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Introduction

Due to the piezomagnetic/piezoelectric/magnetoelectric effect, thin plates made of magneto-electro-elastic (MEE) materials are able to realize the mutual conversion between magnetic, electric and mechanical energies. Such characteristics have found significant applications in sensors, resonators, energy harvesters, semiconductors and other systems [START_REF] Ghayesh | Size-dependent performance of microgyroscopes[END_REF][START_REF] Salas | A topology optimization formulation for transient design of multi-entry laminated piezocomposite energy harvesting devices coupled with electrical circuit[END_REF][START_REF] Devoe | Piezoelectric thin film micromechanical beam resonators[END_REF][START_REF] Liang | Transient bending vibration of a piezoelectric semiconductor nanofiber under a suddenly applied shear force[END_REF][START_REF] Hu | Coupled analysis for the harvesting structure and the modulating circuit in a piezoelectric bimorph energy harvester[END_REF][START_REF] Yang | Electronic band energy of a bent ZnO piezoelectric semiconductor nanowire[END_REF]. It is observed that these thin plates exhibit microstructure-dependent size effects at the micron and nanometer scales [START_REF] Li | Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory[END_REF][START_REF] Lim | Size-dependent nonlinear response of thin elastic films with nano-scale thickness[END_REF][START_REF] Yin | Vibration analysis of microscale plates based on modified couple stress theory[END_REF].

Owing to the lack of any size-dependent material parameter [START_REF] Lam | Experiments and theory in strain gradient elasticity[END_REF], classical elasticity theories cannot effectively describe such size effects. Hence, higher-order elasticity theories that contain additional parameters should be introduced to develop models for thin MEE plates considering microstructure-dependent size effects.

Several studies for MEE plates using higher-order elasticity theories have been completed. For instance, a non-local constitutive relation proposed by Eringen [START_REF] Eringen | On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[END_REF][START_REF] Eringen | Nonlocal continuum field theories[END_REF] has been used to develop a model for the MEE Mindlin plate (i.e., Li et al. [START_REF] Li | Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory[END_REF]).

Vinyas et al. [START_REF] Vinyas | Numerical analysis of the vibration response of skew magneto-electro-elastic plates based on the higher-order shear deformation theory[END_REF] addressed a free vibration problem of skew MEE plates by employing Reddy's third-order shear deformation theory (e.g. [START_REF] Reddy | Mechanics of laminated composite plates and shells: theory and analysis[END_REF]). Zheng et al. [START_REF] Zheng | Nonlinear bending analysis of magnetoelectroelastic rectangular plates using higher order shear deformation theory[END_REF] also applied Reddy's high-order shear deformation theory and combined von Karman's nonlinear geometric equation to analyze the nonlinear bending of MEE plates. Wang et al. [START_REF] Wang | Two-dimensional linear elasticity theory of magneto-electro-elastic plates considering surface and nonlocal effects for nanoscale device applications[END_REF] established a model for MEE plates considering both nonlocal and surface effects. Ebrahimi and Dabbagh [START_REF] Ebrahimi | On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory[END_REF] developed a model for MEE nanoplates via a nonlocal strain gradient theory to capture size effects. Qu et al. [START_REF] Qu | A microstructure-dependent anisotropic magneto-electro-elastic Mindlin plate model based on an extended modified couple stress theory[END_REF] developed a new anisotropic MEE Mindlin plate model by using an extended modified couple stress theory.

Different from the classical couple stress theory [START_REF] Toupin | Elastic materials with couple-stresses[END_REF][START_REF] Mindlin | Influence of couple-stresses on stress concentrations[END_REF][START_REF] Tang | Interpretation of bend strength increase of graphite by the couple stress theory[END_REF], the modified couple stress theory [START_REF] Yang | Couple stress based strain gradient theory for elasticity[END_REF][START_REF] Park | Variational formulation of a modified couple stress theory and its application to a simple shear problem[END_REF] and its extended version [START_REF] Qu | A microstructure-dependent anisotropic magneto-electro-elastic Mindlin plate model based on an extended modified couple stress theory[END_REF][START_REF] Zhang | A non-classical model for an orthotropic Kirchhoff plate embedded in a viscoelastic medium[END_REF][START_REF] Zhang | A transversely isotropic magneto-electro-elastic Timoshenko beam model incorporating microstructure and foundation effects[END_REF] only consider the symmetric part of the curvature tensor conjugated with the deviatoric part of the couple stress tensor, which contain fewer material length scale parameters than the classical counterparts.

Considering the difficulties in determining additional material parameters and the physical interpretation of the microstructure, these modified theories have been successfully employed to develop non-classical beam and plate models [START_REF] Qu | A microstructure-dependent anisotropic magneto-electro-elastic Mindlin plate model based on an extended modified couple stress theory[END_REF][START_REF] Zhang | A non-classical model for an orthotropic Kirchhoff plate embedded in a viscoelastic medium[END_REF][START_REF] Zhang | A transversely isotropic magneto-electro-elastic Timoshenko beam model incorporating microstructure and foundation effects[END_REF][START_REF] Zhou | A nonclassical model for circular mindlin plates based on a modified couple stress theory[END_REF][START_REF] Zhang | A non-classical model for circular Kirchhoff plates incorporating microstructure and surface energy effect[END_REF][START_REF] Ma | A non-classical Mindlin plate model based on a modified couple stress theory[END_REF].

Because of the complexity of cylindrical coordinates in mathematics, little research has been done on circular plates. However, due to the special geometry of circular and annular plates, circular MEE plates are often used in a wide range of engineering applications. Hence, a model for transversely isotropic MEE circular Kirchhoff plates at very small scale and can capture microstructure effect is very desirable.

The current work aims to develop a microstructure-dependent transversely isotropic MEE model for circular Kirchhoff plates. The rest of the paper is organized as follows. In Section 2, a new model is established through a variational method by using the extended modified couple stress theory. In Section 3, several special cases are provided. In Section 4, the static bending problem of a clamped circular plate subject to a uniformly distributed constant load is solved by applying the formulas in Section 2 through Fourier-Bessel series. The paper concludes in Section 5 with a summary.

Formulation

Figure 1 shows an annular circular thin plate of uniform thickness h, inner radius a and outer radius b. The displacement field in such a circular Kirchhoff plate can be written in the form of the cylindrical coordinate system as [START_REF] Zhang | A non-classical model for circular Kirchhoff plates incorporating microstructure and surface energy effect[END_REF] 
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where ur, uθ and uz are, respectively, the radial, tangential and transverse components of the displacement vector u. u and w are, respectively, the radial and transverse components of the displacement vector of point on the mid-plane of the plate. According to the work of Zhang et al. [START_REF] Zhang | A transversely isotropic magneto-electro-elastic Timoshenko beam model incorporating microstructure and foundation effects[END_REF] and Wang [START_REF] Wang | On buckling of column structures with a pair of piezoelectric layers[END_REF], the electric and magnetic potentials in such a Kirchhoff plate can be written as
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where Φ represents the electric potential, and M represents the magnetic potential. γ and ζ represent the spatial variations of electric potential and magnetic potential on the mid-plane, respectively. γ0 and ζ0 denote the external electric potential and magnetic potential, respectively.

The constitutive equations considering the extended version of modified couple stress theory for transversely isotropic MEE materials can be expressed as [START_REF] Qu | A microstructure-dependent anisotropic magneto-electro-elastic Mindlin plate model based on an extended modified couple stress theory[END_REF][START_REF] Zhang | A transversely isotropic magneto-electro-elastic Timoshenko beam model incorporating microstructure and foundation effects[END_REF] e q e q e q H e q 
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where σij are the Cauchy stresses, mij are the couple stresses, Di are the electric displacements, Bi are the magnetic fluxes. Cij and Aij denote the components of the elastic stiffness tensor and the couple stress stiffness tensor, respectively. eij and qij denote the piezoelectric and piezomagnetic tensors, respectively. ϵij, dij and μij denote the components of the dielectric tensors, magneto-dielectric tensors and magnetic permeability tensors, respectively. ε ij and χij are, respectively, the components of strain and curvature tensors defined by
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in which, u is the displacement vector, ▽ denotes the gradient, and the superscript T represents the transpose. In addition, the components of the electric field intensity Ei and the magnetic field intensity Hi are given by 
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The first variation of the Gibbs-type energy for the deformed MEE Kirchhoff plate is given by [START_REF] Qu | A non-classical theory of elastic dielectrics incorporating couple stress and quadrupole effects: part I -reconsideration of curvature-based flexoelectricity theory[END_REF]  
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where Ω is the volume of the plate, and 
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Note that Eqs. [START_REF] Lim | Size-dependent nonlinear response of thin elastic films with nano-scale thickness[END_REF][START_REF] Yin | Vibration analysis of microscale plates based on modified couple stress theory[END_REF] stand for the elastic part of the first variation of the Gibbs-type energy, while Eqs. [START_REF] Lam | Experiments and theory in strain gradient elasticity[END_REF][START_REF] Eringen | On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[END_REF] and Eqs. [START_REF] Eringen | Nonlocal continuum field theories[END_REF][START_REF] Li | Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory[END_REF] represent the electric potential-related and magnetic potential-related parts, respectively.

The first variation of the virtual work (with c θ = 0) can be obtained as [START_REF] Zhou | A nonclassical model for circular mindlin plates based on a modified couple stress theory[END_REF][START_REF] Zhang | A non-classical model for circular Kirchhoff plates incorporating microstructure and surface energy effect[END_REF]  

2 2 0 0 d d d b π b π r z r θ z a a δw δW rf δu rf δwδw r θ rt δu rM rt δw θ r                 ( 14 
)
where fi is the body force resultant (force per unit area) of the i-direction, ti is the Cauchy traction resultant (force per unit length) of the i-direction, and θ M is the applied moment per unit arc length along the circular boundary.

Applying the Gibbs-type variational principle and the fundamental lemma of the calculus of variations [START_REF] Qu | A non-classical theory of elastic dielectrics incorporating couple stress and quadrupole effects: part I -reconsideration of curvature-based flexoelectricity theory[END_REF], the governing equations result in 
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and the boundary conditions yield 
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Specific Models

In this section, a few specific models reduced from the current non-classical transversely isotropic MEE circular Kirchhoff plate model developed in Section 2 are provided.

Transversely Isotropic Piezoelectric Circular Kirchhoff Plate Model

Incorporating the Microstructure Effect

When the piezomagnetic effect is neglected by setting q ij = 0, µ ij = 0 and 
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Transversely Isotropic Piezomagnetic Circular Kirchhoff Plate Model

Incorporating the Microstructure Effect

When the piezoelectric effect is neglected by setting e ij = 0, ϵ ij = 0 and d ij = 0, Eqs. 
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Example: Static Bending of a Clamped Circular Plate

To study the newly developed circular Kirchhoff plate model, a static bending problem of a solid circular plate (with a = 0 and b = 20h) is solved herein. The plate is clamped at its outer edge and subjected to a uniformly distributed constant load q pointing downward.

For static bending problems, the governing equations are consistent with Eqs.

(15a-d).

In view of Eqs. (16a-e), the boundary conditions for the current circular Kirchhoff plate at its outer edge r = b are given by
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Besides, the following symmetry conditions need to be considered:

(0) 0 u  , 0 d d 0 r w r   , 0 d d 0 r γ r   , 0 d d 0 r ζ r   (25a-d)
Obviously, the radial displacement u is uncoupled with w, γ and ζ, so that it can be calculated by solving the boundary value problem (BVP) defined by Eqs. (15a), (24a) and (25a). According to this BVP (with fr = 0), it is not hard to get that u (r) = 0 at any point in the plate.

The transverse displacement w, electric potential γ and magnetic potential ζ can be calculated by solving the BVP defined by Eqs. (15b-d), (24b-e) and (25b-d). The coupled high-order ordinary differential equations (ODEs) are not easy to solve by direct integration because the solutions containing modified Bessel functions are usually very complicated [START_REF] Zhou | A nonclassical model for circular mindlin plates based on a modified couple stress theory[END_REF][START_REF] Ariman | On circular micropolar plates[END_REF][START_REF] Wang | An analytical solution for a multilayered magneto-electro-elastic circular plate under simply supported lateral boundary conditions[END_REF].

In order to deal with such difficulties, the Fourier-Bessel series [START_REF] Zhou | A nonclassical model for circular mindlin plates based on a modified couple stress theory[END_REF] are adopted.

Solutions for w, γ and ζ can be written as:
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The uniformly distributed constant load q can be expanded as [START_REF] Zhang | A non-classical model for circular mindlin plates incorporating microstructure and surface energy effects[END_REF][START_REF] Kreyszig | Advanced engineering mathematics[END_REF]     
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where
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Then, substituting Wn, Hn and Zn obtained in Eqs. [START_REF] Ma | A non-classical Mindlin plate model based on a modified couple stress theory[END_REF], respectively, into Eqs. ( 27), (26b) and (26c) will give the exact solutions of the transverse displacement w, electric potential γ and magnetic potential ζ based on the current circular Kirchhoff plate model for the clamped plate subjected to the axisymmetrically distributed load.

Note that the current Fourier-Bessel series method possesses the same limitations as those of the classical model. For an annular circular plate (with a ≠ 0), the FEM and HDQ techniques have been successfully employed to determine the static deflections of a thin annular plate [START_REF] Yuan | Comparisons of methods for solving static deflections of a thin annular plate[END_REF]. In constant to the inner radius a, the load and boundary conditions are the main factors influencing the solutions.

In order to verify the correctness of the current model, a comparative study of the deflection of the clamped circular Kirchhoff plate subjected to a uniform load between the current model and the model with couple stress effect only provided by Zhang et al. [START_REF] Zhang | A non-classical model for circular Kirchhoff plates incorporating microstructure and surface energy effect[END_REF] are plotted in Fig. 2. For a convenient comparison, the current model is degenerated to a pure elastic model by neglecting both piezoelectric and piezomagnetic effects (i.e., e 31 = q31 = μ11 = μ33 = ϵ11 = ϵ33 = d11 = d33 = 0). The plate parameters, geometric dimensions and boundary conditions of the two models are adopted from Zhang et al. [START_REF] Zhang | A non-classical model for circular Kirchhoff plates incorporating microstructure and surface energy effect[END_REF], and the Young's modulus E and Poisson's ratio v for the isotropic case are related to the current elastic stiffness constant through

11 (1 ) (1 )(1 2 ) v E C v v     (31) 
From Fig. 2, it is obvious that the results of the current and classical pure elastic models are the same as those from Zhang et al. [START_REF] Zhang | A non-classical model for circular Kirchhoff plates incorporating microstructure and surface energy effect[END_REF] This validates the current model and indicates that the couple stress effect will always lead to reduced values of the deflection, as expected. Table 1 [START_REF] Zhou | A nonclassical model for circular mindlin plates based on a modified couple stress theory[END_REF][START_REF] Wang | Axisymmetric bending of functionally graded circular magneto-electro-elastic plates[END_REF], in which vf means the volume fraction of BaTiO3. When vf = 0%, the material turns to be a purely piezomagnetic (PM) material CoFe2O4, and when vf = 100%, only a purely piezoelectric (PE) material BaTiO3 is left. In addition, the uniformly distributed constant load q is fixed at 1 MPa. 

2 ij ij A C l  (31) 
Theoretically, the results will be more accurate as the expansion term n of Fourier Bessel series increases. After a careful study, n = 30 here is sufficient to meet the accuracy requirement. Note that the two sharp changes, as shown in Fig. 7 (with v f = 20%) and Fig. 8 (with vf = 80%), arise directly from the effective material properties of the BaTiO3-CoFe2O4 composite in Table 1. This is similar to what was found in Zhang et al. [START_REF] Zhang | A transversely isotropic magneto-electro-elastic Timoshenko beam model incorporating microstructure and foundation effects[END_REF] based on a thin magneto-electro-elastic beam model.

Summary

A new model for the microstructure-dependent transversely isotropic MEE circular Kirchhoff plates is developed by using the extended modified couple stress theory. The governing equations are derived via a variational method. The newly derived model can capture the microstructure-dependent size effect at the microscale.

To illustrate the new model, the static bending of a clamped transversely isotropic MEE circular plate subject to a uniformly distributed constant load is solved numerically via Fourier-Bessel series. The numerical results show that the values of transverse displacement, electric and magnetic potentials of the current model are always smaller than those of the classical model. However, with the increase of the plate thickness h, the differences are diminishing. In addition, the numerical results

show that the transverse displacement, electric and magnetic potentials vary significantly with the MEE couplings at all length scales.
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 1 Fig. 1. The annular circular thin plate's geometry and coordinate system

  , b) It follows from Eqs. (1a-c), (2a, b), (4a-c) and (5a, b) that in the current

  equations, and the boundary conditions in Eqs. (16a-e
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 33 Classical Transversely Isotropic Magneto-electro-elastic Circular Kirchhoff Plate Model When the microstructure effect is neglected by setting (A 11-A12) = 0, Eqs. (15a-d)

  22d) as the equilibrium equations, and the boundary conditions in Eqs. (16a-e)

  Hn and Zn are the nth-order coefficients to be determined. Eqs. (26a-c) inherently satisfy the boundary conditions in Eqs. (24c-e) and the symmetry conditions in Eqs. (25b-d).

  , b) Substituting Eqs. (26b-28b) into Eqs. (15b-d
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 2 Fig. 2. Comparison of the deflection of the clamped plate subjected to a uniform load

Figures 3 ,

 3 Figures 3, 4 and 5 show the numerical results of transverse displacement w,
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 3457 Fig. 3. The transverse displacement of the clamped circular Kirchhoff plate

Table 1 .

 1 Effective properties of BaTiO3-CoFe2O4 composite Cij, in GPa, eij, in C/m 2 , ϵij, in 10 9 C 2 /(N•m 2 ), qij, in N/(A•m), dij, in 10 12 Ns/(V•C), μij, in 10 6 Ns 2 /C 2 ,ρ, in kg/m 3 , and l, in µm.

		0%						100%
	vf		20%	40%	50%	60%	80%	
		(PM)						(PE)
	C11	286	262	238	226	214	190	166
	C12	173	153.8	134.6	125	115.4	96.2	77
	C13	170	151.6	133.2	124	114.8	96.4	78
	C33	269.5	248	226.5	215.75	205	183.5	162
	C44	45.3	44.84	44.38	44.15	43.92	43.46	43
	e15	0	2.32	4.64	5.8	6.96	9.28	11.6
	e31	0	-0.88	-1.76	-2.2	-2.64	-3.52	-4.4
	e33	0	3.72	7.44	9.3	11.16	14.88	18.6

* Units:

The couple stress stiffness constants can be written as

[START_REF] Qu | A microstructure-dependent anisotropic magneto-electro-elastic Mindlin plate model based on an extended modified couple stress theory[END_REF] 
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To study the effects of the magneto-electro-elastic coupling, the maximum transverse displacement w (deflection at the midpoint of the plate) under different vf conditions is plotted in Fig. 6a. In addition, Fig. 7a and Fig. 8a present the electric potential and magnetic potential at the midpoint of the plate varying as a function of vf, respectively. The blue square lines describe the results of the current model with h = l, and the red circular lines describe the results of the classical model with h = l.

From Fig. 6a, it is observed that the transverse displacements with h = l predicted by both the current and classical models decrease with the increase of v f. However, the transverse displacement given by the classical model decreases more quickly than that predicted by the current model as vf increases. From Fig. 7a, it is shown that the electric potential of the current model increases with the increase of vf. This variation trend is similar to that of the classical model. In addition, the electric potential of the classical model is always larger than that of the current model, as shown in Fig. 7a.

From Fig. 8a, it is shown that the magnitudes of the magnetic potential of both the current and classical models gradually increase with the increase of v f before reaching their maximum values around 60%, after which the magnetic potentials decrease with vf for the remaining values. When the piezoelectric effect disappears, no electric potential is generated in the entire circular plate. Similarly, there is no magnetic potential generated for the plate when the piezomagnetic effect disappears, as expected.

To further illustrate this effect, Fig. 6b, Fig. 7b and Fig. 8b show the maximum