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ABSTRACT 47 

Aim  Species attributes are often used to explain diversity patterns across 48 

assemblages/communities.  However, repeated species co-occurrences can generate spatial pattern 49 

and strong statistical relationships between aggregated attributes and richness in the absence of 50 

biological information.  Our aim is to increase awareness of this problem. 51 

Location  North America 52 

Methods  We generated empirical species richness patterns using two data structures: (i) birds 53 

gridded from range maps and (ii) tree communities from the US Forest Service Forest Inventory 54 

and Analysis.  We analysed richness using linear regression, regression trees, generalized additive 55 

models, geographically weighted regression and simultaneous autoregression, with ‘random 56 

intrinsic variables’ as predictors generated by assigning random numbers to species and 57 

calculating averages in assemblages. We then generated simulations in which species with 58 

cohesive or patchy distributions are placed with respect to the North American temperature 59 

gradient with or without a broad-scale richness gradient.  Random intrinsic variables are again 60 

used as predictors of richness.  Finally, we analysed one simulated scenario with random intrinsic 61 

variables as both response and predictor variables. 62 

Results  The models of bird and tree richness often explained moderate to large proportions of the 63 

variance.  Regression trees, geographically weighted regression and simultaneous autoregression 64 

were very sensitive to the problem; generalized additive models were moderately affected, as was 65 

multiple regression to a lesser extent.  In the virtual data, the variance explained increased with 66 

increasing species co-occurrences, but neither range cohesion, a richness gradient nor spatial 67 



autocorrelation in predictors had major impacts.  The problem persisted when the response 68 

variable was also a random intrinsic variable. 69 

Main Conclusions  Repeated species co-occurrences can generate strong spurious relationships 70 

between richness and aggregated species attributes.  It is important to realize that models utilizing 71 

assemblage variables aggregated from species-level values, as well as maps illustrating their 72 

spatial patterns, cannot be taken at face value.   73 

 74 

Key words: community structure, community weighted means, geographical ecology, 75 
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INTRODUCTION 81 

Community ecology, geographical ecology, ecological biogeography and some aspects of 82 

macroecology and macroevolution frequently utilize metrics generated across communities or 83 

assemblages.  One fundamental pattern shared across all of these fields is spatial variation in 84 

species richness, which can be quantified in grains ranging from small plots, for many ecological 85 

questions, to entire continents, for biogeographical and macroevolutionary questions.  Beginning 86 

in the 1960’s (Pianka, 1967), analyses of non-insular, broad-scale diversity gradients primarily 87 

focused on quantifying relationships with components of the environment, which depending on 88 

the grain/extent of the analysis and the taxon, normally included one or more measures of climate, 89 

often supplemented with non-climatic variables such as, inter alia, area, topography, productivity, 90 

soil or water properties, distance from source pools, or geological history (see Field et al. [2009] 91 

for a compilation of case studies and the variables that have been considered).  A major concern 92 

of these analyses has been ranking the ‘importance’ of potential drivers of diversity, generally by 93 

comparing regression coefficients or the relative statistical explanatory power of predictors.  94 

Irrespective of the specific metrics, most analyses utilized extrinsic predictor variables, defined as 95 

variables generated independent of the species in the plots, transects or grid cells.  The majority of 96 

the environmental predictors, particularly climatic variables, also contain strong spatial structure, 97 

which were presumed to directly or indirectly generate the species richness patterns.  There is a 98 

very extensive literature associated with the analysis of such spatially structured data (e.g. Ripley, 99 

1981; Haining, 2003; Dale & Fortin, 2014). 100 

 Recently, there has been increased interest in the analysis of intrinsic variables, defined as 101 

variables calculated from attributes of the species known or assumed to be present in each 102 

assemblage or community.  Two that have been used for some time as response variables in 103 



assemblage-based analyses include body size (with particular reference to Bergmann’s Rule; 104 

Blackburn & Hawkins, 2004; Diniz-Filho et al., 2007; Olalla-Tárraga et al., 2010; Slavenko & 105 

Meiri, 2015) and range size (with reference to Rapoport’s Rule; Stevens, 1989; Hawkins & Diniz-106 

Filho, 2006; Morin & Lechovicz, 2011).  Other intrinsic variables, such as metrics generated 107 

using the position of each species in a phylogeny, have also been correlated with species richness 108 

patterns, often in combination with extrinsic predictors (Kerr & Currie, 1999; Hawkins et al., 109 

2005; Svenning et al., 2008; Belmaker & Jetz, 2015).  However, with the development of 110 

community phylogenetics (Webb et al., 2002) and trait-based approaches to studying community 111 

size and structure (Shipley, 2010), the use of intrinsic variables as both response and predictor 112 

variables in assemblage/community analyses is rapidly expanding (e.g., Swenson & Enquist, 113 

2007; Jansson & Davies, 2008; Mayfield et al., 2010; Swenson et al., 2012, 2016; Dubuis et al., 114 

2013; Stuart-Smith et al., 2013; Hawkins et al., 2014; Leingärtner et al., 2014; Albouy et al., 115 

2015; Belmaker & Jetz, 2015; Blonder et al., 2015; Enquist et al., 2015; Finegan et al., 2015; 116 

Godoy et al., 2015; Honorio Coronado et al., 2015; Lima-Mendez et al., 2015; Seymour et al., 117 

2015; Šímová et al., 2015; Stevens & Gavilanez, 2015; Zhang et al., 2015; Biswas et al., 2016; 118 

Boucher-Lalonde et al., 2016; González-Maya et al., 2016; Kimberly et al., 2016; Marin & 119 

Hedges, 2016; Pfautsch et al., 2016; de la Riva et al., 2016).  The assumption or hypothesis 120 

underlying all such analyses is that species attributes sort geographically according to their 121 

responses to the abiotic and biotic environment.  Here we show that these biologically meaningful 122 

assumptions cannot be evaluated from standard statistical associations of intrinsic variables 123 

measured at the community or assemblage level. 124 

 Patterns of species richness are by their nature spatial, which raises a number of statistical 125 

and inferential issues.  The issue of spatial autocorrelation has been known to ecologists at least 126 



since Legendre (1993), as has the problem that collinearity among predictors can be driven by a 127 

joint environmental driver.  However, a third ubiquitous and potentially serious analytical issue 128 

related to the use of intrinsic variables in spatial analysis appears to have largely escaped notice.  129 

We illustrate through the use of bird range maps, plot data for trees, and biologically plausible 130 

simulated data sets an analytical problem associated with the use of intrinsic variables in 131 

assemblage- and community-focused analyses conducted in a spatial context.  The problem arises 132 

whether the intrinsic variables are predictor or also as response variables, although our primary 133 

focus is on analyses of species richness as the response variable. 134 

A specific flavour of the problem was reported by Zelen  & Schaffers (2012), who found 135 

that mean Ellenberg indicator values, an intrinsic community-based variable used in vegetation 136 

analysis, ‘inherited’ information about compositional similarity across communities, which then 137 

resulted in overestimates of explained variance in correspondence analyses as well as in 138 

regressions with species richness and inflated Type I error rates.  They referred to this as a 139 

‘similarity issue’ caused by the fact that the same species often occur in multiple communities.  140 

More recently, Peres-Neto et al. (2016) reported biased estimates of regression coefficients and 141 

inflated Type I error rates between intrinsic community-based mean trait values and 142 

environmental variables in the context of trait-environment analysis used in community ecology.  143 

The problem does not require that the community data have explicit spatial structure, only that 144 

some species occur in more than one community to the extent that some co-occurrences are 145 

repeated (hereafter referred to as the co-occurrence problem).  However, we might expect a priori 146 

that the problem will be especially widespread in spatially structured assemblage data if there is 147 

any overlap of species distributions caused by species-level responses to environmental gradients, 148 

which will be rampant in datasets covering broad areas.  To illustrate the severity of the problem 149 



in two widely used types of data we first present analyses of the species richness patterns of North 150 

American birds in their breeding ranges derived from range maps and tree community richness in 151 

plots sampled by the United States Forest Service’s Forest Inventory and Analysis (FIA).  The 152 

statistical models we generate use common linear, nonlinear, machine-learning and spatial 153 

regression methods to quantify the strengths of associations among cell/plot species richness as 154 

the response variable and sets of ‘random intrinsic variables’ as predictors, generated by assigning 155 

random numbers as species attributes and calculating their cell/plot means.  These attributes could 156 

represent any quantitative physiological, morphological, ecological, behavioural or phylogenetic 157 

variable generated from any taxon-level assignment of values. 158 

In a second set of analyses we explore four potential influences on the problem of 159 

particular relevance to ecologists and biogeographers, focusing on (i) levels of repeated species 160 

co-occurrences, (ii) the spatial coherence of those occurrences, (iii) the existence of a strong 161 

broad-scale richness gradient and (iv) the presence of spatial autocorrelation in the predictors.  162 

For this we develop a set of simulated North Americas occupied by virtual species, to which each 163 

species is given sets of random attributes as with the two data sets comprising real species.  With 164 

these random intrinsic variables as predictors we model the case in which a strong species 165 

richness gradient is generated by species with cohesive ranges responding to the temperature 166 

gradient found on the continent, followed by the case in which species still respond to 167 

temperature but ranges lack coherence.  Although less likely in real data of moderate to large 168 

geographical extent, we also generate data sets without broad-scale richness gradients using 169 

species with either cohesive or patchy ranges.  Finally, we use the first of the simulated scenarios 170 

to analyze community-level metrics in which random intrinsic variables comprise both response 171 

and predictor variables.  The latter analyses illustrate the potential extent of the problem when all 172 



variables are intrinsic and generated from data containing repeated species co-occurrences. 173 

MATERIALS AND METHODS 174 

North American birds 175 

Distribution maps were downloaded from BirdLife International 176 

(http://www.birdlife.org/datazone/info/spcdownload, accessed in June, 2014), and breeding 177 

ranges of the 1913 non-marine bird species in the region were extracted for analysis. The maps 178 

were binned at a 0.5° x 0.5° grain in a grid extending from the northern tip of Greenland to 179 

Panama, and the presence-absence matrix (PAM) of 14,662 grid cells each containing at least 15 180 

bird species was created.  As intrinsic predictors of species richness we generated random 181 

intrinsic variables, created by first assigning a real number between 0 and 1 taken from a uniform 182 

random distribution as a species attribute to each bird species.  We then calculated means for each 183 

cell in the grid by averaging these random species attribute values for the birds found in the cell.  184 

This two-step process was repeated 100 times to generate a population of 100 random intrinsic 185 

variables for potential inclusion in statistical models of richness.  Range-map based patterns of 186 

species richness and species co-occurrences invariably have strong spatial autocorrelation due to 187 

the high cohesiveness of most range maps.  Data of this type are common in ecological 188 

biogeography and geographical ecology. 189 

Trees in the conterminous United States 190 

We also generated a PAM for the 304 gymnosperm and angiosperm species in 104,588 plots 191 

(each 0.07 h) in the US Forest Service’s Forest Inventory and Analysis database 192 

(http://www.fia.fs.fed.us/, accessed in January, 2012) that contained at least three species and 193 

were in the conterminous USA.  As with the birds, we generated 100 random intrinsic variables 194 

http://www.birdlife.org/datazone/info/spcdownload


by repeatedly assigning random species attributes to all species in the dataset and averaging their 195 

values for species present in each plot, and these random intrinsic variables were then used as 196 

predictors in statistical models of tree species richness.  Because the data are plot-based counts, 197 

species ranges are non-cohesive and expected to generate a substantially noisier and less spatially 198 

autocorrelated richness pattern, although distributions are by no means random due to trees’ 199 

responses to spatially structured environmental drivers operating across a range of scales.  This is 200 

the data type used in community ecology, community phylogenetics and frequently in analyses of 201 

altitudinal diversity gradients. 202 

Virtual North America 203 

We simulated species distributions in North America by defining their tolerances to annual mean 204 

temperature (BIO 1 in WorldClim [Hijmans et al., 2005]) within the ‘virtualspecies’ package in R 205 

(Leroy et al., 2016).  To generate a species distribution, we simulated a Gaussian response to 206 

temperature, defined by an optimum value and a thermal tolerance delimiting 99% of the area 207 

under the Gaussian curve.  We used this response to temperature to project the probability of 208 

occurrence of the species in North America. Next, we converted probabilities of occurrence into 209 

presence-absence with a probabilistic conversion.  Lastly, we applied dispersal limitation with 210 

two approaches: (i) a non-cohesive approach where a species distribution was limited to a defined 211 

number of single-pixel habitat patches across North America; and (ii) a cohesive approach where 212 

species distributions were limited to a cohesive range of size identical to its non-cohesive 213 

counterpart.  We expected the statistical problem to be most severe in the presence of a richness 214 

gradient comprising species with cohesive ranges due to a higher level of repeated species co-215 

occurrences. 216 



To sample species’ optimal temperatures, we defined two scenarios: (i) a scenario with a 217 

richness gradient (optimal temperatures more likely to be sampled at higher temperatures), and 218 

(ii) a scenario with no richness gradient (optimal temperatures were randomly sampled along the 219 

temperature gradient).  Thermal tolerances were randomly sampled between 5° and 45°C for both 220 

scenarios.  These two scenarios were designed to test the co-occurrence effect on models where 221 

there is a link between richness and a spatially structured environmental driver (temperature), and 222 

where there is no link between richness and the environment, although the latter case is highly 223 

unlikely in any real data set.  For each scenario, we generated 2000 species, and we repeated the 224 

process five times with different numbers of suitable habitat patches each time (250, 500, 1000, 225 

2500 and 5000). We expected increases in numbers of available habitat patches to increase the 226 

degree of co-occurrence among species.  We characterized co-occurrence patterns by estimating 227 

the C-score (Stone & Roberts, 1990) for each dataset/scenario.  The C-score describes the average 228 

pairwise value of species associations in a PAM, ranging from a lower bound of 0 (maximum 229 

aggregation) to an undefined upper bound (Gotelli, 2000).  Lower C-score values thus indicate 230 

higher average co-occurrence across all species pairs.  Given that a particular C-score is specific 231 

to the PAM being analyzed, we used a modified version that normalizes the C-score according to 232 

a general maximum derived from the data and thus can be compared across datasets (Dormann et 233 

al., 2008).  To summarize, to facilitate interpretation of the results for the bird and tree data, 234 

neither of which is replicated, we simulated a total of 20 virtual North Americas (two richness 235 

scenarios × two range cohesiveness scenarios × five sizes of habitat patches).   236 

 As with the bird data, we generated a PAM for each scenario across the North American 237 

grid and generated 100 random intrinsic variables by assigning random numbers as species 238 

attributes and calculating assemblage means.  These were selected as predictors of species 239 



richness and for one scenario as the response variable as well. 240 

Statistical analyses 241 

A range of linear and non-linear modeling methods exist for analyzing assemblage/community 242 

data focused on patterns of diversity, from which we selected five that have been commonly used 243 

or are coming into common usage: ordinary least squares linear regression (MR), regression trees 244 

(RT), generalized additive models (GAM), geographically weighted regression (GWR) and 245 

simultaneous autoregression (SAR).  These methods vary considerably in their underlying 246 

assumptions and their ability to capture non-linear/non-stationary relationships, both of which are 247 

widespread in broad-scale ecological datasets (Bini et al., 2009) including our real and virtual 248 

data.  Because of the non-stationarity in the data, we selected geographically weighted regression 249 

as our primary choice of a spatially explicit method, as it is explicitly designed to describe 250 

spatially varying relationships among variables.  Even so, because SAR is used by many workers 251 

we evaluated its sensitivity to the co-occurrence problem using the bird data, the most strongly 252 

spatially autocorrelated of the data sets.  When evaluating the results using this method it should 253 

be remembered that the coefficients are also sensitive to non-stationarity of the relationships 254 

independent of repeated species co-occurrences (see Fotheringham et al. [2002], Bini et al. 255 

[2009], Beale et al. [2010] and Hawkins [2012] for discussion of the assumptions underlying this 256 

class of spatially explicit methods), so interpretation of the results contains some ambiguity.   257 

The utilization of geographically weighted regression is also compromised by the fact that 258 

we focused on a single bandwidth in the bird and tree data sets, 250.6 and 100.4, respectively; 259 

generated by a preliminary evaluation of the method in the Geographically Weighted Regression 260 

module in the SPATIAL ANALYSIS IN MACROECOLOGY program 261 

(https://www.ecoevol.ufg.br/sam/).  Model outputs are sensitive to the bandwidth, and selection 262 



of appropriate bandwidths is itself a complex statistical issue (Cho et al., 2010).  Thus, changing 263 

model parameters will change the results independently of the underlying structure of the data, 264 

and the results presented here represent one of many possible outcomes.  Even so, it provides a 265 

warning that the method may be sensitive to the problem we describe in this paper.  266 

Our rationale for selecting multiple modeling approaches was to evaluate the extent to 267 

which the existing literature is likely affected by the co-occurrence problem.  If the analytical 268 

methods we evaluate are affected, it is likely that many other regression methods are affected as 269 

well.  At the very least we cannot rule out that possibility without examining all known methods, 270 

which is beyond the scope of this paper.  Zelen  & Schaffers (2012) have already demonstrated 271 

that correspondence analysis and correlation are sensitive to the problem. 272 

 For the real data sets (birds and trees) we generated sets of regression models of richness 273 

using combinations of random intrinsic variables as predictors.  Models using each method were 274 

generated with one, three or five predictors, which is within the range of the number of predictors 275 

evaluated by researchers.  The sample size of the birds comprised the 14,662 cells containing at 276 

least 15 species.  For the trees computational limitations required randomly sampling 25,000 plots 277 

supporting at least three species.  The models of varying complexity were generated 100 times, 278 

except in the case of the regression trees, for which 200 trees were generated in each case.  Model 279 

iterations used each random intrinsic variable in the one-predictor models or randomly selected 280 

combinations of variables in the three- and five-predictor models.  Evaluation of model fit 281 

comprised coefficients of determination (R
2
), or the model average R

2
 in the case of 282 

geographically weighted regression.  We do not explicitly evaluate regression coefficients for four 283 

of the five regression types, as they have no biological meaning with respect to sets of random 284 

predictors and not all of the methods generate them.  The exception is the SAR models, since they 285 



are designed to account for the spatial autocorrelation in data and can generate high coefficients 286 

of determination irrespective of the nature of the predictors; further, it is the more precise 287 

coefficients generated by the method that justify its use (Beale et al., 2010).  Consequently, for 288 

the SARs we determined how many of the coefficients across the models were significantly 289 

different from 0.  If the models often generate spurious coefficients it indicates that controlling for 290 

spatial autocorrelation in the data does not remove the bias generated by the co-occurrence 291 

problem.  This also would represent one line of evidence that the problem we are evaluating in 292 

this paper is not simply due to the spatial autocorrelation in the data, and we must look elsewhere 293 

for an explanation.   294 

 Analysis of the 20 virtual scenarios comprised first fitting randomly selected sets of five 295 

random intrinsic variables to species richness.  Given the extremely strong fits found using 296 

geographically weighted regression of the bird data and the large number of spurious regression 297 

coefficients in the simultaneous autoregression models (see Results section), making the 298 

sensitivity of both methods to the problem obvious, we excluded them from the analysis of the 299 

simulated data.  As before, each model was repeated 100 times using random combinations of 300 

random intrinsic variables, and coefficients of determination were tallied. 301 

 The final analysis used one random intrinsic variable as a response variable and five 302 

random intrinsic variables as predictors, derived from data in the 5000-patch, cohesive-ranges 303 

scenario with a strong richness gradient.  We repeated the analysis ten times with arbitrarily 304 

chosen response variables, each replicated 100 times with random combinations of predictors.  305 

Here we present the ‘best case’ and ‘worst case’ results, those with the lowest and highest mean 306 

coefficients of determination among the sets of models of the 10 repetitions.  Running models for 307 

all 100 random intrinsic variables as response variables would expand the range of possible 308 



results, but the results for 10 are sufficient to illustrate the potential severity of the problem when 309 

using intrinsic variables derived from species presences as response variables in 310 

assemblage/community analysis with strong spatial structure. 311 

 312 

RESULTS 313 

Bird species richness 314 

The richness gradient generated by the breeding range maps is strongly spatially patterned (Fig. 315 

1a), as is already well known (e.g., Cook, 1969; Orme et al., 2005; Hawkins et al., 2006).  316 

Further, means generated from random attributes can contain obvious spatial structure across 317 

multiple scales, as illustrated using three examples (Fig. 1b-d).  Although the details of the spatial 318 

patterns varied among the random intrinsic variables, they tended to share a common structure of 319 

positive autocorrelation at small spatial scales and negative autocorrelation at very large scales, as 320 

did the species richness gradient (Fig. 2).  Further, statistical models of richness had moderate to 321 

strong explanatory power across the model types (Table 1).  Geographically weighted regression 322 

was especially sensitive to covariation between random predictors and richness, and even a single 323 

predictor variable generated very strong model fits.  Simultaneous autoregression similarly 324 

showed evidence of strong sensitivity; all 100 models generated at least one coefficient significant 325 

at P <0.01, and in 26 cases all five coefficients were significant (Appendix S1 in the Supporting 326 

Information).  Because of their ability to capture non-linear relationships, regression trees and 327 

generalized additive models generated moderate to very strong models, despite the complete lack 328 

of biological information in the predictors.  Linear regression, due to the constraint of fitting 329 

linear relationships, generated the weakest models on average, but even a single random predictor 330 

could sometimes explain over half of the variance in richness (maximum r
2
 = 0.518).  331 



Tree species richness 332 

The richness pattern for FIA plots is also spatially patterned, albeit noisy (Fig. 1e), as expected.  333 

The range of richness values is low, also expected from the very small plot size (0.07 ha).  At 334 

least some of the random intrinsic variables also contain obvious spatial structure (Fig. 1f-h), and 335 

all contain at least some small-scale positive autocorrelation with low to moderate levels of 336 

broad-scale structure in many of them (Fig. 2b).  Single predictor models of richness are in all 337 

cases weaker than for the bird data, but regression trees and generalized additive models were 338 

sensitive to the co-occurrence problem irrespective of the number of predictors (Table 2).  339 

Geographically weighted regression was not as strongly impacted as for the bird data, but R
2
s 340 

remained fairly high.  In contrast, linear regression models were reasonably robust, perhaps only 341 

because they are constrained to describe linear relationships.  Our general finding is that although 342 

both data sets are affected by the co-occurrence problem there are differences with respect to their 343 

sensitivity, and these differences could at least potentially reflect that the plot data have (i) a 344 

weaker broad scale species richness gradient, (ii) lower levels of spatial autocorrelation, and (iii) 345 

lower levels of species co-occurrences (see next section).  We explore these issues with the virtual 346 

scenarios. 347 

Virtual North America 348 

The simulations provided evidence that all data likely to be analyzed by biogeographers are 349 

sensitive to some extent to the co-occurrence problem, at least for the analytical methods we 350 

examined (Fig. 3).  It made rather little difference in the average model R
2
s whether the data were 351 

derived from cohesive or patchy ranges (cf. Fig. 3a and c) or if they contained a broad-scale 352 

species richness gradient (cf. Fig. 3a and b).  The only data structure that did not generate 353 

spurious models in at least some cases was when they are derived from patchy species 354 



distributions in the absence of a richness gradient (Fig. 3d), a very unlikely structure in data 355 

collected across any moderately strong environmental gradient.   356 

Two consistent patterns in the virtual scenarios were that multiple regression models are 357 

less strongly impacted than regression trees or generalized additive models, and the problem 358 

becomes increasingly more severe with increasing levels of repeated species co-occurrences for 359 

all analytical methods and three of four data structures (Fig. 3a,b,c,).  We also note that the levels 360 

of co-occurrence in some of the virtual scenarios were very similar to those found in both the bird 361 

(Fig. 3a) and tree (Fig. 3c) data, and higher levels of co-occurrence are found in the bird than in 362 

the trees, undoubtedly due in part to the cohesive ranges in the former.   363 

Despite the results from the simultaneous regressions, it is possible that the spatial 364 

autocorrelation found in all real data is at least part of the problem.  We examined this by 365 

quantifying the spatial patterns of the response and predictor variables in the virtual scenarios of 366 

cohesive versus patchy ranges with C-scores near 0.79 (see Fig. 3a and c).   If spatial 367 

autocorrelation is the root of the problem, we expect both data sets to contain broadly similar 368 

spatial patterning given that matched model fits (percent of variance explained) are similar in both 369 

data sets despite the fact that the ranges that underlie the variables are structurally quite different. 370 

 Unsurprisingly, cohesive ranges generated similar patterns of spatial autocorrelation 371 

between species richness and many of the random intrinsic variables (positive short-distance and 372 

negative long-distance autocorrelation, Fig. 4a), so it is perhaps not surprising that model fits 373 

were very high (Fig. 3a).  However, using patchy ranges to generate a richness gradient 374 

effectively removed the spatial pattern in the random intrinsic variables across all scales without 375 

affecting the pattern in richness (Fig. 4b).  Despite the almost complete spatial decoupling of 376 

patterns in richness and the predictors, model fits remained high (Fig. 3c).  Therefore, the 377 



analytical problem can exist independent of any spatial autocorrelation in the predictors. On the 378 

other hand, spatial patterning in the broad sense must have a role to play when groups of species 379 

respond similarly to an environmental gradient, as the models are minimally impacted when 380 

species do not respond to a spatially structured environmental gradient and are patchily 381 

distributed (Fig. 3d).  382 

Traits as response variables 383 

The co-occurrence problem persists when the focus of an analysis is itself an intrinsic variable, 384 

although not as severely (Fig. 5).  In the subset of random intrinsic variables selected as response 385 

variables both multiple regression and generalized additive models were moderately impacted, 386 

whereas regression tree models remained very strong even though none of the variables in the 387 

analysis, including the response variable, carry meaningful information.   388 

DISCUSSION 389 

Following Zelen  & Schaffers (2012), we find that the community-focus widely used in ecology, 390 

biogeography and macroecology suffers from a potentially severe structural problem with obvious 391 

ramifications.  First and foremost, any metric, whether physiological, morphological, behavioural, 392 

functional, phylogenetic, or ecological, that is generated at the assemblage/community level by 393 

assigning values to species and averaging them for the species present within a cell/plot can have 394 

internal statistical relationships of no biological significance across communities.  Thus, the 395 

problem is likely to be widespread in community-based analyses in which species share multiple 396 

sites.  Most worrying in our context is that the statistical bias generated by repeated species co-397 

occurrences among sites is not slight in most biologically plausible scenarios, especially when 398 

multiple intrinsic variables are involved.  That sets of intrinsic variables derived from random 399 



numbers can sometimes generate >90% explanatory power in statistical models of species 400 

richness in spatially structured assemblages/communities suggests that no result using actual traits 401 

or other attributes can be trusted, however strong the model may be.  It also follows that it is not 402 

possible to compare with confidence goodness-of-fits, regression coefficients or other measures 403 

of variable importance or rank in analysis involving multiple intrinsic predictors.   In some 404 

situations, where levels of co-occurrence are low, multiple regression appears to be robust, but 405 

without detailed analysis it is not possible to know why because of the multiple problems with 406 

linear regression that have been identified when used to analyze spatially structured data 407 

(Fotheringham et al., 2002; Grace & Bollen, 2005; Bini et al., 2009; Hawkins, 2012).  We are 408 

unable to address this complex set of statistical issues here.   409 

Secondly, we expected range cohesion to exacerbate the analytical problem by generating 410 

potentially spurious spatial autocorrelation among intrinsic predictor variables that would then 411 

link to the underlying spatial autocorrelation in richness.  If true this would identify results based 412 

on range map data as being particularly unreliable, whereas the plot data normally generated by 413 

community ecologists would be less impacted due to lower levels of autocorrelation.  However, 414 

our virtual data indicate that strong spurious relationships can occur in plot data without spatial 415 

autocorrelation in the intrinsic predictors as long as richness itself is spatially structured (see Fig. 416 

4b).  Although it was possible to generate data with minimal apparent impact on the three 417 

statistical methods (see Fig. 3d) few real data sets will have this structure, and so no data should 418 

be considered a priori to be immune to the problem, and the presence or absence of spatial 419 

autocorrelation is not definitive evidence that no problem exists, as long as some level of repeated 420 

species co-occurrence exists across communities/assemblages.  421 



Yet another ramification of the co-occurrence problem is that although spatial structure in 422 

intrinsic variables is not required for co-occurrences to be an issue in statistical analysis and 423 

ecological inference, spatially autocorrelated data are often used to generate maps showing 424 

aggregated assemblage/community trait values at the sub-continental, continental or global extent 425 

(Hawkins & Diniz-Filho, 2006; Morin & Lechowicz, 2011; Jetz et al., 2012; Swenson et al., 426 

2012; Hawkins et al., 2014; Šímová et al., 2014; Belmaker & Jetz, 2015).  The patterns in such 427 

maps can be visually striking and yet at least potentially biologically uninformative.  Thus, if 428 

repeated species co-occurrences contain spatial structure, which they will if multiple species 429 

respond similarly to the environment, it is not surprising that climate or other spatially structured 430 

environmental variables could generate relatively strong regression models when trait values are 431 

response variables.  It does not follow that such patterns must be artefactual if the trait of interest 432 

actually drives the species distributions; the problem is that any trait can contain spatial structure 433 

due to the co-occurrence problem even if it is distributed independently of the environment (see 434 

Fig. 1 for examples). 435 

 We are aware of two published solutions to the impact of repeated species co-occurrences 436 

on community-level metrics.  One is the permutation method proposed by Zelen  & Schaffers 437 

(2012) to correct the inflated Type I error. Their modified permutation test first calculates 438 

observed test statistics (like Pearson’s r coefficients for correlation or F-values for regression or 439 

ANOVA) of relationships between cell/plot mean species attributes and sample attributes. Then, 440 

these observed statistics are compared with the null distribution of expected test statistics, 441 

calculated between cell/plot means of randomly permuted species attributes and sample attributes. 442 

Note the difference of this approach and the use of null models in evaluating functional or 443 

phylogenetic diversity indices (e.g. Mason et al., 2013, with community weighted means being 444 



one of them) based on calculating standardized effect sizes (SES, or z-scores).  However, while 445 

SES is devised to correct for the effect of species richness influencing the absolute values of these 446 

indices, it does not solve the problem of repeated co-occurrences, which is not directly related to 447 

species richness.  The modified permutation test of Zelen  & Schaffers (2012) does correct for 448 

inflated Type I error but also does not correct regression coefficients or model fits.  Whereas 449 

accurate significance testing may be necessary and sufficient for many ecological applications, it 450 

is of limited value for broad-scale analyses, particularly of diversity gradients, in which the focus 451 

is typically on ranking the relative contributions of potential explanatory variables to compare 452 

potential underlying processes.  The challenge of distinguishing strong and weak predictors of 453 

species richness gradients has generated much of the discussion in the ecological literature 454 

evaluating methods for estimating regression coefficients for spatially structured data (e.g., 455 

Lennon, 2000; Diniz-Filho et al., 2003; Dormann et al., 2007; Hawkins, 2012; Kühn & Dormann, 456 

2012).  Uncertainty about ranking potential ‘effects’ of predictors makes disentangling the 457 

contributions of the many hypothesized influences on diversity gradients difficult, and species co-458 

occurrences add yet another layer of difficulty for evaluating intrinsic variables.   459 

The second approach to the problem of which we are aware is an adaptation of the fourth-460 

corner method by Peres-Neto et al. (2012, 2016), which claims to be immune to both the bias in 461 

regression coefficients and inflated Type I error rate.  This method is in fact a special case of 462 

correlation between cell/plot means of species attributes (traits) and sample attributes, in which 463 

both species and sample attributes are standardized, and the correlation itself is weighted by row 464 

sums of the species composition matrix. These row sums represent the sum of species abundances 465 

in the cells/plots, which in the case of presence/absence species composition data equal species 466 

richness.  This method may be suitable for community data relating species traits to 467 



environmental variables, which is sometimes done by the original fourth-corner method.  468 

However, in our opinion its current formulation cannot be used in the context of the analysis of 469 

species richness, since using correlation weighted by species richness to analyze the relationship 470 

between species richness and one or more intrinsic variables has no theoretical justification.  471 

Further development of this approach may lead to a solution to the problem we address here, but 472 

it is not obvious to us how to accomplish this. 473 

Although not a solution per se, a relatively straight-forward approach to evaluate if 474 

repeated co-occurrences might be a problem in a data set would be to conduct a separate set of 475 

regressions using cell/plot means calculated from repeatedly re-randomized trait values.  If 100 or 476 

more iterations of such regressions always generate very low coefficients of determination it 477 

suggests that patterns of repeated co-occurrences are not generating serious structural bias for the 478 

statistical method being evaluated.  On the other hand, if at least some models using repeatedly 479 

randomized trait values are moderate to strong, confidence in the results will have to be limited 480 

until a formal analytical solution is devised. 481 

To conclude, there is clearly a potentially serious analytical problem with community-482 

based metrics as predictors of species richness gradients, but a methodological solution to the co-483 

occurrence problem with respect to understanding diversity patterns is not yet available.  Until it 484 

is, workers should be aware that inferences from maps of assemblage/community-level metrics 485 

for any class of attribute, as well as analyses based on them using commonly used statistical 486 

methods, can be much less certain than they appear. 487 

 488 
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Table 1 Means (and SD) of coefficients of determination (R
2
) of four types of statistical models 503 

of the species richness of North American birds (see Fig. 1) across 14,462 cells in a continental 504 

grid including one, three or five ‘random intrinsic variables’ as predictors.  Each predictor 505 

variable represents mean cell values of random numbers taken from a uniform distribution 506 

between 0 and 1 and assigned to species.  LR = linear regression, RT= regression trees, GAM = 507 

generalized additive models, GWR = geographically weighted regression. 508 

No. of 509 

Predictors LR RT GAM GWR 510 

 511 

One 0.145 0.321 0.304 0.936 512 

    (0.143)      (0.087)       (0.159)       (0.004) 513 

Three 0.310 0.702 0.584 0.952 514 

       (0.148)      (0.061)       (0.126)       (0.004) 515 

Five 0.437 0.853 0.732 0.964 516 

       (0.114)      (0.032)       (0.074)       (0.003) 517 

 518 

The requisite numbers of predictors were randomly selected from a population of 100 random 519 

intrinsic variables.  Each model type was run with 100 combinations of predictors, or each 520 

predictor once in the one-predictor models.  The regression tree values were calculated from 200 521 

component trees in random forest models generated in the ‘randomForest’ package in R.  The 522 

simple and multiple regression models comprise linear terms of predictors with no interactions, 523 

and the degrees of freedom for the smooth terms in the GAMs were estimated using the 524 



Generalized Cross Validation criterion (for details see the gam function in the ‘mgcv’ R package).  525 

See the text for the details of the GWR models. 526 

527 



Table 2 Means (and SD) of coefficients of determination (R
2
) of four types of statistical models 528 

of the species richness of trees in US Forest Service Forestry Inventory and Analysis plots (see 529 

Fig. 1) including one, three or five ‘random intrinsic variables’ as predictors.  Each predictor 530 

variable represents mean plot values of random numbers taken from a uniform distribution 531 

between 0 and 1 and assigned to species.  LR = linear regression, RT = regression trees, GAM = 532 

generalized additive models, GWR = geographically weighted regression.  Modelling details as in 533 

Table 1. 534 

No. of 535 

Predictors LR RT GAM GWR 536 

 537 

One 0.021 0.146 0.184 0.443 538 

   (0.025)      (0.016)       (0.036)       (0.006) 539 

Three 0.058 0.444 0.441 0.465 540 

      (0.034)      (0.021)       (0.038)       (0.010) 541 

Five 0.084 0.593 0.542 0.495 542 

      (0.042)      (0.020)       (0.030)       (0.012) 543 

 544 

545 
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Appendix S1 Results for SAR models. 731 
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available at https://github.com/Farewe/CooccurrenceIssue. 737 
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FIGURE LEGENDS 746 

Figure 1 Species richness pattern of (a) North American bird species derived from maps of 747 

breeding ranges gridded at a 0.5° x 0.5° grain, and (e) trees in 0.07 h plots recorded by the US 748 

Forest Service Forest Inventory and Analysis.  (b-d, f-h) Three examples of cell/plot means 749 

(random intrinsic variables) in which random values between 0 and 1 were assigned to each 750 

species of bird or tree.  All colour schemes are in the natural-jenks scale from ArcGIS 10.3. 751 

 752 

Figure 2 Spatial autocorrelation structure (Moran’s I) of (a) the North American bird species 753 

richness pattern (black line) and 100 random intrinsic variables (gray lines), and (b) US tree 754 

richness pattern and 100 random intrinsic variables.  Note difference in scale of axes.   755 

 756 

Figure 3.  Mean (±1 SD) coefficients of determination of three types of five-predictor statistical 757 

models of species richness for four simulated North American scenarios plotted against a measure 758 

of species co-occurrences (C-score) calculated for five range size distributions: (a) data containing 759 

a strong species richness generated by species with cohesive ranges, (b) no broad-scale richness 760 

gradient generated by species with cohesive ranges, (c) a broad-scale richness gradient generated 761 

by species with patchy (non-cohesive) ranges, and (d) data with no broad-scale richness gradients 762 

generated by species with patchy ranges.  Within each scenario C-scores vary depending on the 763 

average realized range size of the species, which is influenced by the number of available patches 764 

species can occupy.  For comparison, C-scores and model fits (data from Tables 1 and 2) for birds 765 

and trees are shown in the scenarios to which their data correspond.  Model types are regression 766 

tree (RT), generalized additive models (GAM) and multiple linear regression (MR). 767 

 768 



Figure 4 Spatial autocorrelation structure (Moran’s I) of simulated data under the scenarios in 769 

which the data contain a broad-scale species richness gradient generated by species with (a) 770 

cohesive or (b) non-cohesive, 1000-patch distributions.  Black lines describe the spatial structure 771 

of richness and gray lines describe structure of 100 random intrinsic variables in each scenario. 772 

 773 

Figure 5 Frequency distributions of coefficients of determination from three types of statistical 774 

models generated using five random intrinsic variables as predictors against one random intrinsic 775 

variable as the response variable, in a simulated North American scenario with a broad-scale 776 

richness gradient generated by species with cohesive ranges.  Each model type was iterated 100 777 

times using random selections of predictors from a population of 99 random variables excluding 778 

the variable used as the response.  (a, c, e) The weakest models (best case) and (b, d, f) strongest 779 

models (worst case) selected from analyses of 10 arbitrarily selected response variables.  Vertical 780 

dashed lines identify mean values. 781 
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 802 

Appendix S1 Frequency distributions of ranked regression coefficients (absolute values) of 803 

simultaneous autoregressive (SAR) models of the species richness pattern of North American 804 

birds in 14,662 grid cells, with five random intrinsic variables as predictors.  The models were 805 

iterated 100 times using randomly selected combinations of predictors from a population of 100 806 

random intrinsic variables.  The coefficients of determination of all iterations were extremely high 807 

(mean = 0.980, SD = 0.001).  The sensitivity to the co-occurrence problem was evaluated based 808 

on the number of significant (P<0.01) non-zero regression coefficients.  For illustrative purposes 809 

the five coefficients from each iteration have been ranked and the frequency distributions across 810 

models of the strongest to weakest are plotted (dashed line = mean; note decreasing values from 811 

top left to bottom right).  The percentage of the 100 coefficients in each distribution that were 812 

significant is provided above each panel.   813 

The analyses were conducted using the spautol () function of the R package ‘Spdep’.  We 814 

used the sparse matrix decomposition method (Monte Carlo), which can handle large data sets 815 

with thousands of observations.  We used the knearneigh () function to create the matrix with the 816 

indices of points belonging to the set of the k (k = 4) nearest neighbours.  The matrix was 817 



converted to a neighbours list with spatial weights using the knn2nb () and nb2listw () functions, 818 

which were then used in the SAR models.  819 

 820 
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