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INTRODUCTION

Community ecology, geographical ecology, ecological biogeography and some aspects of macroecology and macroevolution frequently utilize metrics generated across communities or assemblages. One fundamental pattern shared across all of these fields is spatial variation in species richness, which can be quantified in grains ranging from small plots, for many ecological questions, to entire continents, for biogeographical and macroevolutionary questions. Beginning in the 1960's [START_REF] Pianka | On lizard species diversity: North American flatland deserts[END_REF], analyses of non-insular, broad-scale diversity gradients primarily focused on quantifying relationships with components of the environment, which depending on the grain/extent of the analysis and the taxon, normally included one or more measures of climate, often supplemented with non-climatic variables such as, inter alia, area, topography, productivity, soil or water properties, distance from source pools, or geological history (see [START_REF] Field | Spatial species-richness gradients across scales: a meta-analysis[END_REF] for a compilation of case studies and the variables that have been considered). A major concern of these analyses has been ranking the 'importance' of potential drivers of diversity, generally by comparing regression coefficients or the relative statistical explanatory power of predictors.

Irrespective of the specific metrics, most analyses utilized extrinsic predictor variables, defined as variables generated independent of the species in the plots, transects or grid cells. The majority of the environmental predictors, particularly climatic variables, also contain strong spatial structure, which were presumed to directly or indirectly generate the species richness patterns. There is a very extensive literature associated with the analysis of such spatially structured data (e.g. [START_REF] Ripley | Spatial statistics[END_REF][START_REF] Haining | Spatial data analysis[END_REF][START_REF] Dale | Spatial analysis: a guide for ecologists[END_REF].

Recently, there has been increased interest in the analysis of intrinsic variables, defined as variables calculated from attributes of the species known or assumed to be present in each assemblage or community. Two that have been used for some time as response variables in assemblage-based analyses include body size (with particular reference to Bergmann's Rule; [START_REF] Blackburn | Bergmann's rule and the mammal fauna of northern North America[END_REF][START_REF] Diniz-Filho | Seeing the forest for the trees: partitioning ecological and phylogenetic components of Bergmann's rule in European Carnivora[END_REF][START_REF] Olalla-Tárraga | Cross-species and assemblage-based approaches to Bergmann's rule and the biogeography of body size in Plethodon salamanders of eastern North America[END_REF][START_REF] Slavenko | Mean body sizes of amphibian species are poorly predicted by climate[END_REF] and range size (with reference to Rapoport's Rule; [START_REF] Stevens | The latitudinal gradient in geographical range: how so many species coexist in the tropics[END_REF]Hawkins & Diniz-Filho, 2006;Morin & Lechovicz, 2011). Other intrinsic variables, such as metrics generated using the position of each species in a phylogeny, have also been correlated with species richness patterns, often in combination with extrinsic predictors [START_REF] Kerr | The relative importance of evolutionary and environmental controls on broad-scale patterns of species richness in North America[END_REF][START_REF] Hawkins | Water links the historical and contemporary components of the Australian bird diversity gradient[END_REF][START_REF] Svenning | High tropical net diversification drives the New World latitudinal gradient in palm (Arecaceae) species richness[END_REF][START_REF] Belmaker | Relative roles of ecological and energetic constraints, diversification rates and region history on global species richness gradients[END_REF]. However, with the development of community phylogenetics [START_REF] Webb | Phylogenies and community ecology[END_REF] and trait-based approaches to studying community size and structure [START_REF] Shipley | From plant traits to vegetation structure. Chance and selection in the assembly of ecological communities[END_REF], the use of intrinsic variables as both response and predictor variables in assemblage/community analyses is rapidly expanding (e.g., [START_REF] Swenson | Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation[END_REF][START_REF] Jansson | Global variation in diversification rates of flowering plants: energy vs. climate change[END_REF][START_REF] Mayfield | What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change[END_REF][START_REF] Swenson | The biogeography and filtering of woody plant functional diversity in North and South America[END_REF][START_REF] Swenson | Constancy in functional space across a species richness anomaly[END_REF][START_REF] Dubuis | Predicting current and future spatial community patterns of plant functional traits[END_REF][START_REF] Stuart-Smith | Integrating abundance and functional traits reveals new global hotspots of fish diversity[END_REF][START_REF] Hawkins | Community phylogenetics at the biogeographical scale: cold tolerance, niche conservatism and the structure of North American forests[END_REF][START_REF] Leingärtner | Species richness and trait composition of butterfly assemblages change along an altitudinal gradient[END_REF][START_REF] Albouy | Projected impacts of climate warming on the functional and phylogenetic components of coastal Mediterranean fish biodiversity[END_REF][START_REF] Belmaker | Relative roles of ecological and energetic constraints, diversification rates and region history on global species richness gradients[END_REF][START_REF] Blonder | Linking environmental filtering and disequilibrium to biogeography with a community climate framework[END_REF][START_REF] Enquist | Scaling from traits to ecosystems: developing a general trait driver theory via integrating trait-based and metabolic scaling theories. Trait-Based Ecology -From Structure to Function[END_REF][START_REF] Finegan | Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses[END_REF][START_REF] Godoy | Functional determinants of forest recruitment over broad scales[END_REF][START_REF] Honorio Coronado | Phylogenetic diversity of Amazonian tree communities[END_REF][START_REF] Lima-Mendez | Determinants of community structure in the global plankton interactome[END_REF][START_REF] Seymour | On bird functional diversity: species richness and functional differentiation show contrasting responses to rainfall and vegetation structure in an arid landscape[END_REF][START_REF] Šímová | Shifts in trait means and variances in North American tree assemblages: species richness patterns are loosely related to the functional space[END_REF][START_REF] Stevens | Dimensionality of community structure: phylogenetic, morphological and functional perspectives along biodiversity and environmental gradients[END_REF][START_REF] Zhang | Which components of plant diversity are most correlated with ecosystem properties? A case study in a restored wetland in northern China[END_REF][START_REF] Biswas | A conceptual framework for the spatial analysis of functional trait diversity[END_REF][START_REF] Boucher-Lalonde | Can the richness-climate relationship be explained by systematic variations in how individual species' ranges related to climate?[END_REF][START_REF] González-Maya | Spatial patterns of species richness and functional diversity in Costa Rican terrestrial mammals: implications for conservation[END_REF][START_REF] Kimberly | How well is current plant trait composition predicted by modern and historical forest spatial configuration[END_REF][START_REF] Marin | Time best explains global variation in species richness of amphibians, birds and mammals[END_REF][START_REF] Pfautsch | Climate determines vascular traits in the ecologically diverse genus Eucalyptus[END_REF][START_REF] De La Riva | Disentangling the relative importance of species occurrence, abundance and intraspecific variability in community assembly: a trait-based approach at the whole-plant level in Mediterranean forests[END_REF]. The assumption or hypothesis underlying all such analyses is that species attributes sort geographically according to their responses to the abiotic and biotic environment. Here we show that these biologically meaningful assumptions cannot be evaluated from standard statistical associations of intrinsic variables measured at the community or assemblage level.

Patterns of species richness are by their nature spatial, which raises a number of statistical and inferential issues. The issue of spatial autocorrelation has been known to ecologists at least since [START_REF] Legendre | Spatial autocorrelation: trouble or new paradigm?[END_REF], as has the problem that collinearity among predictors can be driven by a joint environmental driver. However, a third ubiquitous and potentially serious analytical issue related to the use of intrinsic variables in spatial analysis appears to have largely escaped notice.

We illustrate through the use of bird range maps, plot data for trees, and biologically plausible simulated data sets an analytical problem associated with the use of intrinsic variables in assemblage-and community-focused analyses conducted in a spatial context. The problem arises whether the intrinsic variables are predictor or also as response variables, although our primary focus is on analyses of species richness as the response variable.

A specific flavour of the problem was reported by [START_REF] Zelen | Too good to be true; pitfalls of using mean Ellenberg indicator values in vegetation analyses[END_REF], who found that mean Ellenberg indicator values, an intrinsic community-based variable used in vegetation analysis, 'inherited' information about compositional similarity across communities, which then resulted in overestimates of explained variance in correspondence analyses as well as in regressions with species richness and inflated Type I error rates. They referred to this as a 'similarity issue' caused by the fact that the same species often occur in multiple communities.

More recently, [START_REF] Peres-Neto | Linking trait variation to the environment: critical issues with community-weighted mean correlation resolved by the fourth-corner approach[END_REF] reported biased estimates of regression coefficients and inflated Type I error rates between intrinsic community-based mean trait values and environmental variables in the context of trait-environment analysis used in community ecology.

The problem does not require that the community data have explicit spatial structure, only that some species occur in more than one community to the extent that some co-occurrences are repeated (hereafter referred to as the co-occurrence problem). However, we might expect a priori that the problem will be especially widespread in spatially structured assemblage data if there is any overlap of species distributions caused by species-level responses to environmental gradients, which will be rampant in datasets covering broad areas. To illustrate the severity of the problem in two widely used types of data we first present analyses of the species richness patterns of North American birds in their breeding ranges derived from range maps and tree community richness in plots sampled by the United States Forest Service's Forest Inventory and Analysis (FIA). The statistical models we generate use common linear, nonlinear, machine-learning and spatial regression methods to quantify the strengths of associations among cell/plot species richness as the response variable and sets of 'random intrinsic variables' as predictors, generated by assigning random numbers as species attributes and calculating their cell/plot means. These attributes could represent any quantitative physiological, morphological, ecological, behavioural or phylogenetic variable generated from any taxon-level assignment of values.

In a second set of analyses we explore four potential influences on the problem of particular relevance to ecologists and biogeographers, focusing on (i) levels of repeated species co-occurrences, (ii) the spatial coherence of those occurrences, (iii) the existence of a strong broad-scale richness gradient and (iv) the presence of spatial autocorrelation in the predictors.

For this we develop a set of simulated North Americas occupied by virtual species, to which each species is given sets of random attributes as with the two data sets comprising real species. With these random intrinsic variables as predictors we model the case in which a strong species richness gradient is generated by species with cohesive ranges responding to the temperature gradient found on the continent, followed by the case in which species still respond to temperature but ranges lack coherence. Although less likely in real data of moderate to large geographical extent, we also generate data sets without broad-scale richness gradients using species with either cohesive or patchy ranges. Finally, we use the first of the simulated scenarios to analyze community-level metrics in which random intrinsic variables comprise both response and predictor variables. The latter analyses illustrate the potential extent of the problem when all variables are intrinsic and generated from data containing repeated species co-occurrences.

MATERIALS AND METHODS

North American birds

Distribution maps were downloaded from BirdLife International (http://www.birdlife.org/datazone/info/spcdownload, accessed in June, 2014), and breeding ranges of the 1913 non-marine bird species in the region were extracted for analysis. The maps were binned at a 0.5° x 0.5° grain in a grid extending from the northern tip of Greenland to Panama, and the presence-absence matrix (PAM) of 14,662 grid cells each containing at least 15 bird species was created. As intrinsic predictors of species richness we generated random intrinsic variables, created by first assigning a real number between 0 and 1 taken from a uniform random distribution as a species attribute to each bird species. We then calculated means for each cell in the grid by averaging these random species attribute values for the birds found in the cell. This two-step process was repeated 100 times to generate a population of 100 random intrinsic variables for potential inclusion in statistical models of richness. Range-map based patterns of species richness and species co-occurrences invariably have strong spatial autocorrelation due to the high cohesiveness of most range maps. Data of this type are common in ecological biogeography and geographical ecology.

Trees in the conterminous United States

We also generated a PAM for the 304 gymnosperm and angiosperm species in 104,588 plots (each 0.07 h) in the US Forest Service's Forest Inventory and Analysis database (http://www.fia.fs.fed.us/, accessed in January, 2012) that contained at least three species and were in the conterminous USA. As with the birds, we generated 100 random intrinsic variables by repeatedly assigning random species attributes to all species in the dataset and averaging their values for species present in each plot, and these random intrinsic variables were then used as predictors in statistical models of tree species richness. Because the data are plot-based counts, species ranges are non-cohesive and expected to generate a substantially noisier and less spatially autocorrelated richness pattern, although distributions are by no means random due to trees' responses to spatially structured environmental drivers operating across a range of scales. This is the data type used in community ecology, community phylogenetics and frequently in analyses of altitudinal diversity gradients.

Virtual North America

We simulated species distributions in North America by defining their tolerances to annual mean temperature (BIO 1 in WorldClim [START_REF] Hijmans | Very high resolution interpolated climate surfaces for global land areas[END_REF]) within the 'virtualspecies' package in R [START_REF] Leroy | virtual species, an R package to generate virtual species distributions[END_REF]. To generate a species distribution, we simulated a Gaussian response to temperature, defined by an optimum value and a thermal tolerance delimiting 99% of the area under the Gaussian curve. We used this response to temperature to project the probability of occurrence of the species in North America. Next, we converted probabilities of occurrence into presence-absence with a probabilistic conversion. Lastly, we applied dispersal limitation with two approaches: (i) a non-cohesive approach where a species distribution was limited to a defined number of single-pixel habitat patches across North America; and (ii) a cohesive approach where species distributions were limited to a cohesive range of size identical to its non-cohesive counterpart. We expected the statistical problem to be most severe in the presence of a richness gradient comprising species with cohesive ranges due to a higher level of repeated species cooccurrences.

To sample species' optimal temperatures, we defined two scenarios: (i) a scenario with a richness gradient (optimal temperatures more likely to be sampled at higher temperatures), and (ii) a scenario with no richness gradient (optimal temperatures were randomly sampled along the temperature gradient). Thermal tolerances were randomly sampled between 5° and 45°C for both scenarios. These two scenarios were designed to test the co-occurrence effect on models where there is a link between richness and a spatially structured environmental driver (temperature), and where there is no link between richness and the environment, although the latter case is highly unlikely in any real data set. For each scenario, we generated 2000 species, and we repeated the process five times with different numbers of suitable habitat patches each time (250, 500, 1000, 2500 and 5000). We expected increases in numbers of available habitat patches to increase the degree of co-occurrence among species. We characterized co-occurrence patterns by estimating the C-score [START_REF] Stone | The checkerboard score and species distributions[END_REF] for each dataset/scenario. The C-score describes the average pairwise value of species associations in a PAM, ranging from a lower bound of 0 (maximum aggregation) to an undefined upper bound [START_REF] Gotelli | Null models of species co-occurrence patterns[END_REF]. Lower C-score values thus indicate higher average co-occurrence across all species pairs. Given that a particular C-score is specific to the PAM being analyzed, we used a modified version that normalizes the C-score according to a general maximum derived from the data and thus can be compared across datasets [START_REF] Dormann | Introducing the bipartite package: analysing ecological networks[END_REF]. To summarize, to facilitate interpretation of the results for the bird and tree data, neither of which is replicated, we simulated a total of 20 virtual North Americas (two richness scenarios × two range cohesiveness scenarios × five sizes of habitat patches).

As with the bird data, we generated a PAM for each scenario across the North American grid and generated 100 random intrinsic variables by assigning random numbers as species attributes and calculating assemblage means. These were selected as predictors of species richness and for one scenario as the response variable as well.

Statistical analyses

A range of linear and non-linear modeling methods exist for analyzing assemblage/community data focused on patterns of diversity, from which we selected five that have been commonly used or are coming into common usage: ordinary least squares linear regression (MR), regression trees (RT), generalized additive models (GAM), geographically weighted regression (GWR) and simultaneous autoregression (SAR). These methods vary considerably in their underlying assumptions and their ability to capture non-linear/non-stationary relationships, both of which are widespread in broad-scale ecological datasets [START_REF] Bini | Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression[END_REF] including our real and virtual data. Because of the non-stationarity in the data, we selected geographically weighted regression as our primary choice of a spatially explicit method, as it is explicitly designed to describe spatially varying relationships among variables. Even so, because SAR is used by many workers we evaluated its sensitivity to the co-occurrence problem using the bird data, the most strongly spatially autocorrelated of the data sets. When evaluating the results using this method it should be remembered that the coefficients are also sensitive to non-stationarity of the relationships independent of repeated species co-occurrences (see [START_REF] Fotheringham | Geographically weighted regression: the analysis of spatially varying relationships[END_REF], Bini et al.

[2009], [START_REF] Beale | Regression analysis of spatial data[END_REF] and [START_REF] Hawkins | Eight (and a half) deadly sins of spatial analysis[END_REF] for discussion of the assumptions underlying this class of spatially explicit methods), so interpretation of the results contains some ambiguity.

The utilization of geographically weighted regression is also compromised by the fact that we focused on a single bandwidth in the bird and tree data sets, 250.6 and 100.4, respectively; generated by a preliminary evaluation of the method in the Geographically Weighted Regression module in the SPATIAL ANALYSIS IN MACROECOLOGY program (https://www.ecoevol.ufg.br/sam/). Model outputs are sensitive to the bandwidth, and selection of appropriate bandwidths is itself a complex statistical issue [START_REF] Cho | Geographically weighted regression bandwidth selection and spatial autocorrelation: an empirical example using Chinese agriculture data[END_REF]. Thus, changing model parameters will change the results independently of the underlying structure of the data, and the results presented here represent one of many possible outcomes. Even so, it provides a warning that the method may be sensitive to the problem we describe in this paper.

Our rationale for selecting multiple modeling approaches was to evaluate the extent to which the existing literature is likely affected by the co-occurrence problem. If the analytical methods we evaluate are affected, it is likely that many other regression methods are affected as well. At the very least we cannot rule out that possibility without examining all known methods, which is beyond the scope of this paper. [START_REF] Zelen | Too good to be true; pitfalls of using mean Ellenberg indicator values in vegetation analyses[END_REF] have already demonstrated that correspondence analysis and correlation are sensitive to the problem.

For the real data sets (birds and trees) we generated sets of regression models of richness using combinations of random intrinsic variables as predictors. Models using each method were generated with one, three or five predictors, which is within the range of the number of predictors evaluated by researchers. The sample size of the birds comprised the 14,662 cells containing at least 15 species. For the trees computational limitations required randomly sampling 25,000 plots supporting at least three species. The models of varying complexity were generated 100 times, except in the case of the regression trees, for which 200 trees were generated in each case. Model iterations used each random intrinsic variable in the one-predictor models or randomly selected combinations of variables in the three-and five-predictor models. Evaluation of model fit comprised coefficients of determination (R 2 ), or the model average R 2 in the case of geographically weighted regression. We do not explicitly evaluate regression coefficients for four of the five regression types, as they have no biological meaning with respect to sets of random predictors and not all of the methods generate them. The exception is the SAR models, since they are designed to account for the spatial autocorrelation in data and can generate high coefficients of determination irrespective of the nature of the predictors; further, it is the more precise coefficients generated by the method that justify its use [START_REF] Beale | Regression analysis of spatial data[END_REF]. Consequently, for the SARs we determined how many of the coefficients across the models were significantly different from 0. If the models often generate spurious coefficients it indicates that controlling for spatial autocorrelation in the data does not remove the bias generated by the co-occurrence problem. This also would represent one line of evidence that the problem we are evaluating in this paper is not simply due to the spatial autocorrelation in the data, and we must look elsewhere for an explanation.

Analysis of the 20 virtual scenarios comprised first fitting randomly selected sets of five random intrinsic variables to species richness. Given the extremely strong fits found using geographically weighted regression of the bird data and the large number of spurious regression coefficients in the simultaneous autoregression models (see Results section), making the sensitivity of both methods to the problem obvious, we excluded them from the analysis of the simulated data. As before, each model was repeated 100 times using random combinations of random intrinsic variables, and coefficients of determination were tallied.

The final analysis used one random intrinsic variable as a response variable and five random intrinsic variables as predictors, derived from data in the 5000-patch, cohesive-ranges scenario with a strong richness gradient. We repeated the analysis ten times with arbitrarily chosen response variables, each replicated 100 times with random combinations of predictors.

Here we present the 'best case' and 'worst case' results, those with the lowest and highest mean coefficients of determination among the sets of models of the 10 repetitions. Running models for all 100 random intrinsic variables as response variables would expand the range of possible results, but the results for 10 are sufficient to illustrate the potential severity of the problem when using intrinsic variables derived from species presences as response variables in assemblage/community analysis with strong spatial structure.

RESULTS

Bird species richness

The richness gradient generated by the breeding range maps is strongly spatially patterned (Fig. 1a), as is already well known (e.g., [START_REF] Cook | Variation in species density of North American birds[END_REF][START_REF] Orme | Global hotspots of species richness are not congruent with endemism or threat[END_REF]Hawkins et al., 2006).

Further, means generated from random attributes can contain obvious spatial structure across multiple scales, as illustrated using three examples (Fig. 1b-d). Although the details of the spatial patterns varied among the random intrinsic variables, they tended to share a common structure of positive autocorrelation at small spatial scales and negative autocorrelation at very large scales, as did the species richness gradient (Fig. 2). Further, statistical models of richness had moderate to strong explanatory power across the model types (Table 1). Geographically weighted regression was especially sensitive to covariation between random predictors and richness, and even a single predictor variable generated very strong model fits. Simultaneous autoregression similarly showed evidence of strong sensitivity; all 100 models generated at least one coefficient significant at P <0.01, and in 26 cases all five coefficients were significant (Appendix S1 in the Supporting Information). Because of their ability to capture non-linear relationships, regression trees and generalized additive models generated moderate to very strong models, despite the complete lack of biological information in the predictors. Linear regression, due to the constraint of fitting linear relationships, generated the weakest models on average, but even a single random predictor could sometimes explain over half of the variance in richness (maximum r 2 = 0.518).

Tree species richness

The richness pattern for FIA plots is also spatially patterned, albeit noisy (Fig. 1e), as expected.

The range of richness values is low, also expected from the very small plot size (0.07 ha). At least some of the random intrinsic variables also contain obvious spatial structure (Fig. 1f-h), and all contain at least some small-scale positive autocorrelation with low to moderate levels of broad-scale structure in many of them (Fig. 2b). Single predictor models of richness are in all cases weaker than for the bird data, but regression trees and generalized additive models were sensitive to the co-occurrence problem irrespective of the number of predictors (Table 2).

Geographically weighted regression was not as strongly impacted as for the bird data, but R 2 s remained fairly high. In contrast, linear regression models were reasonably robust, perhaps only because they are constrained to describe linear relationships. Our general finding is that although both data sets are affected by the co-occurrence problem there are differences with respect to their sensitivity, and these differences could at least potentially reflect that the plot data have (i) a weaker broad scale species richness gradient, (ii) lower levels of spatial autocorrelation, and (iii) lower levels of species co-occurrences (see next section). We explore these issues with the virtual scenarios.

Virtual North America

The simulations provided evidence that all data likely to be analyzed by biogeographers are sensitive to some extent to the co-occurrence problem, at least for the analytical methods we examined (Fig. 3). It made rather little difference in the average model R 2 s whether the data were derived from cohesive or patchy ranges (cf. Fig. 3a andc) or if they contained a broad-scale species richness gradient (cf. Fig. 3a andb). The only data structure that did not generate spurious models in at least some cases was when they are derived from patchy species distributions in the absence of a richness gradient (Fig. 3d), a very unlikely structure in data collected across any moderately strong environmental gradient.

Two consistent patterns in the virtual scenarios were that multiple regression models are less strongly impacted than regression trees or generalized additive models, and the problem becomes increasingly more severe with increasing levels of repeated species co-occurrences for all analytical methods and three of four data structures (Fig. 3a,b,c,). We also note that the levels of co-occurrence in some of the virtual scenarios were very similar to those found in both the bird (Fig. 3a) and tree (Fig. 3c) data, and higher levels of co-occurrence are found in the bird than in the trees, undoubtedly due in part to the cohesive ranges in the former.

Despite the results from the simultaneous regressions, it is possible that the spatial autocorrelation found in all real data is at least part of the problem. We examined this by quantifying the spatial patterns of the response and predictor variables in the virtual scenarios of cohesive versus patchy ranges with C-scores near 0.79 (see Fig. 3a andc). If spatial autocorrelation is the root of the problem, we expect both data sets to contain broadly similar spatial patterning given that matched model fits (percent of variance explained) are similar in both data sets despite the fact that the ranges that underlie the variables are structurally quite different.

Unsurprisingly, cohesive ranges generated similar patterns of spatial autocorrelation between species richness and many of the random intrinsic variables (positive short-distance and negative long-distance autocorrelation, Fig. 4a), so it is perhaps not surprising that model fits were very high (Fig. 3a). However, using patchy ranges to generate a richness gradient effectively removed the spatial pattern in the random intrinsic variables across all scales without affecting the pattern in richness (Fig. 4b). Despite the almost complete spatial decoupling of patterns in richness and the predictors, model fits remained high (Fig. 3c). Therefore, the analytical problem can exist independent of any spatial autocorrelation in the predictors. On the other hand, spatial patterning in the broad sense must have a role to play when groups of species respond similarly to an environmental gradient, as the models are minimally impacted when species do not respond to a spatially structured environmental gradient and are patchily distributed (Fig. 3d).

Traits as response variables

The co-occurrence problem persists when the focus of an analysis is itself an intrinsic variable, although not as severely (Fig. 5). In the subset of random intrinsic variables selected as response variables both multiple regression and generalized additive models were moderately impacted, whereas regression tree models remained very strong even though none of the variables in the analysis, including the response variable, carry meaningful information.

DISCUSSION

Following [START_REF] Zelen | Too good to be true; pitfalls of using mean Ellenberg indicator values in vegetation analyses[END_REF], we find that the community-focus widely used in ecology, biogeography and macroecology suffers from a potentially severe structural problem with obvious ramifications. First and foremost, any metric, whether physiological, morphological, behavioural, functional, phylogenetic, or ecological, that is generated at the assemblage/community level by assigning values to species and averaging them for the species present within a cell/plot can have internal statistical relationships of no biological significance across communities. Thus, the problem is likely to be widespread in community-based analyses in which species share multiple sites. Most worrying in our context is that the statistical bias generated by repeated species cooccurrences among sites is not slight in most biologically plausible scenarios, especially when multiple intrinsic variables are involved. That sets of intrinsic variables derived from random numbers can sometimes generate >90% explanatory power in statistical models of species richness in spatially structured assemblages/communities suggests that no result using actual traits or other attributes can be trusted, however strong the model may be. It also follows that it is not possible to compare with confidence goodness-of-fits, regression coefficients or other measures of variable importance or rank in analysis involving multiple intrinsic predictors. In some situations, where levels of co-occurrence are low, multiple regression appears to be robust, but without detailed analysis it is not possible to know why because of the multiple problems with linear regression that have been identified when used to analyze spatially structured data [START_REF] Fotheringham | Geographically weighted regression: the analysis of spatially varying relationships[END_REF][START_REF] Grace | Interpreting the results from multiple regression and structural equation models[END_REF][START_REF] Bini | Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression[END_REF][START_REF] Hawkins | Eight (and a half) deadly sins of spatial analysis[END_REF]. We are unable to address this complex set of statistical issues here.

Secondly, we expected range cohesion to exacerbate the analytical problem by generating potentially spurious spatial autocorrelation among intrinsic predictor variables that would then link to the underlying spatial autocorrelation in richness. If true this would identify results based on range map data as being particularly unreliable, whereas the plot data normally generated by community ecologists would be less impacted due to lower levels of autocorrelation. However, our virtual data indicate that strong spurious relationships can occur in plot data without spatial autocorrelation in the intrinsic predictors as long as richness itself is spatially structured (see Fig. 4b). Although it was possible to generate data with minimal apparent impact on the three statistical methods (see Fig. 3d) few real data sets will have this structure, and so no data should be considered a priori to be immune to the problem, and the presence or absence of spatial autocorrelation is not definitive evidence that no problem exists, as long as some level of repeated species co-occurrence exists across communities/assemblages.

Yet another ramification of the co-occurrence problem is that although spatial structure in intrinsic variables is not required for co-occurrences to be an issue in statistical analysis and ecological inference, spatially autocorrelated data are often used to generate maps showing aggregated assemblage/community trait values at the sub-continental, continental or global extent (Hawkins & Diniz-Filho, 2006;[START_REF] Morin | Geographical and ecological patterns of range size in North American trees[END_REF][START_REF] Jetz | The global diversity of birds in time and space[END_REF][START_REF] Swenson | The biogeography and filtering of woody plant functional diversity in North and South America[END_REF][START_REF] Hawkins | Community phylogenetics at the biogeographical scale: cold tolerance, niche conservatism and the structure of North American forests[END_REF]Šímová et al., 2014;[START_REF] Belmaker | Relative roles of ecological and energetic constraints, diversification rates and region history on global species richness gradients[END_REF]. The patterns in such maps can be visually striking and yet at least potentially biologically uninformative. Thus, if repeated species co-occurrences contain spatial structure, which they will if multiple species respond similarly to the environment, it is not surprising that climate or other spatially structured environmental variables could generate relatively strong regression models when trait values are response variables. It does not follow that such patterns must be artefactual if the trait of interest actually drives the species distributions; the problem is that any trait can contain spatial structure due to the co-occurrence problem even if it is distributed independently of the environment (see Fig. 1 for examples).

We are aware of two published solutions to the impact of repeated species co-occurrences on community-level metrics. One is the permutation method proposed by [START_REF] Zelen | Too good to be true; pitfalls of using mean Ellenberg indicator values in vegetation analyses[END_REF] to correct the inflated Type I error. Their modified permutation test first calculates observed test statistics (like Pearson's r coefficients for correlation or F-values for regression or ANOVA) of relationships between cell/plot mean species attributes and sample attributes. Then, these observed statistics are compared with the null distribution of expected test statistics, calculated between cell/plot means of randomly permuted species attributes and sample attributes.

Note the difference of this approach and the use of null models in evaluating functional or phylogenetic diversity indices (e.g. [START_REF] Mason | A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients[END_REF] community weighted means being one of them) based on calculating standardized effect sizes (SES, or z-scores). However, while SES is devised to correct for the effect of species richness influencing the absolute values of these indices, it does not solve the problem of repeated co-occurrences, which is not directly related to species richness. The modified permutation test of [START_REF] Zelen | Too good to be true; pitfalls of using mean Ellenberg indicator values in vegetation analyses[END_REF] does correct for inflated Type I error but also does not correct regression coefficients or model fits. Whereas accurate significance testing may be necessary and sufficient for many ecological applications, it is of limited value for broad-scale analyses, particularly of diversity gradients, in which the focus is typically on ranking the relative contributions of potential explanatory variables to compare potential underlying processes. The challenge of distinguishing strong and weak predictors of species richness gradients has generated much of the discussion in the ecological literature evaluating methods for estimating regression coefficients for spatially structured data (e.g., [START_REF] Lennon | Red-shifts and red herrings in geographical ecology[END_REF][START_REF] Diniz-Filho | Spatial autocorrelation and red herrings in geographical ecology[END_REF][START_REF] Dormann | Methods to account for spatial autocorrelation in the analysis of species distributional data: a review[END_REF][START_REF] Hawkins | Eight (and a half) deadly sins of spatial analysis[END_REF][START_REF] Kühn | Less than eight (and a half) misconceptions of spatial analysis[END_REF]). Uncertainty about ranking potential 'effects' of predictors makes disentangling the contributions of the many hypothesized influences on diversity gradients difficult, and species cooccurrences add yet another layer of difficulty for evaluating intrinsic variables.

The second approach to the problem of which we are aware is an adaptation of the fourthcorner method by [START_REF] Peres-Neto | Assessing the effects of spatial contingency and environmental filtering on metacommunity phylogenetics[END_REF], 2016), which claims to be immune to both the bias in regression coefficients and inflated Type I error rate. This method is in fact a special case of correlation between cell/plot means of species attributes (traits) and sample attributes, in which both species and sample attributes are standardized, and the correlation itself is weighted by row sums of the species composition matrix. These row sums represent the sum of species abundances in the cells/plots, which in the case of presence/absence species composition data equal species richness. This method may be suitable for community data relating species traits to environmental variables, which is sometimes done by the original fourth-corner method.

However, in our opinion its current formulation cannot be used in the context of the analysis of species richness, since using correlation weighted by species richness to analyze the relationship between species richness and one or more intrinsic variables has no theoretical justification.

Further development of this approach may lead to a solution to the problem we address here, but it is not obvious to us how to accomplish this.

Although not a solution per se, a relatively straight-forward approach to evaluate if repeated co-occurrences might be a problem in a data set would be to conduct a separate set of regressions using cell/plot means calculated from repeatedly re-randomized trait values. If 100 or more iterations of such regressions always generate very low coefficients of determination it suggests that patterns of repeated co-occurrences are not generating serious structural bias for the statistical method being evaluated. On the other hand, if at least some models using repeatedly randomized trait values are moderate to strong, confidence in the results will have to be limited until a formal analytical solution is devised.

To conclude, there is clearly a potentially serious analytical problem with communitybased metrics as predictors of species richness gradients, but a methodological solution to the cooccurrence problem with respect to understanding diversity patterns is not yet available. Until it is, workers should be aware that inferences from maps of assemblage/community-level metrics for any class of attribute, as well as analyses based on them using commonly used statistical methods, can be much less certain than they appear.

Table 1 Means (and SD) of coefficients of determination (R 2 ) of four types of statistical models of the species richness of North American birds (see Fig. 1) across 14,462 cells in a continental grid including one, three or five 'random intrinsic variables' as predictors. Each predictor variable represents mean cell values of random numbers taken from a uniform distribution between 0 and 1 and assigned to species. LR = linear regression, RT= regression trees, GAM = generalized additive models, GWR = geographically weighted regression. The requisite numbers of predictors were randomly selected from a population of 100 random intrinsic variables. Each model type was run with 100 combinations of predictors, or each predictor once in the one-predictor models. The regression tree values were calculated from 200 component trees in random forest models generated in the 'randomForest' package in R. The simple and multiple regression models comprise linear terms of predictors with no interactions, and the degrees of freedom for the smooth terms in the GAMs were estimated using the Generalized Cross Validation criterion (for details see the gam function in the 'mgcv' R package).

See the text for the details of the GWR models. 
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Table 2

 2 Means (and SD) of coefficients of determination (R 2 ) of four types of statistical models of the species richness of trees in US Forest Service Forestry Inventory and Analysis plots (see Fig.1) including one, three or five 'random intrinsic variables' as predictors. Each predictor variable represents mean plot values of random numbers taken from a uniform distribution between 0 and 1 and assigned to species. LR = linear regression, RT = regression trees, GAM = generalized additive models, GWR = geographically weighted regression. Modelling details as in

	Table 1.				
	No. of				
	Predictors	LR	RT	GAM	GWR
	One	0.021	0.146	0.184	0.443
		(0.025)	(0.016)	(0.036)	(0.006)
	Three	0.058	0.444	0.441	0.465
		(0.034)	(0.021)	(0.038)	(0.010)
	Five	0.084	0.593	0.542	0.495
		(0.042)	(0.020)	(0.030)	(0.012)
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Additional Supporting Information may be found in the online version of this article: Appendix S1 Results for SAR models.

DATA ACCESSIBILITY

The bird range maps are available at (http://www.birdlife.org/datazone/info/spcdownload, and the FIA data are available at (http://www.fia.fs.fed.us/. All scripts used for the simulations are available at https://github.com/Farewe/CooccurrenceIssue. Appendix S1 Frequency distributions of ranked regression coefficients (absolute values) of simultaneous autoregressive (SAR) models of the species richness pattern of North American birds in 14,662 grid cells, with five random intrinsic variables as predictors. The models were iterated 100 times using randomly selected combinations of predictors from a population of 100 random intrinsic variables. The coefficients of determination of all iterations were extremely high (mean = 0.980, SD = 0.001). The sensitivity to the co-occurrence problem was evaluated based on the number of significant (P<0.01) non-zero regression coefficients. For illustrative purposes the five coefficients from each iteration have been ranked and the frequency distributions across models of the strongest to weakest are plotted (dashed line = mean; note decreasing values from top left to bottom right). The percentage of the 100 coefficients in each distribution that were significant is provided above each panel.

BIOSKETCH

The analyses were conducted using the spautol () function of the R package 'Spdep'. We used the sparse matrix decomposition method (Monte Carlo), which can handle large data sets with thousands of observations. We used the knearneigh () function to create the matrix with the indices of points belonging to the set of the k (k = 4) nearest neighbours. The matrix was converted to a neighbours list with spatial weights using the knn2nb () and nb2listw () functions, which were then used in the SAR models.