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Over the last two decades there has been an exponential increase in the use of cor-
relative species distribution models (SDMs) to address a variety of topics in ecology, 
biogeography, evolution, and conservation biology. Conversely, the use of these sta-
tistical methods to study the potential distribution of subterranean organisms has 
lagged behind, relative to their above-ground (epigean) counterparts. The reason for 
this is possibly related to a number of peculiarities of subterranean systems, which 
pose important limits, but also opportunities, for these correlative models. The aim 
of this forum is to explore the caveats that need to be made when generalizing these 
statistical techniques to caves and other subterranean habitats. We focus on the typical 
bias in spatial datasets of cave-dwelling species, and provide advice for selecting the 
model calibration area. In parallel, we discuss the potential use of different large scale 
surface variables to represent the subterranean condition. A more widespread adoption 
of these statistical techniques in subterranean biology is highly attractive and has great 
potential in broadening our knowledge on a variety of ecological topics, especially in 
the fields of climate change and biodiversity conservation. Their use would especially 
benefit the study of the biogeographic patterns of subterranean fauna and the impact 
of past and future climate change on subterranean ecosystems.

Introduction

Species distribution modelling (SDM) refers to the practice of using mathematical 
algorithms to establish a relationship between occurrence data and environmental 
variables, with the aim of representing the ecological niche of a certain species or pro-
jecting a probability surface into a geographical space to represent its potential range 
of distribution (Franklin 2009, Peterson et al. 2011). Although these spatial models 
have often been referred to with different names (climatic envelope models, ecologi-
cal niche models, species niche models, etc.), for simplicity we will use the acronym 
SDM hereafter; but see Sillero (2011) and Peterson and Soberón (2012) for semantic 
discussions. In the last few years there have been many developments in this field 
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and numerous algorithms are currently available (Elith et al. 
2006, 2011, Blonder et  al. 2014, Qiao et  al. 2015, 2016). 
These tools have given excellent opportunities to address a 
variety of questions in ecology, biogeography, evolution 
and conservation biology (Guisan and Thuiller 2005, Elith 
and Leathwick 2009, Booth et al. 2014). One of the most 
intriguing applications of these methods is the possibility of 
transferring current distribution models into new geographi-
cal spaces and time frames, with important applications in 
invasion biology and global change biology, respectively 
(Peterson and Vieglais 2001, Pearson and Dawson 2003, 
Peterson 2003, Hijmans and Graham 2006, Dormann 2007, 
Jiménez-Valverde et al. 2011). 

For all these reasons, interest in SDM has grown expo-
nentially in the last three decades, with hundreds of scien-
tific papers published every year in peer-reviewed journals 
(Lobo et al. 2010: p. 104, f. 1). In contrast, the total number 
of published works applying these statistical techniques to 
the study of the distribution of subterranean organisms is 
orders of magnitude lower. As far as we are aware, in the 
last ten years there have been less than twenty contribu-
tions specifically employing SDM techniques to the study of 
subterranean species distribution (Table 1). 

Subterranean habitats are among the most widespread 
terrestrial environments on our planet (a glossary of the 
jargon related to subterranean biology adopted in this 
text is given in Table 2). For example, over 45 000 caves 
have been reported from the United States (Culver 1999 
to Christman and Culver 2001) and 20  000–25  000 
caves are estimated solely for the Dinarides, the most 
important karst region in Europe (Zagmajster  et  al. 
2008, 2010). However, Curl (1958, 1966, 1999) pointed 
out that the majority of caves have no entrances, mean-
ing that the number of empty spaces beneath the earth’s 
crust must be even higher. Moreover, troglobionts do 
not exclusively inhabit caves, but also dwell in smaller 
subterranean voids the size of which is not commensu-
rable to the human scale (Culver and Pipan 2009, 2014, 
Giachino and Vailati 2010, Mammola  et  al. 2016a). 
Altogether, subterranean habitats contain a peculiar and 
spectacularly diverse fauna, with different taxonomic 
orders and even classes occurring in caves only a few kilo-
metres apart (Culver et al. 2013). Culver and Holsinger 
(1992) estimated that there should be from 50  000 to 
100 000 obligate cave-dwelling species worldwide, most 
of which have not yet been described, especially in the 
tropics (Trajano et al. 2016). 

Considering that in the last two decades, the study of 
subterranean biology has seen many significant advances, 
especially from molecular and ecological standpoints 
(Juan et al. 2010, Moldovan 2013, Culver 2016, Pipan and 
Culver 2016), it is interesting to discuss why the application 
of correlative SDM techniques to subterranean fauna has 
lagged behind to this extent. There are different possible 
explanations for this paucity of studies. Foremost, it is prob-
ably counterintuitive to model the subterranean conditions 

using the typical external variables adopted in correlative 
SDMs. In many cases, the transfer of the variables, whether 
topographical or climatic, from the surface to subterranean 
habitats is not straightforward. Secondly, for most sub-
terranean taxa there is a general lack of spatial datasets of 
species distribution, which are mandatory for SDM stud-
ies (Barbet-Massin  et  al. 2012), although recently some 
extensive occurrence databases have been developed, which 
should facilitate the development of SDMs for subterranean 
taxa (Zagmajster et al. 2008, 2014, Deharveng et al. 2009, 
Glanville et al. 2016). Thirdly, many subterranean species are 
extremely limited spatially, either due to inadequate sampling 
or to a high level endemism, and thus the minimum number 
of data points to calibrate a correlative model properly, may 
not be reached (Christman et al. 2016, Proosdij 2016). Fur-
thermore, while a number of recent advances indicate that 
the study of macroecological patterns of subterranean spe-
cies is a fast-moving field of research (Christman and Culver 
2001, Culver et al. 2003, 2006, 2013, Zagmajster et al. 2008, 
2010, 2014, Dole-Olivier  et  al. 2009, Gibert  et  al. 2009, 
Malard et al. 2009, Stoch and Galassi 2010, Niemiller and 
Zigler 2013, Eme et al. 2015, 2017, Bregović and Zagmajster 
2016, Christman et al. 2016, Pellegrini et al. 2016), it may 
also be that SDMs have not yet reached popularity in the 
subterranean literature.

Regardless of the underlying reasons for this knowl-
edge gap, it is arguable that an increase in the utilization 
of correlative SDMs would improve our understanding of 
the biogeography of cave-dwelling organisms, their niche 
dynamics and of the effects of climate change on subterra-
nean ecosystems, among other topics. The aim of this forum 
is to explore the main caveats of SDM techniques when 
they are applied to caves and other subterranean habitats, 
with the overall goal of stimulating studies investigating the 
ecological niche and potential distribution of subterranean 
organisms.

Modelling the distribution of subterranean 
species

In order to fit a SDM it is necessary to collect occurrence 
data of the species of interest, and to relate these occurrences 
to a set of environmental variables (so-called predictors, 
covariates or inputs) within a calibration area (Soberón and 
Peterson 2005, Muñoz  et  al. 2009) (Fig. 1). However, the 
peculiarities of underground habitats and their organisms 
pose specific challenges for SDMs; see Schroeder (2008) for 
an example related to soils. In the following paragraphs, we 
discuss some important concepts regarding the selection of 
occurrence records, the environmental variables and the cali-
bration area when applying models to subterranean habitats. 
We focus here on specificities of subterranean SDMs, and 
not on general guidance about the modelling procedures, 
model validation and the underlying statistical theory, which 
can be found in the literature. Many practical guidelines for 
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applying SDMs are available (Muñoz et al. 2009, Elith et al. 
2011, Merow  et  al. 2013), as well as statistical platforms 
which facilitate the computation of the different algorithms 
(Phillips et al. 2006, Thuiller et al. 2009, Warren et al. 2010, 
Qiao  et  al. 2012, Hijmans  et  al. 2014, Cola  et  al. 2016, 
Naimi and Araújo 2016).

Occurrence data

Sampling biases
Assembling reliable datasets of occurrences of obligate 
subterranean organisms is challenging for multiple reasons. 
Foremost, sampling in caves and other subterranean habitats 

Table 1. Summary of the studies applying species distribution models (SDM) in subterranean ecosystems. We excluded studies on bats 
(Lisón  et  al. 2013, Soto-Centeno  et  al. 2015, Cooper-Bohannon  et  al. 2016, Herkt  et  al. 2016) and their parasites (Flory  et  al. 2012, 
Escobar et al. 2014) from this compilation, as bats are likely to use caves exclusively as shelters, and their distribution is likely to be driven 
by several external factors, such as the availability of feeding areas, flight paths, availability of roosts, etc.

Model organism(s) Area Variables
Modelling 

technique(s) Aim(s) Reference

Amphipod 
Niphargus virei 

Europe (Jura 
Mountains, 
France)

Elevation, linear distance 
to the glacier 

GLM Influence of 
Pleistocene 
glaciations on 
current distribution

Foulquier et al. 
2008

Amphipods (gen. 
Niphargus)

Europe (Istrian 
Peninsula, NW 
Balkans)

Bioclimatic variables MaxEnt Study of niche 
partitioning

Fišer et al. 2015

Amphipods (gen. 
Niphargus)

Southwestern 
England

Hydrogeological 
formations, water 
chemistry 

GLM Study of the factor 
driving the 
distribution and 
composition of 
stygobiont 
assemblages

Johns et al. 2014

Beetles (tribe 
Leptodirini)

Europe (Pyrenees) Temperature variables Bioclimatic envelope 
procedure based 
on grid cells

Study of climate 
change dynamics 

Sánchez-
Fernández et al. 
2016

Cave salamanders 
(gen. Eurycea and 
Plethodon)

North America 
(northwestern 
Georgia)

Bioclimatic variables, 
NDVI indexes, soil 
parameters, vegetation 

MaxEnt Model potential 
distribution and 
thermal niche

Camp et al. 2014

Scorpion 
(Pseudouroctonus 
reddelli)

North America 
(Edwards Plateau 
karst region, Texas)

Bioclimatic variables MaxEnt Identify Pleistocene 
refugia

Bryson et al. 2014

Spiders (gen. 
Pimoa)

Europe (W-Alps, 
Appennine)

Bioclimatic variables, 
elevation

MaxEnt Identify Pleistocene 
refugia. Study of 
niche partitioning

Mammola et al. 
2015

Spiders (gen. Meta) Great Britain Elevation, geological 
substrate, precipitation, 
temperature

MaxEnt Predict the present and 
future distribution of 
native and alien 
congeneric species

Mammola 2017

Spiders (gen. Meta) Europe, north Africa Bioclimatic variable, 
elevation

MaxEnt, 
n-dimensional 
hypervolumes

Study of niche 
partitioning and 
climate change 
dynamics

Mammola and 
Isaia 2017

Spiders (gen. 
Troglohyphantes)

Europe (NW 
Italian-Alps)

Bioclimatic variables, 
elevation, Pleistocene 
glaciers

MaxEnt, GLM, BRT Study of climate 
change dynamics

Mammola et al. 
2017

Troglobionts North America 
(Illinois to Virginia 
and New York to 
Alabama) 

Elevation, geological 
substrate, temperature 
and precipitation, 
vegetation, soil data.

GLM Predict occurrence of 
cave-dwelling fauna

Christman et al. 
2016

Troglobionts Canary Island (Gran 
Canaria)

Vegetation, ecoglogical 
substrate, precipitation

MaxEnt Predict occurrence of 
cave-dwelling fauna 

Naranjo et al. 
2014

True bug (gen. 
Zelurus)

South America Bioclimatic variables, 
elevation

MaxEnt Predict potential 
distribution

Ferreira et al. 2016

Obligate 
groundwater 
species (19 spp.)

Europe (Jura 
Mountains, 
France)

Elevation, ecological 
substrate, habitat 
variables, physical-
chemical water 
parameters

GAM Predict present and 
past potential 
distribution

Castellarini et al. 
2007

BRT = boosted regression tree; ENFA = ecological niche factor analysis; GLM = generalized linear model; GAM = generalized additive model; Max-
Ent = maximum entropy modelling.
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is particularly challenging because human access to these 
habitats is difficult, often demanding the use of specific 
caving techniques and equipment (Zagmajster et al. 2010). 

In addition, the low abundance of subterranean organisms 
often results in low detectability, requiring repeated visits/
sampling sessions to sample species (Schneider and Culver 

Table 2. Glossary.

Term Definition adopted herein Reference

Subterranean habitat(s) All the aphotic undeground spaces and cavities harbouring species showing adaptation 
to the subterranean life (troglobiomorphic traits). These include human-accessible 
caves (‘proper caves’ sensu Curl 1964), but also the network of fissures and voids of 
smaller size, the shallow subterranean habitats (defined below) and various artificial 
subterranean habitats (mines, bunkers, cellars, etc.).

Culver and Pipan 2009, 
Romero 2009

Shallow subterranean 
habitats (SSHs)

The aphotic subterranean habitats close to the surface, harbouring species showing 
troglobiomorphic traits, such as epikarst, lava tubes, deep leaf litter, soil strata and the 
so-called Milieu Souterrain Superficiel.

Culver and Pipan 2014 

Troglobiont A terrestrial species strictly bound to a subterranean habitat. Sket 2008
Stygobiont An aquatic species strictly bound to a subterranean habitat.  
Troglophile Essentially epigean species, but able to maintain a permanent subterranean population 

or temporarily to inhabit a subterranean habitat. Although Sket (2008) distinguished 
between sub- and eu-troglophiles, for simplicity we used the general term troglophile 
in the text.

 

Trogloxene An epigean species exploiting the subterranean habitats for occasional purposes.  

Figure  1. General workflow for species distribution modelling (SDM) of a subterranean species – an imaginary cave-dwelling beetle 
endemic to the Iberian Peninsula. In order to fit the model, it is necessary to collect occurrence data of the species (see section ‘Occurrence 
data’ for details), and to relate these occurrences to a set of explanatory variables (see section ‘Environmental predictors’ for details) within 
a calibration area (see relative section for details). Model, in turn, can be projected onto different geographic areas and temporal time-
frames, in order to address various ecological and evolutionary questions (see section ‘Applications of SDM in subterranean biology’).
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2004, Eberhard et al. 2009, Halse and Pearson 2014). Once 
samples have been acquired, a further problem lies in species 
identification afterwards, due to the lack of taxonomists. This 
problem is especially serious when considering taxa that are 
underrepresented within subterranean communities, such as 
minor orders of arthropods. 

Secondly, a growing body of evidence reveals that a large 
number of subterranean organisms dwell in networks of 
small fissures (Giachino and Vailati 2010, Culver and Pipan 
2014, Mammola et al. 2016a) or in caves with no entrances 
(Christman and Culver 2001). Since these habitats are not 
accessible to humans, except by indirect means, collection of 
species in these habitats requires the use of special sampling 
techniques – see Mammola et al. (2016a) for a review. There-
fore, biological studies focusing on the subterranean fauna 
take place almost exclusively in caves.

The general consequences of these caveats are that a 
substantial part of subterranean biodiversity is unknown, 
absences are difficult to ascertain, and that distribution data 
are biased toward caves in the most investigated regions. These 
biases may result in a number of issues for SDMs, although 
not exclusive to the specific case of subterranean habitats. 
First, the likely unreliable nature of absences should lead 
to ponder the choice between presence-only and presence–
absence modelling techniques (see Guisan and Zimmerman 
2000, Guillera-Arroita  et  al. 2015, Jarnevich  et  al. 2015, 
Yackulic et al. 2015 which discuss in detail the assumptions, 
requirements and caveats of different modelling techniques). 
Second, given the aforementioned likelihood of imperfect 
detection in subterranean systems, the impact on SDM per-
formance should be considered. It can be done by collecting 
data in a way that allows detectability to be modelled, which 
does not necessarily require a higher sampling effort (Lahoz-
Monfort et al. 2014). Third, depending on sampling biases 
and on the modelling approach, SDMs may not be able to 
estimate occurrence probability, highlighting the necessity 
of a critical evaluation of the output given by a SDM to 
ensure that it can be applied to the defined research question 
(Guillera-Arroita 2017).

Furthermore, as discussed in the introduction, when deal-
ing with species with high levels of endemism and small dis-
tribution ranges, even a complete sampling could yield an 
insufficient number of data points to estimate species niche 
with SDMs. In such cases, one possible solution would be 
to consider data at the genus or trophic level, i.e. a spe-
cies complex instead of a single species (Johns  et  al. 2014, 
Mammola et al. 2017). It is clear that this approach will be 
possible only if species share similar ecological traits, e.g. a 
similar thermal physiology, and show a generally high niche 
overlap (Qiao et al. 2017).

Variation of sampling effort is also a common problem, 
especially in regions where the number of caves is large or 
because of the lack of scientists who are able to investigate 
underground habitats. For example, this issue is especially 
serious in regions where subterranean biology has only 
recently started to grow, such as the Neotropics (Trajano 

and Bichuette 2009, Silva and Ferreira 2016, Trajano et al. 
2016). Incidentally, the distribution of most taxa is expect 
to be underestimated even in areas with historical and 
consolidated speleobiological traditions (Zagmajster et al. 
2008, 2010) – although the use of modern surveillance 
tools, such as environmental DNA, is recently helping  
to overcome this impediment (Gorički  et  al. 2017, 
Năpăruș-Aljančič  et  al. 2017, Niemiller  et  al. 2017, 
Vörös et al. 2017).

For these reasons, occurrences of cave-dwelling species may 
be unevenly distributed in environmental space, containing 
gaps and areas of higher density (Christman and Culver 2001, 
Christman et al. 2005). Several methods to test for spatial auto-
correlation in occurrence datasets and statistical methods to deal 
with different sources of sampling bias have been put forward 
in the SDM literature (Dormann  et  al. 2007, Phillips  et  al. 
2009, Newbold 2010, Syfert et al. 2013, Olivera et al. 2014, 
Jarnevich et al. 2015). However, most auto-correlation correc-
tion measures will prevent correct extrapolation to new envi-
ronments, either spatially and/or temporally. At the very least, 
we recommend aggregating occurrence data in grids at the 
resolution of environmental variables, rather than using raw 
point-locality occurrence data, to avoid inflation of the num-
bers of presences and absences as an effect of spatial sampling 
heterogeneity (Mammola 2017).

Mismatches between occurrence and species distribution
The issues previously discussed represent the primary sources 
of potential errors in spatial datasets of subterranean species 
that have to be taken into account prior to model fitting. 
However, there are other issues that can be associated with 
spatial datasets, which are often related to the way in which 
geographical coordinates are measured by cavers. GPS 
coordinates are almost always recorded at the cave entrance; 
a potential source of error is therefore introduced if the 
species under study actually dwells far from the entrance, 
so there may be a mismatch between the environmental 
values extracted from the occurrence point geo-referenced 
at the cave entrance, and the real habitat occupied by the 
species (Fig. 2). 

To correct for this mismatch manually, the topographic 
position of the ground plan of the cave has to be derived, in 
order to establish the correct position occupied by the spe-
cies within the subterranean environment, and to project it 
to the surface. Sophisticated tools that permit georeferenc-
ing of the internal geomorphology of karst are available in 
the specialized literature (Florea et al. 2002, Litwin 2008, 
Gallay et al. 2016). However, the decision to spend time and 
invest funds to obtain very precise GPS coordinates rather 
than approximations will largely depend on the scale of 
the phenomenon under investigation. This mismatch only 
relates to very big cave systems, and whenever the resolution 
of the environmental layers employed in the SDM is smaller 
than the cave length. It does not apply to vertical caves (pits 
and abysses) or in the case of species dwelling in the vicinity 
of the cave entrance. From a statistical point of view, the 
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potential impact of this spatial mismatch on SDMs can be 
visualised and tested (Naimi 2013, Naimi et al. 2013). 

Environmental predictors

Among the most important aspects that has hindered the 
development of spatial modelling in subterranean biology 
are i) the unavailability of useful environmental GIS variables 
and ii) the difficulties encountered when transferring exter-
nal variables from the surface to the subsurface. However, 
the recent development of readily available large scale spatial 
variables can overcome the first impediment. Accordingly, 
the usability of different surface variables for understanding 
the patterns and processes in subterranean habitats has been 
recently discussed in the speleobiological literature (Stoch 
and Galassi 2010, Zagmajster et al. 2014, Eme et al. 2015, 
Mammola et al. 2015, 2017, Bregović and Zagmajster 2016, 
Christman et al. 2016, Mammola 2017). 

The different responses obtained in studies published so far, 
suggest that the relative importance of different variables in 
determining distribution patterns is likely to vary depending 
on the scale of analysis (Field et al. 2009) – a nested hierar-
chy of environmental factors may determine species patterns 
at different scales (Stoch and Galassi 2010) – and the taxon 
under consideration. For example, while current climatic 
conditions and historical factors have proved to be important 
for explaining the potential distribution of different terrestrial 

arachnids (Bryson et al. 2014, Mammola et al. 2015, 2017, 
Mammola and Isaia 2017), with respect to aquatic crusta-
ceans it has been shown that recent climate is a very poor pre-
dictor of subterranean distribution patterns (Zagmajster et al. 
2014). 

Accordingly, when applying SDM to subterranean 
systems it is crucial to evaluate the potential inclusion of 
a variety of environmental predictors, such as topographic, 
climatic, geological and historical variables. Moreover, in line 
with the recent literature (Murray et al. 2009, Brandt et al. 
2017), the choice of variables should not only be based on 
statistical selection, but also include expert-based selection 
considering the specific biology of the taxon under study, 
e.g. terrestrial versus aquatic subterranean species. We here-
after discuss a list of potential predictors which can be used 
as proxies of the availability of suitable underground con-
ditions, considering their potential transferability to the 
subterranean habitats. 

Topographic factors and habitat heterogeneity
Habitat availability and habitat (pore) size are the first factors 
limiting the occurrence of a subterranean species (Christman 
and Culver 2001, Pipan and Culver 2017). Logically, a higher 
habitat and topographic heterogeneity should enhance a 
wider distribution in most subterranean taxonomic groups 
(Cornu et al. 2013, Eme et al. 2015, Christman et al. 2016). 
Accordingly, many variables that can be used as proxies of 

Figure 2. The ground plan of a hypothetical cave. A species of cave-dwelling beetle was collected at ca 5 km from the entrance, in the final 
chamber (orange dot). The collector associated the GPS coordinates corresponding to the cave entrance with this record (dot and arrow, 
respectively). If this occurrence is used for species distribution modelling (SDM), there will be a mismatch between the environmental 
values extracted at the entrance, and those in which the species actually dwells (dotted line). However, this mismatch will represent a 
potential source of error only if the spatial resolution of the environmental layer employed is  5 km.
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subterranean habitat availability have been put forward in the 
recent literature. 

Different authors have suggested that elevation range is 
one of the simplest surrogates of topographic heterogeneity 
(Zagmajster et al. 2014, Eme et al. 2015, 2017, Bregović 
and Zagmajster 2016), and the inclusion of elevation data 
rasters is therefore common in most of the subterranean 
SDM studies published to date (Table 1). Different authors 
also have used variables related to the geological substrate(s) 
as a proxy for the availability of subterranean habitat. For 
instance, Christman et al. (2016) included the percent area 
of carbonate bedrock in 20  20 km grid cells as a measure 
of potential karst, whereas Cooper-Bohannon et al. (2016) 
used the distance from karst areas in their models. Both 
of these approaches are suitable for predicting the poten-
tial presence of suitable habitats in karst landscape because 
they reflect the potential presence of limestone caves. How-
ever, they would underestimate the availability of suitable 
habitats in non-karst substrates, e.g. tectonic caves, shallow 
subterranean habitats (SSHs; see Table 2 for the defini-
tion), or artificial subterranean habitats (e.g. mines, cellars, 
bunkers). 

In order to account for a larger variety of potentially 
suitable habitats, more heterogeneous and detailed geomor-
phological maps have to be included as predictors, reflecting 
the variety of geological substrates that can potentially host 
subterranean habitats. In other words, the most appropriate 
habitat metric should be used depending on the subterra-
nean habitat and taxon under consideration. For instance, 
Herkt et al. (2016) developed a specific variable representing 
the ruggedness of the terrain to reflect the presence of caves 
and crevices, whereas Christman et al. (2016) included a top-
ographic position index as an indirect measure of landscape 
rugosity. 

In some cases, environmental variables can have a thresh-
old effect on species, i.e. their nature can lead to systematic 
species absence (e.g. aquatic species cannot thrive out of 
water). For example, species can be limited to karst land-
scapes, and thus the absence of karst will result in species 
absence; e.g. calciphilous invertebrates such as certain species 
of Gastropoda. If such information is available a priori, then 
these environmental variables do not need to be included 
as predictors in the model; they should rather be used as a 
binary filter to refine model outputs to suitable areas [an 
example of this two-step modelling process can be found in 
Gillard et al. (2017)]. 

Recently, more comprehensive representations of subter-
ranean habitat availability have also been made available. 
Cornu et al. (2013) published a map of the distribution of 
groundwater habitats in Europe, which can be used for mod-
elling aquatic subterranean species. The inclusion of predic-
tors directly derived from this map has since become standard 
practice in studies addressing the distribution patterns of sub-
terranean aquatic species in Europe (Zagmajster et al. 2014, 
Eme et  al. 2015). We believe that further developments of 
similar maps, extending the geographic coverage and also 
considering the distribution of terrestrial subterranean 

habitats, would therefore represent stimulating endeavours, 
representing major advances in the understanding of distri-
butional patterns of subterranean species.

Current climate
The majority of SDM studies of above-ground (epigean) eco-
systems are based on the 19 ‘bioclimatic’ variables, which 
constitute a set of variables derived from monthly means 
and extreme temperatures and rainfall regimes (Table 3); see  
Kriticos et al. (2012, 2014), Title and Bemmels (2017) and for 
further additions to the standard set of bioclimatic variables. 
Bioclimatic variables are available at different spatial resolu-
tions, from coarse (10’) to very fine (30’’), for a current time 
scale (1970–2000; Fick and Hijmans 2017) and for several past 
and future scenarios (Hijmans et al. 2005, Kriticos et al. 2012).

One of the primary concerns about the use of bioclimatic 
variables to model subterranean species niches and distribu-
tions is that these variables may not represent subterranean 
conditions adequately (but see Table 3). This is probably 
because, in a first approximation, the link between external 
and internal (subterranean) climate is not intuitive. How-
ever, an ample body of literature documents how the tem-
perature of the underground compartment generally reflects 
the climatic regime at the surface (Moore and Sullivan 1964, 
Smithson 1991, Badino 2004a, b, 2010). Despite the fact 
that underground temperature increases with depth due to 
the geothermal gradient, caves typically exhibit relatively 
constant temperatures. For example, the world’s deepest cave 
(Krubera-Voronja) spans 2200 m vertically, with a tempera-
ture range of less than 5°C (Sendra and Reboleira 2012). The 
general explanation for this is found in the physics of the 
infiltrating meteoric fluids, which are regarded as the primary 
factors determining the general climatic conditions found 
underground (Badino 2004a, 2010, Brookfield et al. 2016), 
having a stronger effect than geothermal fluxes or air currents 
(Badino 2005, 2010). On a geological time scale, a certain 
rock layer is indeed forced into thermal equilibrium with 
the water flowing through it. Consequently, the tempera-
ture of the rock surrounding the cave equilibrates with the 
mean temperature of the infiltrating waters, which, in turn, is 
equal to the annual mean temperature outside (Badino 2010, 
Brookfield et  al. 2016). This fact implies that it is possible 
to approximate the microclimate of the underground com-
partment on the basis of external climatic predictors (Mam-
mola  et  al. 2017), especially the mean annual temperature 
(details in Table 3). 

Past climate and other historical factors
Many studies suggest that, at least in temperate regions, 
there is a significant link between the current distribution of 
subterranean species and various paleogeographical events, 
such as glacial cycles and other climatic upheavals (reviewed 
by Culver and Pipan 2010). It has been suggested that these 
historical factors are especially important in explaining spe-
cies patterns at broad scales (Stoch and Galassi 2010).

Accordingly, it is possible to incorporate past climatic 
reconstructions into SDM. For instance, the bioclimatic 
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Table 3. The bioclimatic variables (after Hijmans et al. 2005) and their relationships to subterranean conditions.

Variable Description Unit Relation with the subterranean conditions

Bio01 Annual mean temperature °C Bio01 represents an almost ideal approximation of the thermal condition found 
in most deep subterranean habitats (Moore and Sullivan 1964, Smithson 
1991, Badino 2004a, 2010). Elevation can also be used as a surrogate 
(Castellarini et al. 2007), but only for restricted geographical areas.

Bio02 Mean diurnal range °C Bio02–04 and Bio07 can represent proxies of the daily and seasonal 
divergence found in the vicinity of the cave entrance, where the external 
weather still has a daily and seasonal influence on the microclimate 
(Smithson 1991, Badino 2010). Also, they may represent more realistically 
the climatic conditions of very superficial caves and other shallow 
subterranean habitats (Pipan et al. 2011, Mammola et al. 2016a).

Bio03 Isothermality (Bio2/Bio7) ( 100) °C
Bio04 Temperature seasonality (standard 

deviation  100)
°C

Bio07 Temperature annual range (Bio05–Bio06) °C

Bio05 Max temperature of warmest month °C Given the constant cave temperatures and reduced temperature divergence, 
average values such as Bio01 are often prioritized when dealing with deep 
subterranean habitats. Bioclimatic variables related to maxima and minima 
may become useful for representing the conditions found in the outermost 
sectors of caves and in other shallow subterranean habitats. These variables 
may therefore be useful when the aim is to model the distribution of 
troglophile and trogloxene species (Novak et al. 2014).  

Bio06 Min temperature of coldest month °C
Bio08 Mean temperature of wettest quarter °C
Bio09 Mean temperature of driest quarter °C
Bio10 Mean temperature of warmest quarter °C
Bio11 Mean temperature of coldest quarter °C

Bio12 Annual precipitation mm Infiltrating meteoric fluids are the primary factors determining the general 
climatic conditions found underground (see text for details). In addition, 
meteoric fluids represent an important route for organic materials to enter 
subterranean ecosystems (hydrochoric transportation). Therefore, the 
precipitation regime may represent a proxy for external energy inputs 
(Bregović and Zagmajster 2016). Fišer et al. (2015) also suggested that 
heavy precipitation may cause catastrophic ecological drift in the 
underground aquifer. Thus, bioclimatic variables related to precipitation 
can reflect the susceptibility of certain subterranean habitats to disturbance 
[see Ortuño et al. (2013) for an example].  

Bio13 Precipitation of wettest month mm
Bio14 Precipitation of driest month mm
Bio15 Precipitation seasonality (coefficient of 

variation)
mm

Bio16 Precipitation of wettest quarter mm
Bio17 Precipitation of driest quarter mm
Bio18 Precipitation of warmest quarter mm
Bio19 Precipitation of coldest quarter mm

variables introduced in the previous section are currently 
available for different past time-frames, such as the last 
interglacial (~120  000–140  000 yr ago), the last glacial 
maximum (~22  000 yr ago), and the middle Holocene 
(~6000 yr ago). So, by incorporating past climate into spa-
tial models, Zagmajster et al. (2014) showed that past cli-
matic oscillations were the most important determinants of 
range sizes of groundwater crustaceans, rather than current 
climatic seasonality and the availability and heterogeneity 
of habitats.

Different authors have also attempted to incorporate bio-
geographical factors into SDM. Castellarini  et  al. (2007) 
and Foulquier  et  al. (2008) included the linear distance of 
each occurrence point from the Würm glaciers as a predictor. 
Mammola et al. (2017) employed a raster layer representing 
the shape of the glaciers during the Last Glacial Maximum 
(LGM), in order to explain cave occupancy by subterranean 
spiders as a function of the glacial history.

Future climate
One of the timeliest applications of SDM is the study of 
global climate change. In fact, models fitted in present-day 
conditions can be transferred to novel time periods under dif-
ferent energy, land-use, and emissions projections (Moss et al. 
2010, IPCC 2014, Riahi et al. 2017), thus forecasting poten-
tial variations in species ranges due to anthropogenic climate 
and land-use change (Beaumont et al. 2008). 

As far as caves are concerned, it is worth noting that direct 
field observations (Domìnguez-Villar et al. 2015) and theo-
retical models (Badino 2004a, Covington and Perne 2015) 

indicate that caves have thermal inertia, which results in 
time-lags of up to several decades in the warming of deep sub-
terranean systems. As an example, Domìnguez-Villar et al. 
(2015) estimated a time-lag of ca 20 yr for Postonja cave, 
Slovenia. In practical terms, this time-lag implies that for 
modelling future habitat modifications of deep subterranean 
species, the projection of SDM should be always accompa-
nied by a time interval rather than a precise time-scale – see 
Mammola et al. (2017) for a discussion. Conversely, for spe-
cies living in superficial sections of caves and in other SSHs, 
the standard projected emission time frames can be used 
(Badino 2004a).

It is also worth noting that, for epigean species, cor-
relative distribution models prioritize the usage of extreme 
values, the maxima and minima, instead of average val-
ues, as the former represent more realistic physiological 
constraints for species. However, for subterranean species, 
average values may be more appropriate, because of more 
constant temperatures and reduced temperature excursions 
(details in Table 3). Interestingly, the use of average values 
may increase the reliability of future projections, given that 
most future climate projections used in the SDM litera-
ture come from statistically downscaled general circulation 
models, which represent average trends better than extremes 
(Trzaska and Schnarr 2014; but see Zimmermann  et  al. 
2009). 

Trophic resources
There is a direct connection between surface productivity and 
the availability of food below ground (Souza Silva et al. 2011, 
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Venarsky et al. 2017), consisting mainly of organic products 
which have drifted underground from the soils and by other 
routes (Gers 1998, Poulson and Lavoie 2000; Table 3). Thus, 
it has been hypothesized that higher surface productivity par-
allels a richer subterranean community (Culver et al. 2006, 
Eme  et  al. 2015). Data on soil characteristics, e.g. water 
capacity, permeability, thickness, percent organic matter, and 
the above ground vegetation cover should therefore be con-
sidered among the potential predictors of subterranean spe-
cies distribution.

Several variables reflecting surface productivity can also 
be employed. The most logical are raster layers represent-
ing plant cover at the surface or relative metrics such as 
the normalized difference vegetation index (NDVI) index 
(Camp et al. 2014) or the mean annual evapotranspiration 
(Eme  et  al. 2015, Bregović and Zagmajster 2016). How-
ever, when lacking these kinds of GIS data at high spatial 
resolutions, other proxies for surface productivity can be 
used, namely the precipitation regime or the mean annual 
temperature (Bregović and Zagmajster 2016; Table 3).  
Nevertheless, in such cases it may become difficult to 
disentangle between direct effects of climate on species and 
indirect effects through surface vegetation. 

Biological factors
There are some cave-dwelling organisms that are likely to be 
limited by the availability of very specific biological factors. 
It is self-evident, for instance, that guanobionts (organisms 
feeding on guano) will be present in a certain cave, only in the 
presence of bat colonies; or that the presence of specific para-
sites and parasitoids will be paralleled by the presence of their 
hosts. Accordingly, it is likely that the distribution of these 
specific organisms will significantly overlap the distribution 
of the organisms they are associated with. A distribution map 
of the latter may therefore be included as a predictor of the 
niche/distribution of the former. However, strong support for 
the interaction between the organisms should be available a 
priori, to support the use of a distribution map as a predictor. 
Otherwise, there is a risk that the inclusion of species dis-
tribution as a predictor in the model of another species will 
not reflect a biotic interaction, but simply the absence of key 
environmental predictors (Guisan and Thuiller 2005, Araújo 
and Luoto 2007).

Similarly, inter-specific competition is also likely to play 
an important role in constraining the spatial distribution of 
different subterranean organisms. It is worth noting that with 
respect to subterranean ecosystems, competition dynamics 
between species has been elucidated almost exclusively at a 
local scale (Culver 1973, 1975, Poulson 1977, Novak et al. 
2010, Fišer  et  al. 2012, Mammola and Isaia 2014, 2016, 
Mammola  et  al. 2016b, Resende and Bichuette 2016), 
whereas patterns of inter-specific competition at a regional 
scale remain largely unexplored (but see Mammola and Isaia 
2017). Lacking detailed information about competitive 
exclusion dynamics, the decision to include potential biotic 
interactions in the models should be evaluated on a case-by-
case basis.

Calibration area

In recent years, many authors have shown how the extent of 
the study area (calibration area), can significantly influence the 
results of SDM (Anderson and Raza 2010, Giovanelli et al. 
2010, Owens et al. 2013). The calibration area, sometimes 
referred to as the M area (Soberón and Peterson 2005, 
Barve et al. 2011), represents a region that is thought to have 
been ‘sampled’ by the species throughout its relevant history. 
In other words, the calibration area is the geographic extent 
hypothesized to fall within the long-term dispersal and colo-
nization potential for a certain species during its evolutionary 
history.

Despite its importance (Saupe et al. 2012, Merow et al. 
2013), to date, no standard rationale has been put forward 
to define the extent of the study area for constructing SDM 
(Anderson and Raza 2010). Its extent largely depends on the 
natural history, dispersal characteristics and biogeographic 
history of the species in question, and the geographic dis-
tribution of suitable habitats in the landscape of interest. 
Barve  et  al. (2011) suggested that authors should evaluate 
these aspects when defining the calibration area, explicitly 
stating the rationale chosen for defining its extent in the 
Methods section of the paper. As far as subterranean species 
are concerned, some specific considerations apply, as detailed 
in the next two paragraphs.

Dispersal characteristics
The first step in defining the calibration area, is the evaluation 
of the dispersal potential of the species under study, using 
existing knowledge about species dispersal abilities, genetic 
structuring and natural barriers hindering dispersal. Species 
with limited dispersal potential should have a small calibra-
tion area (a subregional extent), whereas species with large 
dispersal potential should have a larger one (from a regional 
to continental extent). When knowledge about species dis-
persal potential is lacking, it can be approximated on the basis 
of habitat connectivity – e.g. identifying major geomorpho-
logical barriers to gene flow (Chiari et al. 2012, Rizzo et al. 
2017).

As a general rule, the colonization potential of most subter-
ranean species is extremely reduced, with cave-adapted spe-
cies often having small geographical ranges and high levels 
of endemism (Barr and Holsinger 1985, Culver et al. 2000, 
Michel  et  al. 2009). During the process of adaptation to a 
subterranean medium, animals have indeed fine-tuned their 
physiological tolerance to the stable condition of their habi-
tat, which hampers their dispersal ability via non-subterranean 
habitats. Accordingly, studies conducted so far have uncov-
ered pronounced genetic structuring and low gene flow – if 
any – between cave populations (Caccone 1985, Bohonak 
1999, Dixon and Zigler 2011, Mammola  et  al. 2015, 
Weckstein et al. 2016). For these reasons, a small calibration 
area can be approximated for most subterranean species.

However, it should be kept in mind that subterranean 
habitats are often connected through a network of small 
cracks and voids inaccessible to humans, which may represent 
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an important dispersal route for invertebrates (Romero 2012, 
Culver and Pipan 2014). In this respect, subterranean organ-
isms dwelling in freshwater habitats (stygobionts) should 
generally have larger dispersal potential (Lamoreux 2004, 
Buhay and Crandall 2005, Lefébure  et  al. 2006), as sub-
terranean aquatic habitats display higher connectivity than 
terrestrial ones (Christman and Culver 2001). For instance, 
Cornu  et  al. (2013) estimated that in Europe, groundwa-
ter habitat patches have average areas of 315  4257 km2, 
which is considerably higher than the area of most terres-
trial subterranean complexes documented to date. A larger 
calibration area can also be expected a priori for troglophile 
and trogloxene species showing higher dispersal ability via 
non-subterranean habitats, such as Rhaphidophoridae cave 
crickets (Ketmaier et  al. 2013) and ballooning cave spiders 
(Smithers 2005, Mammola and Isaia 2014, 2017, Mammola 
2017). 

Finally, the potential dispersal of the species of inter-
est may be limited by inter-specific competitive exclusion 
dynamics – usually with more competitive closely-related 
species. In such a case, the area occupied by competitor(s) 
could be excluded from the final shape of calibration area.

Relevant time span 
When a species under investigation is a new arrival in a land-
scape, basically its calibration area can only be estimated 
based on dispersal characteristics. However, when a species 
has a longer evolutionary history in a landscape, the estima-
tion of the calibration area is much more complex, as it will 
also depend on the environmental changes that have occurred 
throughout its evolutionary history (see details in Barve et al. 
2011). If this concept is applied to troglobionts, the tim-
ing of subterranean colonization or the time since isolation 
from the immediate epigean sister-group should be estimated 
somehow. It is, however, often difficult to reconstruct the 
early stages of the evolution of ancient subterranean lineages 
(Strecker et al. 2003), and basically this information is lack-
ing for most of the taxa described to date (Trajano 2007). 

If the timing of cave formation in the landscape of interest 
is available, one could use this information as an approxi-
mation of the relevant time span. However, this practice is 
not without its own problems, as it would underestimate the 
relevant time span for a species that was present in the area 
prior to the cave formation (e.g. SSH-dwelling species) and 
conversely, would overestimate the time span for a species 
that has colonized the subterranean medium in recent times. 
Some subterranean species do indeed represent ‘ancient 
lineages’ that are ‘young troglobites’ (Zhang and Li 2013), 
meaning that their process of subterranean adaptation took 
place only after the cave formation. 

Applications of SDM in subterranean biology

As with epigeal and marine ecosystems, the application of 
SDM techniques to subterranean habitats can significantly 
improve our general understanding of a variety of topics. 

Whilst it is not possible to make a unique and prescriptive list 
of the main applications of these tools, the following compi-
lation is intended to highlight some possible lines of research.

Distribution patterns and macroecology

In the last two decades efforts have been made to unravel dis-
tribution patterns of subterranean organisms and to address 
a variety of macro-ecological questions (Christman and 
Culver 2001, Culver et al. 2003, 2006, 2013, Dole-Olivier  
et  al. 2009, Malard  et  al. 2009, Cardoso 2012, Niemiller 
and Zigler 2013, Eme et  al. 2014, 2017, Zagmajster  et  al. 
2014, Bregović and Zagmajster 2016, Pellegrini et al. 2016). 
Regarding this, species distribution models represent addi-
tional tools available to subterranean biologists, suitable for 
predicting subterranean biodiversity and its variation over 
space and time. As explained above, these tools may serve 
to predict the distribution of subterranean fauna based 
on the features at the earth’s surface (Naranjo  et  al. 2014, 
Christman  et  al. 2016). Also, these tools can be used to 
identify unexplored areas of high environmental suitability 
for improving the geographical gaps of species distributions 
(Raxworthy et al. 2003, Engler et al. 2004). Predicting sub-
terranean species distribution has indeed the potential to 
fill knowledge gaps, for example by using inferred distribu-
tion maps to understand seemingly incomplete distribution 
data, and even suggesting suitable sites for further sampling. 
Furthermore, applying SDMs to subterranean species will 
open up new opportunities for biodiversity conservation [see 
Guisan et al. (2013) for a review]. 

Biotic interactions

In recent years, it has been shown that biotic interactions 
could affect the prediction of SDMs even at larger scales 
(Davis  et  al. 1998, Araújo and Luoto 2007). Animal 
communities in extreme environments such as caves, present 
intriguing test cases for the study of niche-based processes 
and competition dynamics (Fišer et al. 2012, Mammola et al. 
2016b). In this respect, correlative models represent interest-
ing tools, allowing the investigation of spatial segregation at 
the landscape level (Mammola and Isaia 2017) and the assess-
ment of overlaps in species bioclimatic niches (Fišer  et  al. 
2015). However, when dealing with this topic, caution 
should be exercised because habitat is itself highly clustered. 
As a result, spatial segregation may not be based on compe-
tition or niche separation, but the result of simple physical 
processes.

Future climate change

To date, the effects of anthropogenic climate change on 
biological communities in subterranean ecosystems have sel-
dom been explored. This is mostly because there is a general 
lack of historical series of meteorological data in caves. As such, 
the study of climate change dynamics in subterranean habitats 
has primarily relied on theoretical models (Badino 2004a). 
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However, recent applications of SDM to cave ecosystems 
have shown that these techniques can help to overcome this 
impediment (Table 1). A substantial increase in the application 
of SDM to subterranean ecosystems has the potential to fill a 
major gap in our estimation of climate change impacts on bio-
diversity (Bellard et al. 2012). Given the contradictory results 
obtained in the rare SDM studies (cf. Sánchez-Fernández et al. 
2016 and Mammola et al. 2017), the sensitivity of subterranean 
ecosystems to climate change is largely unknown, thereby stress-
ing an urgent need for further studies.

Past climate change

The theory of relicts and refuges (Botosaneanu and Holsinger 
1991) puts great emphasis on long-term climatic changes, 
such as glaciation cycles and other large-scale climatic upheav-
als, as the main factors that prompted the colonization of the 
subterranean habitat, at least in temperate regions. In this 
area, SDM can be used to reconstruct the past distribution of 
subterranean species, and identify areas that acted as refugia 
during these adverse climatic conditions, such as the Pleisto-
cene glaciations. This is possible because current distribution 
models based on bioclimatic variables can be projected onto 
past climatic reconstructions. This approach is particularly 
useful in combination with other lines of evidence, including 
molecular data (Bryson et al. 2014, Mammola et al. 2015).

Conclusions

In the last few decades, the potential of correlative distri-
bution models as useful tools in ecology and biogeography 
has risen in the scientific literature. However, as with any 
model-fitting exercise, there are many approximations and 
uncertainties associated with SDM, and thus the outputs 
of these models should always be interpreted with caution. 
Precautions apply to an even greater extent when dealing 
with subterranean ecosystems, because their modelling 
heavily depends on explanatory variables that are external 
to the system. As such, special efforts should be made to 
undertake the necessary methodological steps to minimize 
uncertainties. In parallel, a clear statement about the model-
ling assumptions should always be included in the Methods 
section of the paper (see also Culver et al. 2013). A progress 
would be to combine SDMs with other lines of evidence, 
such as molecular and physiological studies, to improve our 
capacity to understand and predict biogeographic patterns 
(Carstens and Richards 2007, Knowles  et  al. 2007, Peter-
son 2009, Jessica et al. 2014). There is little doubt that this 
integrated approach would greatly benefit the science of sub-
terranean biology, prompting a fast and significant advance 
in knowledge, especially in the fields of climate change and 
biodiversity conservation. 
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