in that
case) using a stronger non-resonance condition. More precisely, we need that the small divisors
are controlled by the smallest index instead of the third largest. Even if this new Diophantine
condition may seem too restrictive, it is typically satisfied for (KG) since the eigenvalues of

√
µ−∆

accumulate polynomially fast on Z + 1/2, which is an affine lattice. Actually it is a quite direct
application of [BG21, Prop. 2.1] as explained in section 3.

Nevertheless, as usual, the implementation of a normal form procedure requires some structures
on the nonlinear part of the vector field of the equation: it has to belong to a class of vector fields
which is stable by Lie brackets, resolution of cohomological equations and whose vector fields
enjoy good multi-linear estimates in the energy space (here H1/2 with respect to the variable u
defined by (1)). In [BG21], such classes have been developed to deal with Hamiltonian PDEs on
tori (or boxes) in low regularity. Unfortunately, it seems hopeless to adapt them in more general
domains like spheres as they strongly rely on the exceptionally good algebraic properties of the
eigenfunctions of the Laplace operator (which are the complex exponentials). On spheres (and
more generally on compact Riemannian manifolds), Delort and Szeftel have developed powerful
classes of vector fields (see e.g. [DS04, DS06]) on which most of the Birkhoff normal form results
are based. Unfortunately, these classes are unsuitable to work in low regularity as they require
a lot of smoothness and it seemed unlikely to us that they could be adapted in low regularity.
Hence, we chose to follow a slightly differerent route relying on probabilistic tools referred as
Levy’s concentration inequalities [Led01] (see Theorem 2.8) in order to build the Hamiltonian



6 JOACKIM BERNIER, BENOÎT GRÉBERT, AND GABRIEL RIVIÈRE

classes adapted to our problem. See Section 2 for the probabilistic estimates and Section 4 for the
multilinear vector field estimates.

Notations. It is natural (and usual) to index eigenvectors of the Laplace-Beltrami operators on
S
2 by points in a discrete triangle. As a consequence, for all M ∈ (0,∞], we define

TM := { (ℓ,m) ∈ N× Z | 0 ≤ ℓ ≤ M and − ℓ ≤ m ≤ ℓ }.
We warn the reader that, as usual, we adopt the following convenient abuse of notation : being

given M > 0, k ∈ TM , σ ∈ {−1, 1} and u = (uk′)k′∈TM ∈ C
TM , we set

uσk = uk if σ = 1 and uσk = uk if σ = −1.

If p is a parameter or a list of parameters and x, y ∈ R then we denote x .p y if there exists a
constant c(p), depending continuously on p, such that x . c(p) y. Similarly, we denote x &p y if
y .p x and x ≈p y if x .p y .p x.

Acknowledgments. We thank Nicolas Burq for helpful discussions on global well-posedness.
During the preparation of this work the authors benefited from the support of the Centre Henri
Lebesgue ANR-11-LABX-0020-0 and by ANR-15-CE40-0001-01 "BEKAM". The third author
was also supported by the Agence Nationale de la Recherche through the PRC grants ODA
(ANR-18-CE40-0020) and ADYCT (ANR-20-CE40-0017).

2. A good orthonormal basis

Recall that

(6) Eℓ = Ker(∆ + ℓ(ℓ+ 1)IdL2(S2,R)) ≃ R
2ℓ+1,

and we will denote by Bℓ the set of orthonormal basis of the Euclidean space Eℓ. More generally,
we denote by B the set of orthonormal basis of L2(S2;R):

B := {b = (bℓ)ℓ∈N : ∀ℓ ≥ 0, bℓ ∈ Bℓ} .
Hence, an element in Bℓ is an orthonormal basis of Eℓ that we will denote by bℓ = (eℓ,m)−ℓ≤m≤ℓ

and an element of B can be represented as

b = (bℓ)ℓ∈N = (ek)k∈T∞ = (e(ℓ,m))(ℓ,m)∈T∞ .

When representing vector fields in a Hilbertian basis b = (ek)k∈T∞ ∈ B (which seems natural to
perform Birkhoff normal forms), it is classical to end up with estimating quantities of the following
form

∫

S2

ek1(x) . . . ekp(x)dvolS2(x),

where (k1, . . . , kp) is some fixed element in T p
∞. In the case of the round sphere, an orthonormal

basis in B can be identified with a basis of homogeneous harmonic polynomials on R
3 and one

can make use of this structure to get good estimates. For instance, following [DS04, Ex. 4.2], we
can verify that

(7) ∃1 ≤ j0 ≤ r such that
∑

j 6=j0

ℓj < ℓj0 =⇒
∫

S2

e(ℓ1,m1)(x) . . . e(ℓp,mp)(x)dvolS2(x) = 0.
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See also [DS06, Prop. 1.2.1] for related results on more general manifolds. However, without any
assumption on the relative size of the ℓj, it seems that the best one can expect for a general
orthonormal basis is to apply Hölder’s inequality:

∣

∣

∣

∣

∫

S2

e(ℓ1,m1)(x) . . . e(ℓp,mp)(x)dvolS2(x)

∣

∣

∣

∣

≤ ‖e(ℓ1,m1)‖Lp . . . ‖e(ℓp,mp)‖Lp .

Then, a classical result on Laplace eigenfunctions [So88] states, for any (ℓ,m) ∈ T∞, ‖e(ℓ,m)‖Lp ≤
Cp〈ℓ〉δ(p) with δ(p) = max{1

4 − 1
2p ,

1
2 − 2

p}. Moreover, these bounds on Lp-norms are known to be

sharp along certain sequences of the standard basis of spherical harmonics [So15]. Despite these
a priori bounds and thanks to spectral degeneracies, there is some flexibility in the choice of the
orthonormal basis b ∈ B we are working with. Following [BL13, Th. 6] (see also [VdK97, ShZe03]
or [Ze08, Th. 18.5]), one can in fact prove that there exist many elements b in B (in fact almost all)
for which the Lp norms are uniformly bounded. Thus, for such a basis b, one can find a constant
Cb > 0 such that, for every (k1, . . . , kp) ∈ T p

∞,

(8)

∣

∣

∣

∣

∫

S2

ek1(x) . . . ekp(x)dvolS2(x)

∣

∣

∣

∣

≤ Cb.

Unfortunately, these informations do not seem to be enough to handle Birkhoff normal forms for
data with low regularity as we are aiming at. Hence, we need to work a little bit more. As we
shall see in the upcoming sections, the missing information to handle our Birkhoff normal form
procedure is to construct an orthonormal basis in B for which these integrals have enough decay
when there exists an index 1 ≤ j0 ≤ p such that

(ℓj ,mj) = (ℓj0 ,mj0) =⇒ j = j0.

To that aim, we will prove the following theorem which is the main result of this section:

Theorem 2.1. Let g ∈ L∞(S2;R) and let p ≥ 3. Then, there exist a constant Cg,p > 0 and an

orthonormal basis b = (ek)k∈T∞ ∈ C∞(S2;R)T∞ of L2(S2;R) such that, for all k = (k1, . . . , kp) ∈
T p
∞ we have

(9)

∣

∣

∣

∣

∫

S2

ek1(x) · · · ekp(x) g(x) dvolS2(x)
∣

∣

∣

∣

≤ Cg,pmin

{

1,
logp(2 + |ℓ|∞)
√

Υ(k)

}

.

where |ℓ|∞ = max1≤j≤p ℓj and

(10) Υ(k) := max{1} ∪
{

〈ℓj〉 : ∀j′ 6= j, kj′ 6= kj
}

.

Moreover, b ∈ B, i.e. for all k = (ℓ,m) ∈ T∞, we have

∆eℓ,m = −ℓ(ℓ+ 1) eℓ,m.

This theorem complements the properties given by (7) and (8) in the sense that it shows that
the integrals of interest are small even if all the ℓj are of the same order. The only condition is
that at least one of the eigenvector appears with multiplicity one in the integral. Note that the
decay property we obtain is not that small but it will be enough for our argument. We do not
expect that the decay can be much increased except in higher dimensions where the denominator

should be 〈ℓj〉
d−1
2 rather than 〈ℓj〉

1
2 . We emphasize that, contrary to (7), this is not valid for any

orthonormal basis but only for a generic one as (8) is. In order to prove this result, we will in fact
refine the probabilistic approach used to prove (8).

Remark 2.2. As a corollary of the proof, we could also get a similar basis enjoying (9) for a
countable set of degrees p and functions g (but not uniformly).
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2.1. Probabilistic setup. We start with a short review on Haar measures which will be used to
define natural probability measures on the orthogonal group of Eℓ. Then, we explain how to use
these measures to define probability measures on B and how they are related to the normalized
volume measure on the unit sphere Sℓ of Eℓ.

2.1.1. Background on Haar measures. Recall that, given a compact group G, there exists a Radon
measure mG on G such that for every Borel subset U ⊂ G and for every g ∈ G, mG(gU) =
mG(U) [Fo15, Th. 2.10]. This is called a (left invariant) Haar measure on G and for any nonempty
open set U , one has mG(U) > 0 [Fo15, Prop. 2.19]. Moreover, if we fix mG(G) = 1, then this
measure is unique [Fo15, Th. 2.20]. The main example we will use in the following is the orthogonal
group O(d) of Rd (with d ∈ N

∗) or more generally, the orthogonal group O(E) of some Euclidean
space E of dimension d.

Remark 2.3. For the sake of concreteness, let us give an explicit expression of mO(d) in terms of

measures on spheres. Given an orthonormal family (X1, . . . ,Xk) in (Rd)k, we denote by νX1,...,Xk
d−k−1

the normalized volume measure on S
d−1 ∩ Span{X1, . . . ,Xk}⊥ induced by the Euclidean structure

on R
d−1. Equivalently,

νd−k−1 :=
volSd−1∩Span{X1,...,Xk}⊥

volSd−k−1 (Sd−k−1)
.

With these conventions at hand and writing R = (X1, . . . ,Xd) ∈ O(d), one can verify using the
invariance of νj by rotation that

∫

O(d)
f(R)dmO(d)(R) =

∫

(Sd−1)d
f(X1, . . . ,Xd)dν

X1,...,Xd−1

0 (Xd) . . . dν
X1
d−2(X2)dνd−1(X1).

In particular, if f(R) = f(X1, . . . ,Xd) = g(X1), then

∫

O(d)
f(R)dmO(d)(R) =

∫

Sd−1

g(X)dνd−1(X).

If we now fix some compact subgroup H of G, it also has a unique left invariant probability
measure mH . This measure is naturally related to mG as follows. We define G/H := {[g] = gH :
g ∈ G} as the set of (left) cosets and according to [Fo15, Th. 2.51, Cor. 2.53], there exists some
G-invariant measure µG/H such that, for every continuous function on G, one has

∫

G
f(g)dmG(g) =

∫

G/H

(
∫

H
f(gh)dmH(h)

)

dµG/H([g]),

or more compactly

(11) mG =

∫

G/H
g∗(mH)dµG/H([g]).

Remark 2.4. Again, we will use this disintegration of the measure in the case of the orthogonal
group G = O(E) and of a subgroup H = O(V ), where V is a linear subspace (with the same
Euclidean structure) of E. Here an element R ∈ O(V ) is identified with an element of O(E) by
letting R|V ⊥ = IdV ⊥ .
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2.1.2. Probability measures on orthonormal basis. The measure mO(Eℓ) induces a probability mea-
sure Pℓ on the set Bℓ of orthonormal basis of Eℓ through the map

R ∈ O(Eℓ) 7→
(

RΦ(ℓ,m)

)

−ℓ≤m≤ℓ
,

where (Φ(ℓ,m))−ℓ≤m≤ℓ is a fixed orthonormal basis of Eℓ, e.g. the one given by the standard
(real-valued) spherical harmonics. More generally, we define on the set B of orthonormal basis of
Laplace eigenfunctions, the product measure

P =
+∞
⊗

ℓ=0

Pℓ.

If we fix some (nonempty) subset L of N, we can define the map

πL : b = (bℓ)ℓ∈N ∈ B 7→ (bℓ)ℓ∈L ∈ BL :=
∏

ℓ∈L
Bℓ.

The pushforward PL := (πL)∗P is defined as
∫

BL

fdPL :=

∫

B
f ◦ πLdP,

and it can be written as
PL =

⊗

ℓ∈L
Pℓ.

Remark 2.5. When L = {ℓ}, we just write P{ℓ} = Pℓ as we did so far. We will in fact mostly
work with PL for some finite set L.

We can also use the decomposition (11) in that context. For instance, one can fix a subset M
of {−ℓ, . . . , ℓ− 1, ℓ} and define

Vℓ,M := Span {Φℓ,m : m ∈ M} .
Then, given an integrable function f on Bℓ, one can write
(12)
∫

Bℓ

f(bℓ)dPℓ(bℓ) =

∫

O(Eℓ)/O(Vℓ,M)

(

∫

O(Vℓ,M)
f ((RR1Φℓ,m)m) dmO(Vℓ,M)(R1)

)

dµO(Eℓ)/O(Vℓ,M)([R]).

Remark 2.6. As R1Φℓ,m = Φℓ,m for m /∈ M and for R1 ∈ O(Vℓ,M), the integral
∫

O(Vℓ,M)
f ((RR1Φℓ,m)m) dmO(Vℓ,M)(R1)

can be identified with an integral on the the set of orthonormal basis Bℓ,M of Vℓ,M as we did above.

2.1.3. Induced measures on spheres. On the one hand, as we aim at finding an orthonormal basis
Eℓ with good properties via probabilistic means, it is natural to work with the Haar measure on
the corresponding orthogonal group O(Eℓ). On the other hand, our main probabilistic ingredient
will be a result on the concentration of the volume measure on spheres of large dimensions as
the unit sphere Sℓ of Eℓ is when ℓ → +∞. As already witnessed from Remark 2.3, the Haar
measure is naturally related to such measures and, in view of our applications, we now make this
connection slightly more precise in our context.

Fix k = (ℓ,m) in T∞ and define the map

π(ℓ,m) : bℓ = (e(ℓ,m′))−ℓ≤m′≤ℓ ∈ Bℓ 7→ e(ℓ,m) ∈ Sℓ,
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where Sℓ is the unit sphere (for the L2-norm) in Eℓ. The measure Pℓ induces a measure on the
Euclidean sphere Sℓ as follows:

(13) ∀f ∈ C0(Sℓ),

∫

Sℓ

fdν2ℓ :=

∫

Bℓ

f ◦ π(ℓ,m)dPℓ.

By invariance of the Haar measure through orthogonal transformations, this measure does not
depend on the choice of m. Still by definition of the Haar measure, one can also check that
it is invariant under orthogonal transformations. Thus, by uniqueness of uniformly distributed
measures on the sphere [Ma95, Th. 3.4], it can be identified with the normalized volume measure
ν2ℓ on the 2ℓ-dimensional sphere Sℓ ≃ S

2ℓ of Eℓ ≃ R
2ℓ+1.

Remark 2.7. In order to alleviate notations, rather than writing π(ℓ,m) ◦πℓ, we shall also denote
by π(ℓ,m) the map from B to Sℓ that associates to b = (e(ℓ′,m′))(ℓ′,m′)∈T∞ the eigenvector e(ℓ,m).
The induced measure on Sℓ remains the same by construction.

2.2. The key probabilistic ingredient. The key ingredient in the proof of (8) and of our proof
of Theorem 2.1 is the following property [Led01, Eq. 2.6]

Theorem 2.8 (Levy’s inequality). Let d ≥ 1 and let νd be the normalized volume measure on S
d

induced by the Euclidean structure on R
d+1. Let F : Sd → R be a continuous function. Then, for

every δ > 0,

νd ({|F −mF | ≥ ωF (δ)}) ≤ 2e−δ2 d−1
2 ,

where mF is the median of F , i.e. the unique real number such that

νd ({F ≥ mF}) = νd ({F ≤ mF }) =
1

2
,

and where ωF (δ) is the modulus of continuity of F :

ωF (δ) := sup {|F (u) − F (v)| : dSd(u, v) ≤ δ} .
In other words, this theorem states that functions with small oscillations on spheres of large

dimensions are almost constant. Following [ShZe03, Ze08, BL13], let us illustrate how to use this
theorem when Fq(u) := ‖u‖Lq(S2) with 2 ≤ q < ∞. Here u belongs to Sℓ that we identify with S

2ℓ

by fixing some orthonormal basis (Φ(ℓ,m))−ℓ≤m≤ℓ of Eℓ. One has

|Fq(u)− Fq(v)| ≤ ‖u− v‖Lq(S2) ≤ ‖u− v‖
2
q

L2(S2)
‖u− v‖1−

2
q

L∞(S2)

≤ ‖u− v‖
2
q

L2(S2)

(

sup
x∈S2

∣

∣

∣

ℓ
∑

m=−ℓ

〈u− v,Φ(ℓ,m)〉L2Φ(ℓ,m)(x)
∣

∣

∣

)1− 2
q

≤ ‖u− v‖L2(S2)

(

sup
x∈S2

{

ℓ
∑

m=−ℓ

Φ(ℓ,m)(x)
2
}) 1

2
− 1

q
.

Now observing that the sum is the Schwartz kernel of the spectral projector 1ℓ(ℓ+1)(−∆) evaluated
on the diagonal and that this is a spherical invariant quantity, we deduce that these sums are
independent of x ∈ S

2 and thus equal to 2ℓ + 1. Hence, there exists some constant c0 > 0 such
that, for every ℓ ≥ 1 and for every 2 ≤ q < ∞,

|Fq(u)− Fq(v)| ≤ ‖u− v‖L2(S2) (2ℓ+ 1)
1
2
− 1

q ≤ c0dS2ℓ(u, v) (2ℓ+ 1)
1
2
− 1

q ,
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from which we infer the existence of c1 > 0 (independent of ℓ and q) such that

∀δ > 0, ν2ℓ
({

u ∈ Sℓ : |‖u‖Lq −mFq | ≥ δ
})

≤ 2e−c1δ2ℓ
2
q
.

Finally, the constant mFq can be estimated precisely through explicit calculations [BL13, Th.6].

For our purpose, we shall only use the existence of a constant c2 >
√
2 such that, for every

2 ≤ q < ∞, 1 ≤ mFq ≤ c2
√
q [BL13, Th.4]. In particular, there exists a constant c1 > 0 such

that, for every Λ ≥ 2c2
√
q, for every ℓ ≥ 1 and for every 2 ≤ q < ∞, one has

(14) ν2ℓ ({u ∈ Sℓ : ‖u‖Lq ≥ Λ}) ≤ 2e−c1(Λ−c2
√
q)2ℓ

2
q
.

This quantitative estimate will be useful in our construction of a good orthonormal basis. Yet,
besides these already known results, we will also need to apply Levy’s inequality one more time
directly to the integrals we are interested in. In order to clarify the upcoming argument, let us
give another simple application of Levy’s inequality that will be in the spirit of our proof. We fix
some h ∈ L2(S2) and we consider the map

F : u ∈ Sℓ 7→
∫

S2

u(x)h(x) d volS2(x)

By symmetry, the median of this function is equal to 0 and one has, thanks to the Cauchy–Schwarz
inequality,

|F (u)− F (v)| ≤ ‖u− v‖L2‖h‖L2 ≤ c0‖h‖L2dS2ℓ(u, v).

Hence, we deduce from Levy’s inequality applied with δ = log〈ℓ〉√
〈ℓ〉

that

ν2ℓ

({

u ∈ Sℓ : |F (u)| ≥ log〈ℓ〉
√

〈ℓ〉

})

≤ 2e
−c1

log2〈ℓ〉
‖h‖

L2 .

From that, we infer that

∑

k=(ℓ,m)∈T∞
P

({

b ∈ B :

∣

∣

∣

∣

∫

S2

ek(x)h(x) d volS2(x)

∣

∣

∣

∣

≥ log〈ℓ〉
√

〈ℓ〉

})

≤ 2
∑

ℓ∈N
(2ℓ+ 1)e

−c1
log2〈ℓ〉
‖h‖

L2 < ∞.

In particular, thanks to the Borel Cantelli Lemma, we can derive that, given h ∈ L2 and for P-a.e.
b ∈ B, there exists a constant Cb > 0 such that

∀k ∈ T∞,

∣

∣

∣

∣

∫

S2

ek(x)h(x) d volS2(x)

∣

∣

∣

∣

≤ Cb
log(1 + 〈ℓ〉)
√

〈ℓ〉

This is exactly the kind of decay we are looking for in Theorem 2.1 except that h is a product
of eigenfunctions inside b (rather than a fixed element h in L2). In order to handle this problem,
we will make use of the fact that most eigenfunctions have their Lq-norm uniformly bounded and
that this control on the Lq-norm can be made quantitative thanks to (14). Due to the multiple
and nested applications of Levy’s inequality, this turns out to be a little bit tedious task. Yet,
the decay phenomenon we obtain is the same as the one we have just described in this elementary
calculation.
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2.3. Proof of Theorem 2.1. For the sake of simplicity, it is convenient to endow T∞ with the
lexicographic order, namely

(15) k1 = (ℓ1,m1) 4 k2 = (ℓ2,m2) ⇐⇒ ℓ1 < ℓ2 or (ℓ1 = ℓ2 and m1 ≤ m2).

We now will estimate the probability that an orthonormal basis in B does not satisfy the
conclusion of Theorem 2.1 for a fixed k = (k1, . . . , kp) ∈ T p

∞ with

(16) k1 = (ℓ1,m1) 4 . . . 4 kp = (ℓp,mp).

Indeed, since the estimate of Theorem 2.1 is invariant by the action of the permutation group on
k, we can can assume without loss of generality that k1, . . . , kp are ordered.

In order to alleviate the notations, we also define

A(k) := {k ∈ T∞ : ∃1 ≤ j ≤ p such that k = kj},
which is set of cardinal ≤ p so that

Fk(b) :=

∫

S2

ek1(x) · · · ekp(x) g(x) d volS2(x) =
∫

S2

∏

k∈A(k)

ek(x)
αk g(x) d volS2(x),

where 1 ≤ αk ≤ p for every k ∈ A(k). We always suppose in the following that g is not identically
0.

2.3.1. Applying Levy’s inequality. We suppose that there exists 1 ≤ j0 ≤ p such that

(ℓj ,mj) = (ℓj0 ,mj0) =⇒ j = j0.

In that case, we say that k satisfies property (S). We denote by j+ the largest index in {1, . . . , p}
with this property. In particular α(ℓj+ ,mj+

) = 1. We begin by treating the case of multi-indices

verifying (S) and we also suppose for the moment that ℓj+ ≥ p.
Following the above calculation, we aim at applying Levy’s inequality to the map

F+ : e(ℓj+ ,mj+
) ∈ Sℓj+

7→
∫

S2

ek1(x) · · · ekp(x) g(x) d volS2(x),

with (ekj )1≤j 6=j+≤p fixed. By symmetry, the median mF+ of F+ is equal to 0. Moreover, by the
Hölder inequality, this is a Lipschitz map:

|F+(u)− F+(v)| ≤ ‖g‖L∞‖u− v‖L2





∫

S2

∏

j 6=j+

|ekj (x)|2d volS2(x)





1
2

≤ c0‖g‖L∞dS2(u, v)





∫

S2

∏

j 6=j+

|ekj (x)|2d volS2(x)





1
2

≤ c0‖g‖L∞dS2(u, v)
∏

k∈A(k)\{kj+ }
‖ek‖αk

L2(p−1) .

Remark 2.9. Note that these two properties also hold true for F+ ◦R where R ∈ O(Eℓj+
).

In order to apply Levy’s inequality, we would at least need that the L2p−2-norms appearing in
the Lipschitz constant are uniformly bounded. To that aim, we set, for Λ > 0,

BΛ(k) :=
{

b ∈ B : ∀k ∈ A(k) \ {kj+}, ‖πk(b)‖L2(p−1) ≤ Λ
}

.
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In particular, for b ∈ BΛ(k), the Lipschitz constant of F+ is bounded by c0‖g‖L∞Λp−1. Moreover,
using (14), one finds that the complementary set of BΛ(k) is small. More precisely, for Λ ≥ 4c2

√
p,

one has

P (BΛ(k)
c) ≤

∑

k∈A(k)\{kj+}
P
({

b ∈ B : ‖πk(b)‖L2p−2(S2) ≥ Λ
})

≤ 2

p
∑

j=1,j 6=j+

e−c1(Λ−2c2
√
p)2ℓ

1
p−1
j .

Fix now some Λ ≥ 4c2
√
p and some δ > 0. For L ⊂ N, we set

BΛ,L(k) :=
{

b ∈ BL : ∀k ∈ L× Z ∩
(

A(k) \ {kj+}
)

, ‖πk(b)‖L2(p−1) ≤ Λ
}

so that we can write

P ({b ∈ B : |Fk(b)| ≥ δ}) ≤ P ({b ∈ BΛ,N(k) : |Fk(b)| ≥ δ}) + 2

p
∑

j=1,j 6=j+

e−c1(Λ−2c2
√
p)2ℓ

1
p−1
j

≤
∫

BΛ,N\{ℓj+
}(k)

Pℓj+

({

bℓj+ ∈ BΛ,ℓj+
(k) : |Fk(b

′, bℓj+ )| ≥ δ
})

dPN\{ℓj+}(b
′)

+ 2

p
∑

j=1,j 6=j+

e−c1(Λ−2c2
√
p)2ℓ

1
p−1
j .

Hence, b′ being fixed in BN\{ℓj+}, we are left with estimating, uniformly for b′ ∈ BΛ,N\{ℓj+}(k),

(17) Pℓj+

({

bℓj+ ∈ BΛ,ℓj+
(k) : |Fk(b

′, bℓj+ )| ≥ δ
})

,

which can be analyzed using (12). Expressed in terms of the orthogonal group of Eℓj+
, (17) can

in fact be rewritten as

(18) mO(Eℓj+
)

({

R :
(

RΦℓj+ ,m

)

m
∈ BΛ,ℓj+

(k), and
∣

∣

∣
Fk

(

b′,
(

RΦℓj+ ,m

)

m

)∣

∣

∣
≥ δ
})

.

We are now exactly in position to apply the disintegration formula (12) with ℓ = ℓj+ , m+ = mj+

and

M =
{

k = (ℓ,m) /∈ A(k) : ℓ = ℓj+
}

∪ {(ℓj+ ,mj+)},
where we note that |M| ≥ 2(ℓj+ + 1) − p. From this and as the condition on BΛ,ℓj+

(k) only

concerns indices m not belonging to M, we infer that (18) (and thus (17)) can be rewritten as

(19)

∫

O(Eℓj+
)/O(Vℓj+

,M)
1{[R]:(RΦℓj+

,m)m∈BΛ,ℓj+
(k)}([R])

×mO(Vℓj+
,M)

({

R1 :
∣

∣

∣Fk

(

b′,
(

RR1Φℓj+ ,m

)

m

)∣

∣

∣ ≥ δ
})

dµO(Eℓj+
)/O(Vℓj+

,M )([R]).

In order to estimate (17) and thus P ({b ∈ B : |Fk(b)| ≥ δ}), we are left with determining an upper
bound on

mO(Vℓj+
,M)

({

R1 :
∣

∣

∣Fk

(

b′,
(

RR1Φℓj+ ,m

)

m

)∣

∣

∣ ≥ δ
})

,
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uniformly for b′ ∈ BΛ,N\{ℓj+}(k) and for [R] such that (RΦℓj+ ,m)m ∈ BΛ,ℓj+
(k). Equivalently, as

in (13), one gets in terms of measures on spheres

mO(Vℓj+
,M)

({

R1 :
∣

∣

∣
Fk

(

b′,
(

RR1Φℓj+ ,m

)

m

)∣

∣

∣
≥ δ
})

= ν|M|−1

({

u ∈ S
|M|−1 : |F+(Ru)| ≥ δ

})

,

where R is a fixed element in Eℓj+
and where the function F+ is defined using a fixed orthonormal

family {ekj : 1 ≤ j 6= j+ ≤ p} verifying ‖ekj‖L2(p−1) ≤ Λ for every j 6= j+. Hence, using Levy’s
inequality and recalling from Remark 2.9 that F+ ◦ R is Lipschitz and that its median is 0, we
obtain

mO(Vℓj+
,M)

({

R1 :
∣

∣

∣
Fk

(

b′,
(

RR1Φℓj+ ,m

)

m

)∣

∣

∣
≥ δ
})

≤ 2e
−δ2 |M|−2

c2
0
‖g‖2

L∞Λ2p−2
.

Gathering these bounds, we get

P ({b ∈ B : |Fk(b)| ≥ δ}) ≤ 2e
−δ2 |M|−2

c2
0
‖g‖2

L∞Λ2p−2
+ 2

p
∑

j=1,j 6=j+

e−c1(Λ−2c2
√
p)2ℓ

1
p−1
j .

Note that, for ℓj+ ≥ p, one has |M| − 2 ≥ 2ℓj+ − p ≥ ℓj+.
In summary, we end up with the existence of two positive constants c1, c2 > 0 (depending only

on g, on p and on the geometry of S2) such that, for every δ > 0 and for every Λ ≥ 4c2
√
p

(20) P ({b ∈ B : |Fk(b)| ≥ δ}) ≤ 2e−c1
δ2ℓj+

Λ2p−2 + 2

p
∑

j=1,j 6=j+

e−c1(Λ−2c2
√
p)2ℓ

1
p−1
j ,

whenever k verifies (S) and ℓj+ ≥ p. Taking Λ = log〈ℓp〉 (and thus ℓp large enough), we can
deduce the existence of a constant cp,g ≥ 1 such that, for every δ > 0 and for every k ∈ T p

∞ with
k1 4 . . . 4 kp = (ℓp,mp) verifying (S),

P ({b ∈ B : |Fk(b)| ≥ δ}) ≤ cp,ge
−c−1

p,g

δ2〈ℓj+
〉

log2(p−1)〈ℓp〉 + cp,ge
−c−1

p,g log2〈ℓp〉.

Thus, we obtain

(21) P

({

b ∈ B : |Fk(b)| ≥
logp〈ℓp〉
√

〈ℓj+〉

})

≤ 2cp,ge
−c−1

p,g log2〈ℓp〉,

2.3.2. The conclusion. Given k ∈ T p
∞ with k1 4 . . . 4 kp = (ℓp,mp) verifying property (S) and

ℓj+ ≥ p, we define the following probabilistic events:

Ω(k) :=

{

b ∈ B : |Fk(b)| ≥
logp〈ℓp〉
√

〈ℓj+〉

}

.

Applying (21), one has

∑

k14...4kr:(S) holds and ℓj+ ≥ p

P(Ω(k)) ≤ Cp,g

+∞
∑

ℓ=1

ℓ2pe−C−1
p,g log2〈ℓ〉 < ∞.

In particular, thanks to the Borel-Cantelli Lemma, we can conclude that, for P-a.e. b ∈ B, one
has b ∈ Ω(k)c except for finitely many k verifying (S) and ℓj+ ≥ p. This yields the conclusion of
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the Theorem for indices verifying these two properties. Recall now from3 [BL13, Th.6] that, for
P-a.e. b ∈ B, there exists a constant Cb > 0 such that, for every k = (k1, . . . , kp) ∈ T p

∞,
∣

∣

∣

∣

∫

S2

ek1(x) · · · ekp(x) g(x) dvolS2(x)
∣

∣

∣

∣

≤ Cb.

This last inequality yields the conclusion of the theorem whenever k does not satisfy (S) or ℓj+ ≥ p.
Hence, taking an element in the intersection of these two subsets of full measure concludes the
proof of Theorem 2.1.

Remark 2.10. We note that we proved something slightly stronger than what was stated in The-
orem 2.1 as the conclusion holds true for P-a.e. orthonormal basis in B (with a constant that
depends on the choice of b).

3. A good mass

In this section, we prove that, for almost all mass µ > 0, the frequencies of (KG) are non-
resonant and thus well-suited to proceed to a Birkhoff normal form reduction. The frequencies of
(KG) are defined by

(22) ∀k = (ℓ,m) ∈ T∞, ωk :=
√

ℓ(ℓ+ 1) + µ.

They are the eigenvalues of the operator
√
µ−∆ (see (2)).

The Birkhoff normal form process involves small divisors of the form

(23) Ω(σ,k) = σ1ωk1 + · · ·+ σrωkr

with r ≥ 3, σ ∈ {−1, 1}r and k ∈ T r
∞. Of course there may be cancellations in these small divisors

(a same term could appear both with a sign plus and a sign minus). Therefore it is useful to
define the smallest effective index by

(24) κ(σ,k) = min
{

〈ℓj〉 | 1 ≤ j ≤ r and
∑

ℓi=ℓj

σi 6= 0
}

∪ {+∞}.

where, for all i ∈ J1, rK, we have set (ℓi,mi) := ki. The following proposition provides a quite
uniform lower bound for the small divisors of (KG).

Proposition 3.1. For almost all µ > 0 and all r ≥ 2, there exist γr, αr > 0 such that for all
k ∈ T r

∞, all σ ∈ {−1, 1}r, we have either

(25) |Ω(σ,k)| ≥ γrκ(σ,k)
−αr

or κ(σ,k) = +∞, i.e. r is even and there exists ρ in the symmetric group Sr such that

∀j ∈ J1, r/2K, σρ2j−1 = −σρ2j and ωkρ2j−1
= ωkρ2j

.

Moreover, αr does not depends on µ.

As already explained in the introduction, the key observation here is that the small divisors
that will appear in our normal formal procedure (see the proof of Theorem 5.1) are controlled
by the smallest effective index rather than the third largest index as for instance in [BDGS07,
Prop. 3.16]. This will allow us to remove much more terms when solving cohomological equations.

3This is in fact a rather direct consequence of (14) combined with Hölder’s inequality and the Borel-Cantelli
Lemma.
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Proof. First we note that the frequencies accumulates polynomially fast on lattice Z+ 1
2 :

ω(ℓ,m) =
√

ℓ(ℓ+ 1) + µ = ℓ

√

1 +
1

ℓ
+

µ

ℓ2
=

ℓ→+∞
ℓ+

1

2
+O

(1

ℓ

)

.

Moreover, it is well known (see e.g. [DS04, Prop. 4.8] and [Bam03, Th. 6.5]) that Proposition 3.1
holds if (25) is replaced by the weaker estimate

∀y ∈ Z,
∣

∣

y

2
+ Ω(σ,k)

∣

∣ ≥ γr
( r
max
j=1

〈kj〉
)−αr

Therefore, Proposition 3.1 is a consequence of [BG21, Prop. 2.1, p.11] which only requires the two
above ingredients. �

4. Hamiltonian formalism

We now introduce new families of norms on real-valued and homogeneous polynomials on C
TM

that are well behaved with respect to the canonical symplectic structure on C
TM and thus well

adapted to our initial PDE problem after diagonalization of ∆.

4.1. Functional setting. We use the standard functional setting to deal with Hamiltonian sys-
tems. Nevertheless to avoid any possible confusion we recall it precisely (and we refer to section
3.1 of [BG21] for more comments and details).

We consider M ∈ (0,∞) as a fixed parameter and we note that CTM is a real finite dimensional
vector space. We always consider this space as an Euclidean space for the ℓ2 scalar product

∀u, v ∈ C
TM , (u, v)ℓ2 := ℜ

∑

k∈TM
ukvk.

As a consequence, if H : CTM → R, we have the relation

∀k ∈ TM ,
(∇H)k

2
= ∂uk

H =:
1

2
(∂ℜuk

H + i∂ℑuk
H) .

As usual, we equip implicitly C
TM with the symplectic form (i · , · )ℓ2 . Therefore a smooth map

τ : D → C
TM , where D is an open set of CTM , is symplectic if

∀u ∈ D,∀v,w ∈ C
TM , (iv, w)ℓ2 = (idτ(u)(v),dτ(u)(w))ℓ2 .

Moreover, if H,K : CTM → R are two smooth functions, the Poisson bracket of H and K is
defined by

{H,K}(u) := (i∇H(u),∇K(u))ℓ2 .

Note that, as usual, it can be checked that we have

{H,K} =
∑

k∈TM
∂ℜuk

H∂ℑuk
K − ∂ℑuk

H∂ℜuk
K = 2i

∑

k∈TM
∂uk

H∂uk
K − ∂uk

H∂uk
K.

For all s ∈ R, we define the hs norm on C
TM by

∀u ∈ C
TM , ‖u‖2hs :=

∑

k=(ℓ,m)∈TM

〈ℓ〉2s|uk|2
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4.2. Multilinear estimates. In this paragraph, we establish multilinear estimates for Hamilto-
nians which are homogeneous polynomials on C

TM .

Definition 4.1 (Space H r
M ). Being given M ≥ 0 and r ≥ 2, H r

M denotes the space of real valued

homogeneous polynomial of degree r on the real vector space C
TM .

Remark 4.2. By definition, every homogeneous polynomial H ∈ H r
M admits a unique decompo-

sition of the form

H(u) =
∑

σ∈{−1,1}r

∑

k∈T r
M

Hσ
ku

σ1
k1

. . . uσr
kr

where (Hσ
k
)(k,σ)∈T r

M×{−1,1}r is a sequence of complex numbers satisfying the reality condition

(26) H−σ
k

= Hσ
k

and the symmetry condition

(27) ∀φ ∈ Sr, Hσ1,...,σr

k1,...,kr
= H

σφ1
,...,σφr

kφ1 ,...,kφr
.

We endow this space of polynomials with two unusual norms ‖·‖H and ‖·‖C . Roughly speaking,
in our Birkhoff normal form process, the terms of the Taylor expansion of the Hamiltonian are
controlled with the H -norm whereas the solutions to cohomological equations are controlled with
a C -norm (because they enjoy better properties).

Definition 4.3 (Norms ‖ · ‖H and ‖ · ‖C ). Let M ≥ 0, r ≥ 2 and H,χ ∈ H r
M , we set

(28) ‖H‖H := max
σ∈{−1,1}r

max
k∈T r

M

|Hσ
k |
√

〈ℓ1〉 · · · 〈ℓr〉
√

Υ(k)

and

(29) ‖χ‖C := max
σ∈{−1,1}r

max
k∈T r

M

|χσ
k
|〈σ1ℓ1 + · · ·+ σrℓr〉

√

〈ℓ1〉 · · · 〈ℓr〉
√

Υ(k)

where kj =: (ℓj ,mj) for all j ∈ J1, rK and Υ is defined by (10).

As we shall see in this section, these nonstandard norms are well behaved with the symplectic
operations (Poisson bracket, gradient) that are used when performing a Birkhoff normal form
procedure in Theorem 5.1. One reason for these nice properties is the fact that they involve an
extra regularity factor Υ(k) which only depends on the largest simple index kj = (ℓj,mj) of k.
Despite their unusual definition, these norms can be implemented in our normal form argument as
this exponent appears naturally in the multilinear estimate of Theorem 2.1. See for instance (68)
below.

Let us now turn to the nice properties enjoyed by these norms. They provide the following
continuity estimate for the Poisson bracket :

Proposition 4.4. Let r, r′ ≥ 2 and M ≥ 2. For all H ∈ H r′
M and all χ ∈ H r

M , their Poisson

bracket {χ,H} is a homogeneous polynomial of degree r+r′−2 (i.e. {χ,H} ∈ H
r+r′−2
M ) enjoying

the bound

‖{χ,H}‖H .r,r′ logM ‖H‖H ‖χ‖C .

Proof. By definition of the Poisson bracket, we have

(30) {χ,H}(u) = 2i
∑

K∈TM
∂ūK

χ(u)∂uK
H(u)− ∂uK

χ(u)∂ūK
H(u).
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Since the coefficients of H and K are symmetric (i.e. satisfy (27)), we have

(31) ∂ūK
χ∂uK

H = rr′
∑

σ∈{−1,1}r−1

σ′∈{−1,1}r′−1

∑

k∈T r−1
M

k′∈T r′−1
M

χσ,−1
k,K uσ1

k1
. . . u

σr−1

kr−1
Hσ′,1

k′,Ku
σ′
1

k′1
. . . u

σ′
r′−1

k′
r′−1

.

Obviously, {χ,H} defines an homogeneous polynomial of degree r + r′ − 2. Hence, we need to
verify the reality condition (26) and the upper bound on the H -norm. For the latter, we begin

by estimating
∑

K χ
σ,−1
k,K Hσ′,1

k′,K. By (28) and (29), denoting k ∈ T r−1
M , k′ ∈ T r′−1

M , k′′ = (k,k′)
and r′′ = r + r′ − 2, we have

∑

K∈TM
|χσ,−1

k,K Hσ′,1
k′,K| ≤

‖H‖H ‖χ‖C
√

〈ℓ1〉 · · · 〈ℓr−1〉〈ℓ′1〉 · · · 〈ℓ′r′−1〉
×

∑

K=(l,m)∈TM

1

〈l〉〈σ1ℓ1 + · · ·+ σr−1ℓr−1 − l〉
√

Υ(k,K)Υ(k′,K)
.

(32)

We claim that for all K ∈ TM we have

(33) Υ(k,k′) ≤ Υ(k,K)Υ(k′,K).

Indeed, if Υ(k,k′) = 1 the inequality is trivial so we can assume that

• either there exists 1 ≤ i ≤ r − 1 such that Υ(k,k′) = 〈ℓi〉, kj 6= ki for 1 ≤ j ≤ r − 1 with
j 6= i and k′j′ 6= ki for 1 ≤ j′ ≤ r′ − 1,

• or there exists 1 ≤ i′ ≤ r′ − 1 such that Υ(k,k′) = 〈ℓ′i′〉, k′j′ 6= ki′ for 1 ≤ j′ ≤ r′ − 1 with

j′ 6= i′ and kj 6= k′i′ for 1 ≤ j ≤ r − 1.

By symmetry of the problem, let us assume the former and let K = (l,m) ∈ TM .
If Υ(k,K) ≥ 〈ℓi〉 = Υ(k,k′) then (33) holds true trivially. So let us assume that Υ(k,K) < 〈ℓi〉.
This implies that K = ki (if not Υ(k,K) is the maximum of a list of numbers including 〈ℓi〉 ). But
then, if Υ(k′,K) ≥ 〈l〉, we deduce Υ(k′,K) ≥ 〈ℓi〉 = Υ(k,k′) which in turn implies (33). Thus it
remains to consider the case Υ(k′,K) < 〈l〉 which leads to the existence of 1 ≤ j′ ≤ r′ − 1 such
that kj′ = K (if not Υ(k′,K) is the maximum of a list of numbers including 〈l〉). Therefore ki = kj′
which contradicts the definition of i.

Implementing (33) in (32) and denoting a = σ1ℓ1 + · · · + σr−1ℓr−1, one is left with estimating

∑

K=(l,m)∈TM

1

〈l〉〈σ1ℓ1 + · · ·+ σr−1ℓr−1 − l〉 ≤ 4

M
∑

l=0

1
√

1 + (a− l)2
(34)

≤ 4

M−a
∑

j=−a

1
√

1 + j2
≤ 8

M
∑

j=0

1
√

1 + j2
. logM

independently of the value of a.
Inserting (33) and (34) in (32), we get uniformly with respect to σ, σ′, k, k′

(35)
∑

K∈TM
|χσ,−1

k,K Hσ′,1
k′,K| . logM

‖H‖H ‖χ‖C

√

Υ(k,k′)
√

〈ℓ1〉 · · · 〈ℓr−1〉〈ℓ′1〉 · · · 〈ℓ′r′−1〉
.
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Then, denoting r′′ = r + r′ − 2, k′′ = (k,k′) and σ′′ = (σ, σ′), we define

Mσ′′

k′′ := 2irr′
∑

K∈TM
χσ,−1
k,K Hσ′,1

k′,K − χσ,1
k,KH

σ′,−1
k′,K and P σ′′

k′′ =
1

r′′!

∑

ρ∈Sr′′

Mσ′′◦ρ
k′′◦ρ .

By definition, P (u) = {χ,H}(u) and the estimates (35) proves that

‖P‖H . rr′ logM‖H‖H ‖χ‖C .

Finally, the coefficients of P are obviously symmetric and, by a direct calculation, we verify that
they satisfy the reality condition (26).

�

We now study the vector field on C
TM associated with an Hamiltonian in H r

M .

Lemma 4.5. Let M ≥ 2 and r ≥ 2. For all H ∈ H r
M , H is a real valued smooth map on C

TM

which enjoys the bounds

∀u ∈ C
TM , ‖∇H(u)‖h−1/2 .r (log(M))r/2‖H‖H ‖u‖r−1

h1/2

Proof. As a polynomial (of finitely many variables), any Hamiltonian H ∈ H r
M is a smooth map

on C
TM . We aim at bounding the norm by duality. To that aim, we fix v ∈ C

TM and we need to
estimate |(∇H(u), v)ℓ2 |. Since the coefficients of H are symmetric, we then write

|(∇H(u), v)ℓ2 | ≤ r‖H‖H

∑

σ∈{−1,1}r

∑

k∈T r
M

|uσ1
k1
|

〈ℓ1〉
1
2

. . .
|vσr

kr
|

〈ℓr〉
1
2

≤ r2r‖H‖H

∑

k∈T r
M

〈ℓ1〉
1
2 |uk1 |
〈ℓ1〉

. . .
〈ℓr〉

1
2 |vkr |
〈ℓr〉

≤ r2r‖H‖H ‖u‖r−1
h1/2‖v‖h1/2

(

∑

k=(ℓ,m)∈TM

1

〈ℓ〉2
)r/2

.r (log(M))r/2‖H‖H ‖u‖r−1
h1/2‖v‖h1/2 .

Then by duality we obtain

‖∇H(u)‖h−1/2 .r (log(M))r/2‖H‖H ‖u‖r−1
h1/2 .

�

The C -norm provides a better estimate on the gradient:

Lemma 4.6. Let M ≥ 2, r ≥ 2. For all χ ∈ H r
M and all u ∈ C

TM , we have the bounds

(36) ‖∇χ(u)‖h1/2 .r (log(M))(r−1)/2‖χ‖C ‖u‖r−1
h1/2

and

(37) ‖d∇χ(u)‖
L (h1/2) .r (log(M))(r−1)/2‖χ‖C ‖u‖r−2

h1/2 .

Proof. Without loss of generality, we assume that ‖χ‖C = 1. We aim at proving (36) by duality

i.e., for every v ∈ C
TM , we want to estimate |(∇χ(u), v)ℓ2 |. We denote ũk = 〈ℓ〉 1

2 |uk| and
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ṽk = 〈ℓ〉− 1
2 |vk| for all k = (ℓ,m) ∈ TM in such way ‖ũ‖ℓ2 = ‖u‖h1/2 and ‖ṽ‖ℓ2 = ‖v‖h−1/2 . Since

the coefficient of χ are symmetric, we have

(38) (∇χ(u), v)ℓ2 = r
∑

σ∈{−1,1}r

∑

k∈T r
M

χσ
ku

σ1
k1

. . . u
σr−1

kr−1
vσr
kr
.

Then by applying the triangular inequality, we get

|(∇χ(u), v)ℓ2 | ≤ 2r
∑

σ∈{−1,1}r−1

∑

k∈T r
M

1

〈σ1ℓ1 + · · ·+ σr−1ℓr−1 − ℓr〉
√

Υ(k)

ũk1
〈ℓ1〉

. . .
ũkr−1

〈ℓr−1〉
ṽkr .

At this stage, we notice that, for all k ∈ T r
M , we have Υ(k) ≥ Υ′(k) where Υ′(k) = 1 except when

kj 6= kr for all j = 1, · · · , r − 1 and in that case Υ′(k) = 〈ℓr〉. Thus

|(∇χ(u), v)ℓ2 | ≤ 2r
∑

σ∈{−1,1}r−1

∑

k∈T r
M

1

〈σ1ℓ1 + · · ·+ σr−1ℓr−1 − ℓr〉
√

〈ℓr〉
ũk1
〈ℓ1〉

. . .
ũkr−1

〈ℓr−1〉
ṽkr

+ 2r
∑

σ∈{−1,1}r−1

∑

k∈T r
M

∃1≤i≤r−1: kr=ki

1

〈σ1ℓ1 + · · ·+ σr−1ℓr−1 − ℓr〉
ũk1
〈ℓ1〉

. . .
ũkr−1

〈ℓr−1〉
ṽkr

= 2r(Σ1 +Σ2).

First we estimate Σ1

Σ1 =
∑

σ∈{−1,1}r−1

∑

k∈T r
M

ũk1
〈ℓ1〉

. . .
ũkr−1

〈ℓr−1〉
ṽkr

〈σ1ℓ1 + · · ·+ σr−1ℓr−1 − ℓr〉〈ℓr〉
1
2

.

We notice that

∑

k=(ℓ,m)∈TM

1

〈ℓ+ a〉2〈ℓ〉 =

M
∑

ℓ=0

2ℓ+ 1

〈ℓ〉
1

〈ℓ+ a〉2 ≤
∑

j∈Z

4

〈j〉2 . 1

uniformly with respect to a ∈ R and
∑

k=(ℓ,m)∈TM

1

〈ℓ〉2 . log(M).

Thus by Cauchy-Schwarz we get

Σ1 .r ‖u‖r−1
h1/2(log(M))(r−1)/2‖v‖h−1/2 .

It remains to estimate Σ2. We can assume without lost of generality, but paying an extra factor
r, that kr−1 = kr. Then, by Cauchy-Schwarz, we get

Σ2 ≤ r2r−1
∑

kr−1∈TM
ũkr−1 ṽkr−1

∑

k=(ℓ,m)∈T r−2
M

ũk1
〈ℓ1〉

. . .
ũkr−2

〈ℓr−2〉

.r ‖u‖r−1
h1/2(log(M))(r−2)/2‖v‖h−1/2 .

Putting together the estimates of Σ1 and Σ2 we conclude that, for all v ∈∈ C
TM ,

|(∇χ(u), v)| .r (log(M))(r−1)/2‖v‖h−1/2‖u‖r−1
h1/2

which in turn implies (36).
To prove (37) we just notice that since ∇χ(u) is an homogeneous polynomial, it can be viewed
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as the trace of a (r − 1)-linear map on C
TM : ∇χ(u) = F (u, · · · , u) with F that can be expressed

using (38). Thus, following the above proof, F satisfies

‖F (u(1), · · · , u(r−1))‖h1/2 .r (log(M))(r−1)/2‖u(1)‖h1/2 · · · ‖u(r−1)‖h1/2 .

Then, since d∇χ(u)(v) = F (v, u, · · · , u) + · · ·+ F (u, · · · , u, v), we deduce (37). �

Thanks to a standard duality argument, we rewrite the estimate (37) in a negative Sobolev
space.

Corollary 4.7. Let M ≥ 2, r ≥ 2. For all χ ∈ H r
M and u ∈ C

TM , we have

(39) ‖d∇χ(u)‖
L (h−1/2) .r (log(M))(r−1)/2‖χ‖C ‖u‖r−2

h1/2 .

Proof. By duality we have

sup
v∈CTM

‖v‖
h−1/2≤1

‖d∇χ(u)(v)‖h−1/2 = sup
v∈CTM

‖v‖
h−1/2≤1

sup
w∈CTM

‖w‖
h1/2

≤1

(w,d∇χ(u)(v))ℓ2 .

Then by applying the Schwarz theorem we have

(w,d∇χ(u)(v))ℓ2 = d[(w,∇χ(u))ℓ2 ](v) = d[dχ(u)(w)](v) = d2χ(u)(w)(v)

= d2χ(u)(v)(w) = d[(v,∇χ(u))ℓ2 ](w) = (v,d∇χ(u)(w))ℓ2 .

Therefore

sup
v∈CTM

‖v‖
h−1/2≤1

‖d∇χ(u)(v)‖h−1/2 = sup
w∈CTM

‖w‖
h1/2

≤1

sup
v∈CTM

‖v‖
h−1/2≤1

(v,d∇χ(u)(w))ℓ2 = sup
w∈CTM

‖w‖
h1/2

≤1

‖d∇χ(u)(w)‖h1/2

= ‖d∇χ(u)‖
L (h1/2).

As a consequence, (39) is just a corollary of the estimate (37). �

Finally we define the flow associated with an Hamiltonian in H r
M :

Proposition 4.8. Let M ≥ 2, r ≥ 3 and χ ∈ H r
M . There exist

(40) ε0 &r

(

(log(M))(r−1)/2‖χ‖C

)−1/(r−2)

and a smooth map

Φχ :

{

[−1, 1]×Bh1/2(CTM )(0, ε0) → C
TM

(t, u) 7→ Φt
χ(u)

solving the equation

(41) − i∂tΦχ = (∇χ) ◦ Φχ,

and such that for all t ∈ [−1, 1], Φt
χ is symplectic, close to the identity

(42) ∀u ∈ Bh1/2(CTM )(0, ε0), ‖Φt
χu− u‖h1/2 ≤

(‖u‖h1/2

ε0

)r−2
‖u‖h1/2 ,

invertible

(43) ‖Φt
χ(u)‖h1/2 < ε0 ⇒ Φ−t

χ ◦Φt
χ(u) = u.

Moreover, its differential enjoys the estimate

(44) ∀u ∈ Bh1/2(CTM )(0, ε0),∀σ ∈ {−1, 1}, ‖dΦt
χ(u)‖L (hσ/2) ≤ 2.
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Proof. We note that (41) is an ODE associated with the smooth vector field Xχ = i∇χ and
therefore we deduce from the Cauchy–Lipschitz Theorem that the flow Φt

χ(u) is locally well defined

for every u ∈ C
TM on some maximal interval (T−(u), T+(u)) containing 0. Let us first show that,

if ‖u‖h1/2 = ε is small enough, then the solution is defined up to time 1, equivalently T+(u) ≥ 1.
To see this, we set

t0 := sup
{

t ∈ [0, T+(u)) : ∀0 ≤ s ≤ t, ‖Φs
χ(u)‖h1/2 < 2ε

}

> 0.

In the case where T+(u) < ∞, we note that t0 < T+(u) by the maximality of the interval of
definition and we can verify that t0 ≥ 1 provided ε is chosen small enough. Indeed, if t0 < 1, then
we can write

ε ≤ ‖Φt0
χ (u)− u‖h1/2 ≤

∫ t0

0
‖(∇χ) ◦ Φs

χ(u)‖h1/2ds

≤ C−(r−2)
r t0(log(M))(r−1)/2εr−1‖χ‖C ,

for some constant 0 < Cr ≤ 1 depending only on r coming from (36). From this, we infer

ε−1
(

(log(M))(r−1)/2‖χ‖C

)− 1
r−2 ≤ C−1

r |t0|
1

r−2 .

Thus, as long as ε ≤ Cr

(

(log(M))(r−1)/2‖χ‖C

)− 1
r−2 , we find that t0 ≥ 1 and that the flow is well

defined up to time t = 1. The same holds in negative times. We now fix

ε0 :=
Cr

2

(

(log(M))(r−1)/2‖χ‖C

)− 1
r−2

so that t0 ≥ 1 for every ‖u‖h1/2 = ε < ε0. Since Φt
χ(u) is the flow associated with an Hamiltonian

vector field, it is symplectic and invertible and we are left with the proof of (42) and (44). For
the former, we write as above, for −1 ≤ t ≤ 1,

‖Φt
χ(u)− u‖h1/2 ≤

∣

∣

∣

∫ t

0
‖(∇χ) ◦ Φs

χ(u)‖h1/2ds
∣

∣

∣

≤ C−(r−2)
r ‖χ‖C (log(M))(r−1)/2‖u‖r−1

h1/2 ≤
(‖u‖h1/2

ε0

)r−2

‖u‖h1/2 .

It now remains to prove (44). Up to decreasing the value of ε0 a little bit (by a factor depending
only on r), we can proceed as above by appealing (37) and (39) and by writing

dΦt
χ(u) = Id +

∫ t

0
d∇χ(Φs

χ(u)) ◦ dΦs
χ(u)ds.

�

5. Birkhoff normal form

In this section, we aim at describing a procedure that allows to simplify, close to u = 0,
Hamiltonians on C

TM that are of the form

H(u) :=
1

2

∑

k∈TM
ωk|uk|2 + P (u),
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where P ∈ H
p
M . In other words, we will write a Birkhoff normal form for H which means that,

up to conjugation by a symplectomorphism and up to a small remainder term, P can be replaced
by a term Poisson commuting with the super actions composing the leading part of H:

∀ℓ ≥ 0, Jℓ(u) =
ℓ
∑

m=−ℓ

|u(ℓ,m)|2.

This will be used in Section 6 to put (KG) into a Birkhoff normal form and to prove or main
theorem. From now on, we fix an integer p ≥ 3 (the degree of the nonlinearity of (KG)) and µ > 0

(the mass of (KG)) making the frequencies (ω(ℓ,m) =
√

ℓ(ℓ+ 1) + µ) non-resonant (in the sense
of Proposition 3.1). Our precise Birkhoff normal form statement reads as follows:

Theorem 5.1. Let a > 0, Cp > 0 and r ≥ 1. Then, there exist β > 1 (independent of the choice
of µ) and C > 1 such that the following holds.

For every M ≥ 2, N ≥ 1 and every polynomial Hamiltonian of the form H : CTM → R

H = Z2 + P (p) where Z2(u) =
1

2

∑

k∈TM
ωk|uk|2, P (p) ∈ H

p
M , ‖P (p)‖H ≤ CpB

a

with B = max(logM,N), one can find ε2 ≥ (CBβ)−1 and two smooth symplectic maps τ (0) and

τ (1) making the following diagram to commute

(45) Bh1/2(CTM )(0, ε2)
τ (0)

//

id
C
TM

22Bh1/2(CTM )(0, 2 ε2)
τ (1)

// C
TM

and close to the identity

(46) ∀ν ∈ {0, 1}, ‖u‖h1/2 < 2νε2 ⇒ ‖τ (ν)(u)− u‖h1/2 ≤
(‖u‖h1/2

2νε2

)p−2

‖u‖h1/2

such that, on Bh1/2(CTM )(0, 2ε2), H ◦ τ (1) admits the decomposition

(47) H ◦ τ (1) = Z2 +Q≤N
res +R

where Q≤N
res : CTM → R is a polynomial of degree r + p− 1 commuting with the low super-actions

(48) ∀ℓ ∈ N, 〈ℓ〉 ≤ N ⇒ {Jℓ, Q≤N
res } = 0.

Moreover, the remainder term R is a smooth function on Bh1/2(CTM )(0, 2ε2) satisfying

‖∇R(u)‖h−1/2 ≤ CBβ‖u‖r+p−1

h1/2 ,

and, for all ν ∈ {0, 1}, we have the bounds

(49) ‖dτ (ν)(u)‖
L (h1/2) ≤ 2r and ‖dτ (ν)(u)‖

L (h−1/2) ≤ 2r.

Proof. The proof is similar to the one of Theorem 4.1 of [BG21]. Nevertheless, here, we have a

weaker control of the remainder term (h−1/2 instead of h1/2 in [BG21]) and the vector field and
Poisson bracket estimates of Section 4 generate new constants we have to track. As usual, we
proceed by induction. More precisely, we choose n ∈ Jp, r + pK as induction index and assume
that Theorem 5.1 holds if
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• we replace (47) by

(50) H ◦ τ (1) = Z2 +

r+p−1
∑

j=p

Q(j) +R where Q(j) ∈ H
j
M satisfies ‖Q(j)‖H ≤ CBβ.

• we replace (48) by

(51) ∀ℓ ∈ N,∀j ∈ Jp, n− 1K, 〈ℓ〉 ≤ N ⇒ {Jℓ, Q(j)} = 0.

• we replace (49) by

(52) ‖dτ (ν)(u)‖
L (h1/2) ≤ 2n−p and ‖dτ (ν)(u)‖

L (h−1/2) ≤ 2n−p.

Even if we do not write it explicitely, we note that each polynomial Q(j) depends implicitely on n
as well as R, ε2 and τ (ν). Moreover, we suppose that R verifies the quantitative estimates of the
theorem and that each Q(j) enjoys the same norm estimate as P (p) up to increasing the value of
the constant Cp (in a way that depends only on (n, µ, a)) and up to increasing the value of a and
β (in a way that depends only on (n, a)). If n = p, there is nothing to do: it is in fact enough to
choose τ (0) = τ (1) = id

CTM , R = 0, Q(p) = P (p), Q(j) = 0 for j > p and β = a. For the sake of
clarity, we will denote with a symbol ♯ the objects we are going to introduce at the step n+1 (e.g.

τ
(0)
♯ , β♯...). Before entering the details of the proof, recall that one goes formally from step n to

n+ 1 by conjugating the normal form (50) by the time one map of the Hamiltonian flow of some

well chosen function χ. The function χ is chosen in such a way that the terms of Q(n) that do not
commute with the expected super actions are cancelled out by solving a certain cohomological
equation.

⋆ Decomposition of Q(n). We split the polynomial Q(n) as Q = L+U , the Hamiltonians L,U ∈ H n
M

being defined by

Lσ
k =

{

(Q(n))σ
k

if κ(σ,k) ≤ N
0 otherwise

and Uσ
k =

{

0 if κ(σ,k) ≤ N

(Q(n))σ
k

otherwise

where κ(σ,k) is defined in (24) and denotes the smallest effective index of the small divisor Ω(σ,k)
defined in (23). Observe that, since these Hamiltonians are extracted from Q(n), they enjoy the
same norm estimates.

⋆ U commutes with the low super-actions. Indeed, a direct computation shows that if 〈ℓ〉 ≤ N , we
have

{Jℓ, U} = 2 i
∑

σ∈{−1,1}n

∑

k∈T n
M

(σ11ωk1
=ω(ℓ,0)

+ · · ·+ σn1ωkn=ω(ℓ,0)
)Uσ

ku
σ1
k1

. . . uσn
kn

= 2 i
∑

σ∈{−1,1}n

∑

k∈T n
M

(

∑

j:∃m, kj=(ℓ,m)

σj
)

Uσ
ku

σ1
k1

. . . uσn
kn
.

However, since 〈ℓ〉 ≤ N , by definition of U and κ (see (24)), either
∑

j:∃m, kj=(ℓ,m) σj vanishes or

Uσ
k

vanishes. Consequently U and Jℓ commute : {Jℓ, U}(u) = 0. We emphasize that the definition
of κ as the smallest effective index is crucial here. Without it, we would need some smoothness
assumption on u to control these commutators. Due to that, we will have much more terms to
solve in the upcoming cohomological equation but we will be able to handle these extra factors
thanks to the control the small divisors by κ given by Proposition 3.1.
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⋆ The cohomological equation. The mass µ has been fixed to make the frequencies strongly non-
resonant (according to Proposition 3.1). Therefore, there exist γ ∈ (0, 1) (depending only on
(n, µ)) and α > 1 (depending only on n) such that

(53) κ(σ,k) ≤ N ⇒ Ω(σ,k) ≥ γN−α =: δ.

Therefore we set χ ∈ H n
M the Hamiltonian defined by

χσ
k :=

Lσ
k

iΩ(σ,k)
if κ(σ,k) ≤ N and χσ

k = 0 otherwise.

A direct computation shows that χ is a solution of the cohomological equation

(54) {χ,Z2}+ L = 0.

Let us now verify that we have a good control of the C -norm of χ. First, the bounds

∀y ≥ 0, |〈y〉 − y| ≤ 1 and |
√

y(y + 1) + µ− y| ≤ µ+ 1

and the decomposition

〈
n
∑

j=1

σjℓj〉 =
(

〈
n
∑

j=1

σjℓj〉 −
n
∑

j=1

σjℓj

)

+

n
∑

j=1

σj(ℓj − ωkj) + Ω(σ,k),

where kj = (ℓj,mj) for all j ∈ J1, nK, provide the estimate

〈σ1ℓ1 + · · ·+ σnℓn〉 ≤ (n+ 1)(µ + 1) + |Ω(σ,k)|.
Therefore, as a consequence of (53) (since δ < 1) we have the bound

|χσ
k| ≤ (n+ 2)(µ + 1)δ−1 |Lσ

k
|

〈σ1ℓ1 + · · ·+ σnℓn〉
and so

‖χ‖C .n,µ δ−1‖L‖H .n,µ δ−1‖Q(n)‖H .n,µ δ−1CBβ.

⋆ The new variables. As usual, we have to compose the change of variables τ at step n with the
Hamiltonian flow of χ (see (58) below). Since they are only defined locally, we have to pay
attention to their domains of definition. Eventhough the overall strategy is clear, it is a little bit
tedious to check.

Since ‖χ‖C .n δ−1CBβ and γN−α =: δ, applying Proposition 4.8, we get a constant K > 0
depending only on (n,C, µ), an exponent b > 0 depending only on (n, β) such that setting ε1 =
(KBb)−1/(n−2), χ generates a smooth map

Φχ :

{

[−1, 1]×Bh1/2(CTM )(0, ε1) → C
TM

(t, u) 7→ Φt
χ(u)

solving the equation −i∂tΦχ = (∇χ)◦Φχ, and such that for all t ∈ [−1, 1], Φt
χ is symplectic, close

to the identity

(55) ‖u‖h1/2 < ε1 ⇒ ‖Φt
χu− u‖h1/2 ≤

(‖u‖h1/2

ε1

)n−2

‖u‖h1/2 ,

invertible

(56) ‖Φ−t
χ (u)‖h1/2 < ε1 ⇒ Φt

χ ◦Φ−t
χ (u) = u.

Moreover, the map u 7→ dΦt
χ(u) is continuous and we have the estimates

(57) ‖u‖h1/2 < ε1 ⇒ ‖dΦt
χ(u)‖L (h1/2) ≤ 2 and ‖dΦt

χ(u)‖L (h−1/2) ≤ 2.
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As usual, we aim at defining, for a proper choice of ε♯2,

(58) τ
(1)
♯ := τ (1) ◦Φ1

χ on Bh1/2(0, 2ε
♯
2) and τ

(0)
♯ := Φ−1

χ ◦ τ (0) on Bh1/2(0, ε
♯
2).

To ensure that such a definition makes sense, we have to choose ε♯2 in such a way that

(59) 2ε♯2 ≤ ε1 and (‖u‖h1/2 < 2ε♯2 ⇒ ‖Φ1
χ(u)‖h1/2 < 2ε2).

(60) ε♯2 ≤ ε2 and (‖u‖h1/2 < ε♯2 ⇒ ‖τ (0)(u)‖h1/2 < ε1).

Let us analyze these conditions. First, we focus on (59). Provided that ‖u‖h1/2 < 2ε♯2 ≤ ε1, since

Φ1
χ is close to the identity (see (55)), we have Φ1

χ(u) ≤ 2‖u‖h1/2 < 4ε♯2. Therefore, to get (59) it

is enough to have 2ε♯2 ≤ min(ε2, ε1). Similarly, since τ (0) is close to the identity (see (46)), to get

(60) it is enough to ensure that 2ε♯2 ≤ ε1 and ε♯2 ≤ ε2.

Before fixing ε♯2, let us only assume that 2ε♯2 ≤ min(ε2, ε1) and investigate which conditions ε♯2
has to satisfy to ensure that τ

(1)
♯ and τ

(0)
♯ enjoy the properties described in Theorem 5.1 (close to

the identity, invertible...).

First, let us note that τ
(1)
♯ and τ

(0)
♯ are obviously symplectic and their differentials enjoy the

bounds (52) thanks to (57) (with n → n + 1). Hence, it remains to prove that τ
(0)
♯ and τ

(1)
♯ are

close to the identity in the sense of (46). To that aim, if ‖u‖h1/2 < ε♯2, since both Φ−1
χ and τ (0)

are close to the identity, then we have

‖τ (0)♯ (u)− u‖h1/2 ≤
(

‖τ (0)(u)‖h1/2

ε1

)n−2

‖τ (0)(u)‖h1/2 +

(‖u‖h1/2

ε2

)p−2

‖u‖h1/2

≤
(

2‖u‖h1/2

ε1

)n−2

2‖u‖h1/2 +

(‖u‖h1/2

ε2

)p−2

‖u‖h1/2 .

Therefore, since n ≥ p and 2‖u‖h1/2 < 2ε♯2 ≤ ε1, we deduce that

‖τ (0)♯ (u)− u‖h1/2 ≤
(

‖u‖h1/2

ε♯2

)p−2

‖u‖h1/2

[

2(ε♯2)
p−2

εp−2
1

+
(ε♯2)

p−2

εp−2
2

]

.

As a consequence, since p ≥ 3, if 3ε♯2 ≤ min(ε2, ε1), we deduce that both (ε♯2)
p−2/εp−2

1 and

(ε♯2)
p−2/εp−2

2 are bound by 1/3 and so that τ
(0)
♯ is close to the identity. It can be proven, with a

similar decomposition, that if 6ε♯2 ≤ min(ε2, ε1) then τ
(1)
♯ is also close to the identity.

Finally, we also note that if τ
(0)
♯ is close to the identity then it takes values in Bh1/2(0, 2ε

♯
2).

Thus, as Φ1
χ is invertible (see (56)), the diagram (45) associated with τ

(0)
♯ and τ

(1)
♯ commutes.

To conclude this paragraph, we fix ε♯2 as large as possible to get all the properties of τ
(0)
♯ and

τ
(1)
♯ , i.e.

ε♯2 =
1

6
min(ε2, ε1).

We note that, therefore, we have ε♯2 ≥ 1
6 min((KBb)−1/(n−2), (CBβ))−1) ≥ (C♯B

β♯)−1 provided

that C♯ ≥ 6max(K1/(n−2), C) and β♯ ≥ max(b/(n − 2), β) (these constant will be determined at
the end of the proof).
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⋆ The new Hamiltonian. We aim at describing the Taylor expansion of H ◦τ (1)♯ . Since t 7→ Φt
χ is a

smooth function solving the equation −i∂tΦχ = (∇χ) ◦ Φχ, realizing a Taylor expansion in t = 0

(on Bh1/2(0, 2ε
♯
2)) gives

H ◦ τ (1)♯ = H ◦ τ (1) ◦ Φ1
χ = Z2 ◦ Φ1

χ +

r+p−1
∑

j=p

Q(j) ◦Φ1
χ +R ◦ Φ1

χ

= Z2 +

r+p−1
∑

j=p

Q(j) + {χ,Z2}+
mn
∑

h=1

1

(h+ 1)!
adh+1

χ Z2 +

r+p−1
∑

j=p

mj
∑

h=1

1

h!
adhχQ

(j) +R ◦Φ1
χ

+

∫ 1

0

( (1− t)mn+1

(mn + 1)!
(admn+2

χ Z2) ◦Φt
χ +

r+p−1
∑

j=p

(1− t)mj

mj !
(ad

mj+1
χ Q(j)) ◦ Φt

χ

)

dt

where mj denotes the largest integer such that j +mj(n− 2) < r + p and adχ := {χ, ·}.
In order to pool these terms by packets, we recall that by construction {χ,Z2} = −L is of order

n, that χ ∈ H n
M is of degree n and that the Poisson bracket of two homogeneous polynomials of

degree r1 and r2 is of degree r1 + r2 − 2. Therefore we set

Q
(j)
♯ = Q(j) if j < n, Q

(n)
♯ = Q(n) + {χ,Z2} = Q(n) − L = U,

Q
(j)
♯ =

∑

j⋆+h(n−2)=j

1

h!
adhχQ

(j⋆) −
∑

n+h(n−2)=j

1

(h+ 1)!
adhχL if j > n,

R♯ = R ◦Φ1
χ −

∫ 1

0

( (1− t)mn+1

(mn + 1)!
(admn+1

χ L) ◦ Φt
χ +

r+p−1
∑

j=p

(1− t)mj

mj!
(ad

mj+1
χ Q(j)) ◦ Φt

χ

)

dt,

where h and j⋆ are the indices on which the sums hold in the definition of Q
(j)
♯ .

If j ≤ n, Q
(j)
♯ ∈ H

j
M commutes with the low super-actions4 and we have

‖Q(j)
♯ ‖H ≤ ‖Q(j)‖H ≤ CBβ.

If j > n, we have Q
(j)
♯ ∈ H

j
M and we apply Proposition 4.4 to estimate its norm. Indeed if

j⋆ + h(n − 2) = j, we can use our estimate on ‖χ‖C to derive that

‖adhχQ(j⋆)‖H .r (logM)h‖χ‖hC ‖Q(j⋆)‖H .r (γ
−1Nα logM)h(CBβ)h+1

.r γ
−hCh+1Bh(α+1)+(h+1)β

Similarly, L enjoying the same bound as Q(n), if n + h(n − 2) = j, we have, ‖adhχL‖H .r

γ−hCh+1Bh(α+1)+(h+1)β . As a consequence, since h ≤ r + p, provided that C♯ &r γ−r−pCr+p+1

and β♯ ≥ (r + p)(α + 1) + (r + p+ 1)β, we have ‖Q(j)
♯ ‖H ≤ C♯B

β♯ for j > n.

⋆ Control of the remainder term. Now we are left with controlling ∇R♯ in h−1/2. We fix u ∈ C
TM

such that ‖u‖h1/2 < 2ε♯2. First we focus on R ◦ Φ1
χ(u). By composition, we have

∇(R ◦Φ1
χ)(u) = (dΦ1

χ(u))
∗(∇R) ◦Φ1

χ(u).

4Note that U has been designed to get this property.
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where (dΦ1
χ(u))

∗ ∈ L (CTM ) denotes the adjoint of dΦ1
χ(u). Moreover, by duality, we have

‖(dΦ1
χ(u))

∗‖
L (h1/2) = ‖dΦ1

χ(u)‖L (h−1/2) ≤ 2 . Therefore, since ‖∇R(u)‖h−1/2 ≤ CBβ‖u‖r+p−1

h1/2

and ‖Φ1
χ(u)‖h1/2 ≤ 2‖u‖h1/2 , we have

‖∇(R ◦Φ1
χ)(u)‖h−1/2 ≤ 2r+pCBβ‖u‖r+p−1

h1/2 .

Now, we focus on (ad
mj+1
χ Q(j)) ◦ Φt

χ(u) where p ≤ j ≤ r + p − 1 and t ∈ [0, 1]. Arguing as
above and using Proposition 4.4 to estimate the norm of the Poisson brackets and Proposition 4.5
to estimate the norm of the gradient, we have

‖∇((ad
mj+1
χ Q(j)) ◦ Φt

χ)(u)‖h−1/2 ≤ 2‖(∇(ad
mj+1
χ Q(j))) ◦ Φt

χ(u)‖h−1/2

.r,µ (δ−1 logM)mj+1(CBβ)mj+2(logM)rj/2‖Φt
χ(u)‖

rj−1

h1/2 .

where rj = j + (mj + 1)(n − 2) ∈ Jr + p, 2(r + p)K (by definition of mj). Thus, provided that

C♯ &r,µ γ−r−p−1Cr+p+2 and β♯ ≥ (α+ 1)(r + p+ 1) + β(r + p+ 2) + r + p

we have ‖∇((ad
mj+1
χ Q(j)) ◦ Φt

χ)(u)‖h−1/2 ≤ C♯B
β♯‖u‖r+p−1

h1/2 . As above, the argument works as

well for the term involving L as it enjoys the same norm estimate as Q(n).
Hence, if moreover, β♯ ≥ β and C♯ &r C (to control R ◦ Φ1

χ(u)), we have

‖∇R♯(u)‖h−1/2 ≤ C♯B
β♯‖u‖r+p−1

h1/2 .

⋆ Choice of C♯ and β♯. To conclude our induction step (and thus the proof), we just have to pick

the smallest constants enjoying all the constraints (and to note that they do not depend on B)

β♯ = (α+ 1)(r + p+ 1) + β(r + p+ 2) + r + p and C♯ ≃r max(γ−r+p−1Cr+p+2,K1/(n−2)).

�

6. Proofs of the main results

This final section is devoted to the proof of Theorem 1.1 and its Corollary 1.2.

6.1. On the global well-posedness of (KG). In dimension 2, the Sobolev norm H1 controls
all the Lebesgue norms Lq, 2 ≤ q < ∞. Therefore, a standard fixed point argument (which does
not require any kind of Strichartz estimate) provides the local well-posedness of the nonlinear
Klein-Gordon equation (KG) on the sphere S

2 in the energy space H1 × L2 (see e.g. Thm 6.2.2
page 83 of [CH98]).

This nonlinear equation is Hamiltonian because it writes formally

(61) ∂t

(

Φ
∂tΦ

)

=

(

0 1
−1 0

)

∇H(Φ, ∂tΦ)

where the Hamiltonian H is given by (5). Therefore, H is a constant of the motion of (KG) (see
e.g. Prop 6.2.3 page 83 of [CH98]). It is especially useful since, as stated in the following lemma,
it is uniformly elliptic in a neighborhood of the origin:

Lemma 6.1. For all g ∈ L∞(S2;R) and all µ > 0, there exist C > 1 and ε0 > 0 such that for all
(Φ,Ψ) ∈ H1 × L2(S2;R), provided that ‖Φ‖H1 + ‖Ψ‖L2 ≤ ε0, we have

C−1(‖Φ‖H1 + ‖Ψ‖L2)2 ≤ H(Φ,Ψ) ≤ C(‖Φ‖H1 + ‖Ψ‖L2)2.

Proof. It follows directly from the Sobolev embedding H1 →֒ Lp and from the fact that p ≥ 3. �
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As a consequence, as stated in the following proposition we get the global well-posedness of
(KG) in a neighborhood of the origin in H1 × L2 (see e.g. Prop 6.3.3 page 84 of [CH98]).

Proposition 6.2. For all µ > 0 and all g ∈ L∞, there exist ε1 > 0 and K > 1 such that, as soon
as ε := ‖Φ(0)‖H1 + ‖Φ̇(0)‖L2 ≤ ε1, there exists a unique Φ ∈ C0(R;H1)∩C1(R;L2)∩C2(R;H−1)
solution to (KG). Moreover, it enjoys the bound

∀t ∈ R, ‖Φ(t)‖H1 + ‖∂tΦ(t)‖L2 ≤ Kε.

6.2. Proof of Theorem 1.1. One more time, we fix the mass µ > 0 (in a set of full measure) to

make the frequencies (ω(ℓ,m) =
√

ℓ(ℓ+ 1) + µ) non-resonant in the sense of Proposition 3.1. The
strategy is the following. Using the above a priori estimates, we prove that the high super actions

are under control as long as N = 〈ℓ〉 & ε−
p−2
αr+1 for an arbitrary αr > 1. Thus, we only have to deal

with the low super-actions that we handle using the Birkhoff normal form of Theorem 5.1. This
requires to make a truncation of the frequency up to a certain level M in order to reduce to the
finite dimensional situation of this theorem. In order to ensure that all the remainder terms are
small in this reduction to finite dimension, we need to take M of order ε−r. Then the conclusion
follows by combining our a priori estimates on the solution with the normal form of Theorem 5.1
and by taking αr larger than the exponent β appearing in the remainder terms of that statement.

⊲ (KG) as a Schrödinger equation. We consider (Φ(0), Φ̇(0)) ∈ H1×L2, satisfying ε := ‖Φ(0)‖H1+

‖Φ̇(0)‖L2 < ε0 ≤ ε1 where ε0 will be determined at the end of the proof and ε1 is given by
Proposition 6.2. Thanks to this proposition, one obtains a global solution Φ to (KG). Then, in
order to diagonalize the linear part of (KG), we set (as usual)

u := ΛΦ + iΛ−1∂tΦ where Λ := (µ−∆)1/4.

Indeed, u belongs to C0(R;H1/2) ∩ C1(R;H−1/2) and solves the equation

(62) i∂tu = Λ2u− Λ−1
(

g [Λ−1ℜu]p−1
)

.

It is relevant to note that the harmonic energies Eℓ (defined by (3)), that we aim at controlling in
Theorem 1.1, satisfy

∀ℓ ∈ N, Eℓ(Φ(t)) = ‖Πℓu(t)‖2L2 := Jℓ(u(t))

where Πℓ is the orthogonal projection on the eigenspace Eℓ as defined in (2). Moreover, as a
consequence of Proposition 6.2, there exists a constant K ′ > 1 depending only on µ such that

(63) ∀t ∈ R, ‖u(t)‖H1/2 ≤ K ′ε.

⊲ The N -truncation. The control of the high super-actions is a direct consequence of the a priori
bound (63). Indeed, applying the triangular inequality, we have

|Jℓ(u(t))− Jℓ(u(0))| ≤ Jℓ(u(t)) + Jℓ(u(0)) ≤ 2〈ℓ〉−1‖u‖2
L∞
t H

1/2
x

≤ 2〈ℓ〉−1(K ′)2ε2.

Being given αr > 1 (depending only on r) that will be optimized at the end of the proof, we set

N (max) := ε−
p−2
αr+1 .

As a consequence, for all t ∈ R, we have (for all t ∈ R)

(64) 〈ℓ〉 ≥ N (max) ⇒ |Jℓ(u(t))− Jℓ(u(0))| .r,µ 〈ℓ〉αrεp.

Hence, from now on, we will only focus on the variations of the low super-actions. More precisely,
we fix ℓ⋆ ∈ N and N ∈ R such that

N := 〈ℓ⋆〉 < N (max)
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and we aim at estimating the variations of Jℓ⋆(u).

⊲ The M -truncation. In order to reduce ourselves to the finite dimensional situation of our
Birkhoff normal form Theorem 5.1, we are going to prove that the high enough modes (larger than

M ≫ 1) do not play any role in the dynamics for very long times (in H−1/2). Let M ≥ 2N (max)

be a constant that will be optimized later with respect to ε and Π≤M be the orthogonal projection
on
⊕

ℓ≤M Eℓ, i.e.

Π≤M :=
∑

ℓ≤M

Πℓ and Π>M := IdL2 −Π≤M .

We set

F (>M)(t) := Π≤M [N (Π≤Mu(t))−N (u(t))] where N (u) := Λ−1
(

g [Λ−1ℜu]p−1
)

.

Since u solves the equation (62), u(≤M) := Π≤Mu(t) solves the non-autonomous equation

(65) i∂tu
(≤M) = Λ2u(≤M) −Π≤MN (u(≤M)) + F (>M)(t).

We note that, since M ≥ 2N (max), we have M > ℓ⋆ and so

(66) Jℓ⋆(u
(≤M)) = Jℓ⋆(u).

We aim at proving that the non-autonomous part of (65) (i.e. F (>M)(t)) is negligible provided
that M is large enough. Indeed, as a consequence of the Sobolev embeddings H1 →֒ L6(p−2) →֒
L3/2 →֒ H−1, by Hölder and the mean value inequality, we have (uniformly with respect to t)

‖F (>M)‖H−1/2 .µ ‖gΦp−1 − g(Π≤MΦ)p−1‖H−1

.µ,g ‖Φp−1 − (Π≤MΦ)p−1‖L3/2

.µ,g ‖(Π>MΦ)(|Π≤MΦ|p−2 + |Φ|p−2)‖L3/2

.µ,g ‖Π>MΦ‖L2(‖(Π≤MΦ)p−2‖L6 + ‖Φp−2‖L6)

.µ,g M
−1‖Φ‖p−1

H1 .µ,g M
−1εp−1.

Therefore, from now, we assume that M ≥ ε−r, and we get

∀t ∈ R, ‖F (>M)(t)‖H−1/2 .µ εr+p−1.

⊲ Discretization. Thanks to Theorem 2.1, we get a basis (ek)k∈T∞ of L2 which diagonalizes the
Laplace–Beltrami operator ∆ and enjoys nice algebraic properties. In particular, thanks to this
basis, we identify

⊕

ℓ≤M Eℓ with R
TM (and the usual Sobolev norms with the discrete ones).

We use this basis to rewrite the autonomous part of (65) as a Hamiltonian system :

(67) i∂tu
(≤M) = ∇H(u(≤M)) + F (>M)(t).

where

H = Z2 + P (p) with Z2(u) =
1

2

∑

k∈TM
ωk|uk|2

and P (p) ∈ H
p
M is defined, for all k = (k1, . . . , kp) ∈ T p

M and σ ∈ {−1, 1}p by

(P (p))σk = − 1

p2p





p
∏

j=1

1

(ℓj(ℓj + 1) + µ)1/4





∫

S2

ek1(x) · · · ekp(x)g(x)dvolS2(x).
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Thanks to Theorem 2.1, the basis (ek)k∈T∞ has been chosen such that

(68) ‖P (p)‖H . (log(M))p.

Note that the choice of the orthonormal basis of Theorem 2.1 is crucial here. With the standard
basis of spherical harmonics we would not get such a good control on the nonlinearity.

⊲ Change of variables. Now, we apply Theorem 5.1 (i.e. our Birkhoff normal form result) to

simplify the Hamiltonian part of (67). More precisely, we get some transformations τ (0), τ (1),
some Hamiltonians Q≤N

res and R, some constants C, β and ε2 such that the statement of Theorem
5.1 holds. We recall that B is defined by B = max(N, log(M)).

We will optimize the constants in such a way that we have

K ′ε < (CBβ)−1.

As a consequence, we have

∀t ∈ R, ‖u(≤M)(t)‖h1/2 ≤ K ′ε < (CBβ)−1 ≤ ε2.

Therefore, it makes sense to define

v := τ (0) ◦ u(≤M).

Moreover since the diagram (45) commutes we have

u(≤M) = τ (1) ◦ v.
As a consequence, since τ (0) is symplectic and (dτ (0)(u(≤M)))−1 = dτ (1)(v), we have

(69) i∂tv(t) = ∇(Z2 +Q≤N
res )(v(t)) +W (t)

where W is the new remainder term defined by

W (t) := ∇R(v(t)) + dτ (0)(u(≤M)(t))(F (>M)(t)).

Let us estimate W . On the one hand, since τ (0) is close to the identity in the sense of Theorem 5.1,
we have

(70) ‖v(t)‖h1/2 ≤ ‖u(≤M)(t)‖h1/2 + ‖v(t) − u(≤M)(t)‖h1/2 ≤ 2‖u(≤M)(t)‖h1/2 ≤ 2K ′ε .µ ε.

Hence, thanks to Theorem 5.1, we get ‖∇R(v(t))‖h−1/2 .r,µ Bβεr+p−1. On the other hand, since

dτ (0)(u(≤M)(t)) is controlled in L (h−1/2) (by 2r), we deduce that

‖dτ (0)(u(≤M)(t))(F (>M)(t))‖h−1/2 .r,µ εr+p−1.

Therefore, we have

(71) ‖W (t)‖h−1/2 .r,µ Bβεr+p−1.

Finally, let us note that, since τ (0) is close to the identity in the sense of Theorem 5.1 and
(CBβ)−1 ≤ ε2, we have

(72) ‖u(≤M)(t)− v(t)‖h1/2 .r,µ εp−1Bβ(p−2).

⊲ Control of the low super-actions. As a consequence of (66), (72) and (70), we have

|Jℓ⋆(u(t)) − Jℓ⋆(v(t))| ≤ ‖u(≤M)(t)− v(t)‖ℓ2(‖u(≤M)(t)‖ℓ2 + ‖v(t)‖ℓ2) .r,µ εpBβ(p−2).

Hence, by the triangular inequality, we have

|Jℓ⋆(u(t)) − Jℓ⋆(u(0))| .r |Jℓ⋆(v(t)) − Jℓ⋆(v(0))| + εpBβ(p−2).
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However, since v solves (69), we have

∂tJℓ⋆(v(t)) = {Jℓ⋆ , Z2 +Q≤N
res }(v(t)) + (i∇Jℓ⋆(v(t)),W (t))ℓ2 .

By construction, since 〈ℓ⋆〉 = N , Z2 + Q≤N
res and Jℓ⋆ commute, i.e. {Jℓ⋆ , Z2 + Q≤N

res } = 0. As a
consequence, using the estimate (71) on W , we have

|∂tJℓ⋆(v(t))| ≤ |(i∇Jℓ⋆(v(t)),W (t))ℓ2 | ≤ ‖∇Jℓ⋆(v(t))‖h1/2‖W (t)‖h−1/2 ≤ 2‖v(t)‖h1/2‖W (t)‖h−1/2

.r,µ Bβεr+p.

Consequently, while |t| ≤ ε−r, we have

(73) |Jℓ⋆(u(t)) − Jℓ⋆(u(0))| .r,µ εpBβ(p−2) .r,µ,ν 〈ℓ⋆〉αrεp−ν

provided that Bβ(p−2) .r,µ,ν Nαrε−ν where ν > 0.

⊲ Conclusion. As we wanted, in (64) and (73), we have controlled the variations of the super-
actions. Nevertheless, to get these results we have done some assumptions on our parameters.
Hence, to conclude, we have to check their compatibility and optimize them.

More precisely, we have to prove that their exists αr > 1 and ε0 ≤ ε1 such that for all ε < ε0

and all N < N (max) = ε−
p−2
αr+1 , there exists M ≥ 2 satisfying

(i) Bβ(p−2) .r,µ,ν Nαrε−ν (ii) K ′ε < (CBβ)−1

(iii) M ≥ ε−r (iv) M ≥ 2N (max)

where B = max(N, log(M)). First, we set M = ε−r (so (iii) is satisfied). Then, we set αr =
β(p − 2) and we note that the estimate (i) holds. Finally, since p ≤ r, we note that (ii) and (iv)
are clearly satisfied provided that ε0 is small enough.

6.3. Proof of Corollary 1.2. For all t ∈ R, let w(t) ∈ H1/2(S2;C) be defined, for all ℓ ∈ N, by

Πℓw(t) =

√

Jℓ(u(0))

Jℓ(u(t))
Πℓu(t) if Jℓ(u(t)) 6= 0 and Πℓw(t) = Πℓu(0) else.

Indeed, recalling that Jℓ = ‖Πℓ · ‖2L2 , this function satisfies ‖w(t)‖H1/2 = ‖u(0)‖H1/2 and

∀ℓ ∈ N, Jℓ(w(t)) = Jℓ(u(0)) and
√

Jℓ(w(t) − u(t)) = |
√

Jℓ(u(t)) −
√

Jℓ(w(t))|.
As a consequence, applying Theorem 1.1 (with ν = 1/2), while |t| < ε−r, for all ℓ ∈ N, we have

Jℓ(u(t)− w(t)) ≤ |Jℓ(u(t)) − Jℓ(w(t))| = |Jℓ(u(t))− Jℓ(u(0))| .µ,r 〈ℓ〉αrεp−1/2.

Therefore, we have

‖u(t)− w(t)‖H−αr/2 .µ,r ε
(2p−1)/4.

Consequently, since s < 1/2, setting θ = max(1, 1−2s
1+αr

), by interpolation and using Proposition 6.2,
we get

‖u(t)− w(t)‖Hs .r,s ‖u(t)− w(t)‖1−θ
H1/2‖u(t)− w(t)‖θ

H−αr/2 .r,s,µ ε1+δ

where δ := θ((2p− 1)/4− 1) > 0 (because p ≥ 3). Finally, to see that there exist some Hermitian
operators Hℓ(t) : Eℓ ⊗ C → Eℓ ⊗C such that

∀ℓ ∈ N, Πℓw(t) = eiHℓ(t)Πℓu(0).

it is enough to note that the unitary group of Eℓ ⊗ C acts transitively on the spheres and that
every unitary transform is the exponential of a skew-Hermitian operators (indeed, since Jℓ(w(t)) =
Jℓ(u(0)), Πℓw(t) and Πℓu(0) belong to a same sphere).
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