Supporting information:

New Fluorescent Tetraphenylporphyrin-Based Dendrimers with Alkene

-Linked Fluorenyl Antennae designed for Oxygen Sensitization

Dandan Yao,^a Limiao Shi,^a Zhipeng Sun,^a Mireille Blanchard-Desce,^b Olivier Mongin,^a Frédéric Paul,^a Christine O. Paul-Roth,^{*a}

^a Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-3500, Rennes, France

^b Université de Bordeaux, Institut des Sciences Moléculaires (CNRS UMR 5255), 33405 Talence, France

*Corresponding author: <u>christine.paul@univ-rennes1.fr</u> or christine.paul@insa-rennes.fr Tel : (+33) (0) 2 23 23 63 72; Fax: (+33) (0) 2 23 23 63 72

Contents:

- 1. ¹¹H NMR spectra of **D1-PhBr** and **D2-PhBr** intermediates
- 2. ¹H NMR spectra of the new dendrons **D1-PhCHO** and **D2-PhCHO**
- 3. ¹H NMR spectra of dendrimers **TPP-D2**, **ZnTPP-D2** and overlay of the partial spectra of **TPP-D2** and the corresponding zinc complex **ZnTPP-D2**
- 4. ¹³C NMR spectrum of dendrimer **Zn TPP-D1**
- 5. High resolution mass spectra of dendrimer ZnTPP-D1
- 6. Photophysical study of the intramolecular energy transfer process
- 7. Dependence of Intensity vs. Fluence for Dendrimers ZnTPP-D1 and ZnTPP-D2

1. ¹H NMR spectra of D1-PhBr and D2-PhBr intermediates

Figure S1: ¹H NMR spectrum (400 MHz) of D1-PhBr in CDCl₃.

Figure S2: ¹H NMR spectrum (400 MHz) of D2-PhBr in CDCl₃.

2. ¹H NMR spectra of the new dendrons D1-PhCHO and D2-PhCHO

10.11 171-171-171-171-171-1721-1721-1723-5.83 0.56 1.08 1.15 7.98 ř, 50000 40000 30000 - 20000 10000 -0 7-8.32 J 20.44 7 1.00 J- 7.98 5.0 10.0 ppm (11)

Figure S3: ¹H NMR spectrum (400 MHz) of D1-PhCHO in CDCl₃.

Figure S4: ¹H NMR spectrum (400 MHz) of **D2-PhCHO** in CD₂Cl₂.

3. ¹H NMR spectra of dendrimers TPP-D2, ZnTPP-D2 and overlay of the partial spectra of TPP-D2 and the corresponding zinc complex ZnTPP-D2

Figure S5: Partial (a) and full (b) ¹H NMR spectrum (400 MHz) of TPP-D2 in CDCl₃.

Figure S6: Partial (a) and full (b) ¹H NMR spectrum (400 MHz) of ZnTPP-D2 in in CD₂Cl₂.

Figure S7: Overlaid partial ¹H NMR spectra (400 MHz) of **TPP-D2** (a) and **ZnTPP-D2** (b) in CDCl₃.

4. ¹³C NMR spectrum of dendrimer Zn TPP-D1

Figure S8: ¹H NMR spectrum (400 MHz) of ZnTPP-D1 in CDCl₃.

5. High resolution mass spectra of dendrimer ZnTPP-D1

6. Photophysical study of the intramolecular energy transfer process

Figure S10: Emission spectra recorded using two excitation wavelengths: Ex_1 in the Soret-band and Ex_2 in the dendron absorption for TPP-cored Dendrimers: **TPP**, **TPP-D1** compared to **TPP-T1**, **TPP-T2** (for **TPP**, Ex_2 is performed at 325 nm). All intensities are normalizing the intensity of porphyrin core emission on the Q(0,0) band.

7. Dependence of Intensity vs. Fluence for Dendrimers ZnTPP-D1 and ZnTPP-D2

Figure S11. (a) Quadratic Dependence of the Emission Intensity (F) on the Laser Excitation Power (P) and (b) Dependence of F on P² for Compound **ZnTPP-D1** at 790 nm.

Figure S12. (a) Quadratic Dependence of the Emission Intensity (F) on the Laser Excitation Power (P) and (b) Dependence of F on P^2 for Compound **ZnTPP-D2** at 790 nm.