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ABSTRACT A non-classical model for transversely isotropic magneto-electro-elastic 

circular Kirchhoff plates is established based on the extended modified couple stress 

theory. The Gibbs-type variational principle is used to obtain the governing equations 

and boundary conditions. To illustrate the newly derived model, the static bending 

problem of a clamped circular plate subjected to a uniformly distributed constant load 

is solved numerically by Fourier–Bessel series. The numerical results show that the 

values of transverse displacement, electric and magnetic potentials predicted by the 

current model are always smaller than those of the classical model, and the 

differences are diminishing as the plate thickness increases. In addition, it is shown 

that the magneto-electro-elastic coupling effect plays an important role in the 

transverse displacement, electric potential and magnetic potential of the 

magneto-electro-elastic circular Kirchhoff plates. Furthermore, several reduced 

specific models are provided for simpler cases. 
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1. Introduction 

Due to the piezomagnetic/piezoelectric/magnetoelectric effect, thin plates made of 

magneto-electro-elastic (MEE) materials are able to realize the mutual conversion 

between magnetic, electric and mechanical energies. Such characteristics have found 

significant applications in sensors, resonators, energy harvesters, semiconductors and 

other systems [1-6]. It is observed that these thin plates exhibit 

microstructure-dependent size effects at the micron and nanometer scales [7-9]. 

Owing to the lack of any size-dependent material parameter [10], classical elasticity 

theories cannot effectively describe such size effects. Hence, higher-order elasticity 

theories that contain additional parameters should be introduced to develop models 

for thin MEE plates considering microstructure-dependent size effects. 

  Several studies for MEE plates using higher-order elasticity theories have been 

completed. For instance, a non-local constitutive relation proposed by Eringen [11, 12] 

has been used to develop a model for the MEE Mindlin plate (i.e., Li et al. [13]). 

Vinyas et al. [14] addressed a free vibration problem of skew MEE plates by 

employing Reddy’s third-order shear deformation theory (e.g. [15]). Zheng et al. [16] 

also applied Reddy’s high-order shear deformation theory and combined von 

Karman’s nonlinear geometric equation to analyze the nonlinear bending of MEE 

plates. Wang et al. [17] established a model for MEE plates considering both nonlocal 

and surface effects. Ebrahimi and Dabbagh [18] developed a model for MEE 

nanoplates via a nonlocal strain gradient theory to capture size effects. Qu et al. [19] 

developed a new anisotropic MEE Mindlin plate model by using an extended 
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modified couple stress theory. 

  Different from the classical couple stress theory [20-22], the modified couple stress 

theory [23, 24] and its extended version [19, 25, 26] only consider the symmetric part 

of the curvature tensor conjugated with the deviatoric part of the couple stress tensor, 

which contain fewer material length scale parameters than the classical counterparts. 

Considering the difficulties in determining additional material parameters and the 

physical interpretation of the microstructure, these modified theories have been 

successfully employed to develop non-classical beam and plate models [19, 25-29]. 

Because of the complexity of cylindrical coordinates in mathematics, little research 

has been done on circular plates. However, due to the special geometry of circular and 

annular plates, circular MEE plates are often used in a wide range of engineering 

applications. Hence, a model for transversely isotropic MEE circular Kirchhoff plates 

at very small scale and can capture microstructure effect is very desirable. 

The current work aims to develop a microstructure-dependent transversely 

isotropic MEE model for circular Kirchhoff plates. The rest of the paper is organized 

as follows. In Section 2, a new model is established through a variational method by 

using the extended modified couple stress theory. In Section 3, several special cases 

are provided. In Section 4, the static bending problem of a clamped circular plate 

subject to a uniformly distributed constant load is solved by applying the formulas in 

Section 2 through Fourier–Bessel series. The paper concludes in Section 5 with a 

summary. 
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2. Formulation 

Figure 1 shows an annular circular thin plate of uniform thickness h, inner radius a 

and outer radius b. The displacement field in such a circular Kirchhoff plate can be 

written in the form of the cylindrical coordinate system as [28] 

       
, ,r

w r
u r θ z u r z

r


 


                   (1a) 

 ( , , ) 0θu r θ z                                (1b) 

     ( , , )zu r θ z w r                                (1c) 

where ur, uθ and uz are, respectively, the radial, tangential and transverse components 

of the displacement vector u. u and w are, respectively, the radial and transverse 

components of the displacement vector of point on the mid-plane of the plate. 

 

Fig. 1. The annular circular thin plate’s geometry and coordinate system 

According to the work of Zhang et al. [26] and Wang [30], the electric and 

magnetic potentials in such a Kirchhoff plate can be written as 

     0

2
, , cos

π z
r θ z z γ r γ

h h
     
 

               (2a) 

    0

2
, , cos

π z
M r θ z z ζ r ζ

h h
    
 

              (2b) 

where Φ represents the electric potential, and M represents the magnetic potential. γ 
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and ζ represent the spatial variations of electric potential and magnetic potential on 

the mid-plane, respectively. γ0 and ζ0 denote the external electric potential and 

magnetic potential, respectively.  

The constitutive equations considering the extended version of modified couple 

stress theory for transversely isotropic MEE materials can be expressed as [19, 26] 
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where σij are the Cauchy stresses, mij are the couple stresses, Di are the electric 

displacements, Bi are the magnetic fluxes. Cij and Aij denote the components of the 

elastic stiffness tensor and the couple stress stiffness tensor, respectively. eij and qij 

denote the piezoelectric and piezomagnetic tensors, respectively. ϵij, dij and μij denote 

the components of the dielectric tensors, magneto-dielectric tensors and magnetic 

permeability tensors, respectively. εij and χij are, respectively, the components of strain 

and curvature tensors defined by 

      T1

2
     ε u u                               (4a) 

  T1

2
     χ ψ ψ                              (4b) 

with ψ being 

      
1

c u r l  
2

ψ u                                     (4c) 

in which, u is the displacement vector, ▽ denotes the gradient, and the superscript T 

represents the transpose. In addition, the components of the electric field intensity Ei 

and the magnetic field intensity Hi are given by 
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  E Φ , H M                          (5a, b) 

   It follows from Eqs. (1a-c), (2a, b), (4a-c) and (5a, b) that in the current Kirchhoff 

plate  
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The first variation of the Gibbs-type energy for the deformed MEE Kirchhoff 

plate is given by [31] 

  dij ij ij ij i i i iδU σ δε m δχ DδE BδH V


                (7) 

where Ω is the volume of the plate, and 

   

 

222

2 20

2

0

 d 2  d

  3  d d

  2

ij ij ij ij rr rr θθ θθ rθ rθ

π b θθ rθ rθrr rr
θθa

b

rθrr
rr θθ rθ rr rθ

a

σ δε m δχ V σ δε σ δε m δχ V

M Y YrN rM
N δu r δw r θ

r r r r r

YrM δw
rN δu M Y r δw rM rY

r r r

 
   

                      

                

 

 

 d
π

θ

 (8) 

/ 2 / 2 / 2

/ 2 / 2 / 2

/ 2 / 2

/ 2 / 2

d , d , d

d , d

h h h

θθ θθ rr rr rr rrh h h

h h

θθ θθ rθ rθh h

N σ z N σ z M σ z z

M σ z z Y m z

  

 

  

 

  

 
                    (9a-e) 

 

 
2 2

0 0

 d +  d

                  d d  d

i i r r θ θ z z

π b π br
z r aa

D δE V D δE D δE D δE V

r δγ r δγ r θ r δγ θ
r

 
 

         

 

  
           (10) 



8 

 

/ 2 / 2

/ 2 / 2
cos d ,  sin d

h h

r r z zh h

π π π
D z z D z z

h h h 

         
                       (11a, b) 

 

 
2 2

0 0

 d  d

                            d d  d

i i r r θ θ z z

π b π br
z r aa

B δH V B δH B δH B H V

r δζ r δγ r θ r δζ θ
r

 
  

         

 

  
    (12) 

/ 2 / 2

/ 2 / 2
cos d , sin d

h h

r r z zh h

π π π
B z z B z z

h h h 

         
                      (13a, b) 

Note that Eqs. (8, 9) stand for the elastic part of the first variation of the Gibbs-type 

energy, while Eqs. (10, 11) and Eqs. (12, 13) represent the electric potential-related 

and magnetic potential-related parts, respectively. 

The first variation of the virtual work (with cθ = 0) can be obtained as [27, 28]  
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where fi is the body force resultant (force per unit area) of the i-direction, ti is the 

Cauchy traction resultant (force per unit length) of the i-direction, and θM  is the 

applied moment per unit arc length along the circular boundary. 

Applying the Gibbs-type variational principle and the fundamental lemma of the 

calculus of variations [31], the governing equations result in  
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and the boundary conditions yield 
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3. Specific Models 

In this section, a few specific models reduced from the current non-classical 

transversely isotropic MEE circular Kirchhoff plate model developed in Section 2 are 

provided. 

3.1. Transversely Isotropic Piezoelectric Circular Kirchhoff Plate Model 

Incorporating the Microstructure Effect 

When the piezomagnetic effect is neglected by setting qij= 0, µij= 0 and dij= 0, 

Eqs. (15a-d) reduce to  
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as the equilibrium equations, and the boundary conditions in Eqs. (16a-e) become 
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3.2. Transversely Isotropic Piezomagnetic Circular Kirchhoff Plate Model 

Incorporating the Microstructure Effect 

When the piezoelectric effect is neglected by setting eij= 0, ϵij= 0 and dij= 0, Eqs. 

(15a-d) reduce to  
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as the equilibrium equations, and the boundary conditions in Eqs. (16a-e) yield  
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3.3. Classical Transversely Isotropic Magneto-electro-elastic Circular Kirchhoff Plate 

Model  

When the microstructure effect is neglected by setting (A11−A12) = 0, Eqs. (15a-d) 

reduce to  
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as the equilibrium equations, and the boundary conditions in Eqs. (16a-e) result in 
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4. Example: Static Bending of a Clamped Circular Plate 

To study the newly developed circular Kirchhoff plate model, a static bending 

problem of a solid circular plate (with a = 0 and b = 20h) is solved herein. The plate is 

clamped at its outer edge and subjected to a uniformly distributed constant load q 

pointing downward. 

For static bending problems, the governing equations are consistent with Eqs. 

(15a-d). 

In view of Eqs. (16a-e), the boundary conditions for the current circular 

Kirchhoff plate at its outer edge r = b are given by  

( ) 0u b  , ( ) 0w b  , 
d

0
d r b
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 , ( ) 0γ b  , ( ) 0ζ b                 (24a-e) 

Besides, the following symmetry conditions need to be considered: 
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                     (25a-d) 

Obviously, the radial displacement u is uncoupled with w, γ and ζ, so that it can 

be calculated by solving the boundary value problem (BVP) defined by Eqs. (15a), 
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(24a) and (25a). According to this BVP (with fr = 0), it is not hard to get that u (r) = 0 

at any point in the plate.  

The transverse displacement w, electric potential γ and magnetic potential ζ can 

be calculated by solving the BVP defined by Eqs. (15b-d), (24b-e) and (25b-d). The 

coupled high-order ordinary differential equations (ODEs) are not easy to solve by 

direct integration because the solutions containing modified Bessel functions are 

usually very complicated [27, 32, 33]. 

In order to deal with such difficulties, the Fourier–Bessel series [27] are adopted. 

Solutions for w, γ and ζ can be written as: 
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                          (26c) 

where Ji (x) is the Bessel function of the first kind of order i, λin is the nth real zero of 

the function Ji (x) = 0, and /in inλ λ b . Wn, Hn and Zn are the nth-order coefficients to 

be determined. Eqs. (26a-c) inherently satisfy the boundary conditions in Eqs. (24c-e) 

and the symmetry conditions in Eqs. (25b-d).  

When considering the boundary conditions in Eq. (24b), the expression of w can 

be derived from integrating Eq. (26a) 
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                 (27) 

The uniformly distributed constant load q can be expanded as [34, 35] 
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Substituting Eqs. (26b-28b) into Eqs. (15b-d) yields 

 
11 12 13

21 22 23

31 32 33

0

0

n n

n

n

K K K W Q

K K K H

K K K Z

     
         
         

                         (29) 
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Then, substituting Wn, Hn and Zn obtained in Eqs. (29), respectively, into Eqs. (27), 

(26b) and (26c) will give the exact solutions of the transverse displacement w, electric 

potential γ  and magnetic potential ζ based on the current circular Kirchhoff plate 

model for the clamped plate subjected to the axisymmetrically distributed load. 

Note that the current Fourier–Bessel series method possesses the same 
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limitations as those of the classical model. For an annular circular plate (with a ≠ 0), 

the FEM and HDQ techniques have been successfully employed to determine the 

static deflections of a thin annular plate [37]. In constant to the inner radius a, the load 

and boundary conditions are the main factors influencing the solutions. 

In order to verify the correctness of the current model, a comparative study of the 

deflection of the clamped circular Kirchhoff plate subjected to a uniform load 

between the current model and the model with couple stress effect only provided by 

Zhang et al. [28] are plotted in Fig. 2. For a convenient comparison, the current model 

is degenerated to a pure elastic model by neglecting both piezoelectric and 

piezomagnetic effects (i.e., e31 = q31 = μ11 = μ33 = ϵ11 = ϵ33 = d11 = d33 = 0). The plate 

parameters, geometric dimensions and boundary conditions of the two models are 

adopted from Zhang et al. [28], and the Young’s modulus E and Poisson’s ratio v for 

the isotropic case are related to the current elastic stiffness constant through 

11

(1 )

(1 )(1 2 )

v E
C

v v




                         (31) 

From Fig. 2, it is obvious that the results of the current and classical pure elastic 

models are the same as those from Zhang et al. [28] This validates the current model 

and indicates that the couple stress effect will always lead to reduced values of the 

deflection, as expected. 
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Fig. 2. Comparison of the deflection of the clamped plate subjected to a uniform load  

 

To further study the newly derived clamped MEE circular Kirchhoff plate model, 

some numerical results are obtained and presented. The material of the plate is taken 

to be a two-phase composite BaTiO3-CoFe2O4. The material properties are listed in 

Table 1 [27, 36], in which vf means the volume fraction of BaTiO3. When vf = 0%, the 

material turns to be a purely piezomagnetic (PM) material CoFe2O4, and when vf = 

100%, only a purely piezoelectric (PE) material BaTiO3 is left. In addition, the 

uniformly distributed constant load q is fixed at 1 MPa. 

Table 1. Effective properties of BaTiO3-CoFe2O4 composite 

vf 
0% 

(PM) 
20% 40% 50% 60% 80% 

100% 

(PE) 

C11 

C12 

C13 

C33 

C44 

e15 

e31 

e33 

286 

173 

170 

269.5 

45.3 

0 

0 

0 

262 

153.8 

151.6 

248 

44.84 

2.32 

‒0.88 

3.72 

238 

134.6 

133.2 

226.5 

44.38 

4.64 

‒1.76 

7.44 

226 

125 

124 

215.75 

44.15 

5.8 

‒2.2 

9.3 

214 

115.4 

114.8 

205 

43.92 

6.96 

‒2.64 

11.16 

190 

96.2 

96.4 

183.5 

43.46 

9.28 

‒3.52 

14.88 

166 

77 

78 

162 

43 

11.6 

‒4.4 

18.6 
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* Units: Cij, in GPa, eij, in C/m2, ϵij, in 109 C2/(N∙m2), qij, in N/(A∙m), dij, in 1012 Ns/(V∙C), μij, 
in 106 Ns2/C2, ρ, in kg/m3, and l, in µm. 

 

The couple stress stiffness constants can be written as [19] 

 2
ij ijA C l                               (31) 

Theoretically, the results will be more accurate as the expansion term n of 

Fourier Bessel series increases. After a careful study, n = 30 here is sufficient to meet 

the accuracy requirement. 

Figures 3, 4 and 5 show the numerical results of transverse displacement w, 

electric potential γ  and magnetic potential ζ of the current model (the newly 

derived model considering the microstructure effect) and the classical model (with 

A11−A12 = 0), respectively, with vf =50%.  

It can be easily seen that all results predicted by the current model are smaller 

than those of the classical model. With the increase of plate thickness h, results of the 

current model are more and more close to the classical cases, indicating that the 

ϵ11 

ϵ33 

q15 

q31 

q33 

d11 

d33 

μ11 

μ33 

ρ 

l 

0.08 

0.093 

550 

580.3 

699.7 

0 

0 

590 

157 

5300 

7.33 

2.30 

2.59 

440 

464.24 

559.76 

2.6 

2020 

473 

127.6 

5400 

7.29 

4.53 

5.10 

330 

348.18 

419.82 

4.58 

2760 

356 

98.2 

5500 

7.24 

5.64 

6.35 

275 

290.15 

349.85 

5.38 

2740 

297.5 

83.5 

5550 

7.21 

6.75 

7.60 

220 

232.12 

279.88 

6.02 

2520 

239 

68.8 

5600 

7.18 

8.98 

10.10 

110 

116.06 

139.94 

7.04 

1550 

122 

39.4 

5700 

7.10 

11.2 

12.6 

0 

0 

0 

0 

0 

5 

10 

5800 

7.00 
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microstructure effect has a significant influence on the current model when the plate 

thickness is very small. 

 

Fig. 3. The transverse displacement of the clamped circular Kirchhoff plate 

 

Fig. 4. The electric potential of the clamped circular Kirchhoff plate 

 

Fig. 5. The magnetic potential of the clamped circular Kirchhoff plate 
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(a)                               (b) 
Fig. 6. Transverse displacement at the central point varying as a function of vf of the 

current and classical models: (a) h = l; (b) h = 100l 

 

(a)                               (b) 
Fig. 7. Electric potential at the central point varying as a function of vf of the current 

and classical models: (a) h = l; (b) h = 100l 

 

(a)                               (b) 
Fig. 8. Magnetic potential at the central point varying as a function of vf of the current 

and classical models: (a) h = l; (b) h = 100l 
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To study the effects of the magneto-electro-elastic coupling, the maximum 

transverse displacement w (deflection at the midpoint of the plate) under different vf 

conditions is plotted in Fig. 6a. In addition, Fig. 7a and Fig. 8a present the electric 

potential and magnetic potential at the midpoint of the plate varying as a function of vf, 

respectively. The blue square lines describe the results of the current model with h = l, 

and the red circular lines describe the results of the classical model with h = l. 

From Fig. 6a, it is observed that the transverse displacements with h = l predicted 

by both the current and classical models decrease with the increase of vf. However, the 

transverse displacement given by the classical model decreases more quickly than that 

predicted by the current model as vf increases. From Fig. 7a, it is shown that the 

electric potential of the current model increases with the increase of vf. This variation 

trend is similar to that of the classical model. In addition, the electric potential of the 

classical model is always larger than that of the current model, as shown in Fig. 7a. 

From Fig. 8a, it is shown that the magnitudes of the magnetic potential of both the 

current and classical models gradually increase with the increase of vf before reaching 

their maximum values around 60%, after which the magnetic potentials decrease with 

vf for the remaining values. When the piezoelectric effect disappears, no electric 

potential is generated in the entire circular plate. Similarly, there is no magnetic 

potential generated for the plate when the piezomagnetic effect disappears, as 

expected.  

To further illustrate this effect, Fig. 6b, Fig. 7b and Fig. 8b show the maximum 
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transverse displacement, the electric and magnetic potentials of the current model 

with h = 100l, which is much larger than h = 5l identified in Fig. 3, Fig. 4 and Fig. 5 

as a plate thickness threshold, above which the microstructure effects on these 

variables are negligible. These variables predicted by the classical model are also 

plotted and found to be the same as the current model, as shown in Fig. 6b, Fig. 7b 

and Fig. 8b. This finding further confirms what has been observed previously. From 

Fig. 6b, Fig. 7b and Fig. 8b, it is also observed that the coupling effects affect a lot for 

both current and classical models.  

Note that the two sharp changes, as shown in Fig. 7 (with vf = 20%) and Fig. 8 

(with vf = 80%), arise directly from the effective material properties of the 

BaTiO3–CoFe2O4 composite in Table 1. This is similar to what was found in Zhang et 

al. [26] based on a thin magneto-electro-elastic beam model.   

 
5. Summary 

A new model for the microstructure-dependent transversely isotropic MEE 

circular Kirchhoff plates is developed by using the extended modified couple stress 

theory. The governing equations are derived via a variational method. The newly 

derived model can capture the microstructure-dependent size effect at the microscale. 

To illustrate the new model, the static bending of a clamped transversely 

isotropic MEE circular plate subject to a uniformly distributed constant load is solved 

numerically via Fourier–Bessel series. The numerical results show that the values of 

transverse displacement, electric and magnetic potentials of the current model are 

always smaller than those of the classical model. However, with the increase of the 
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plate thickness h, the differences are diminishing. In addition, the numerical results 

show that the transverse displacement, electric and magnetic potentials vary 

significantly with the MEE couplings at all length scales. 
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