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Abstract

Ocean acidification, due to anthropogenic CO2 absorption by the ocean, may have profound impacts on marine biota.
Calcareous organisms are expected to be particularly sensitive due to the decreasing availability of carbonate ions driven by
decreasing pH levels. Recently, some studies focused on the early life stages of mollusks that are supposedly more sensitive
to environmental disturbances than adult stages. Although these studies have shown decreased growth rates and increased
proportions of abnormal development under low pH conditions, they did not allow attribution to pH induced changes in
physiology or changes due to a decrease in aragonite saturation state. This study aims to assess the impact of several
carbonate-system perturbations on the growth of Pacific oyster (Crassostrea gigas) larvae during the first 3 days of
development (until shelled D-veliger larvae). Seawater with five different chemistries was obtained by separately
manipulating pH, total alkalinity and aragonite saturation state (calcium addition). Results showed that the developmental
success and growth rates were not directly affected by changes in pH or aragonite saturation state but were highly
correlated with the availability of carbonate ions. In contrast to previous studies, both developmental success into viable D-
shaped larvae and growth rates were not significantly altered as long as carbonate ion concentrations were above aragonite
saturation levels, but they strongly decreased below saturation levels. These results suggest that the mechanisms used by
these organisms to regulate calcification rates are not efficient enough to compensate for the low availability of carbonate
ions under corrosive conditions.
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Introduction

Due to the absorption of anthropogenic CO2 by the ocean,

seawater pH has already declined by 0.1 unit compared with pre-

industrial values [1] and is projected to decrease by another 0.35

unit by the end of the century [2]. This process, known as ocean

acidification, will most likely have profound impacts on marine

biota. Besides the direct effect of decreasing pH on the physiology

and metabolism of marine organisms through a disruption of inter-

cellular transport mechanisms [3], calcareous organisms are

particularly sensitive due to the decreasing availability of

carbonate ions (CO3
22) driven by increasing pCO2. The calcium

carbonate saturation state (V) is defined as:

V~
CO2{

3

� �
Ca2z
� �

K 0sp

ð1Þ

where K9sp is the stoichiometric solubility product, a function of

temperature, salinity, pressure and the mineral phase considered

(calcite, aragonite or high-magnesian calcite), and, as a conse-

quence of ocean acidification, will significantly decrease in the

coming decades. It must be stressed that carbonate saturation

states depend not only on pH but also on total alkalinity levels.

Total alkalinity measures the ability of a solution to neutralize

acids to the equivalence point of carbonate or bicarbonate, acting

as a natural buffer to the incorporation of anthropogenic CO2 in

the ocean. As the addition (or removal) of CO2 to a solution does

not change its alkalinity and since the dissolution of calcium

carbonate minerals in the water column and in the sediments, as

well as alkalinity inputs from continental rock weathering, are very

slow processes, they are not expected to significantly buffer ocean

acidification in the coming decades [4].

Several experimental studies have investigated the effect of a

pCO2 increase on the growth of calcifying organisms [5]. Species

that produce aragonite, less soluble than low-magnesian calcite in

seawater, will be especially at risk. As amorphous calcium

carbonate and aragonite have been identified as the main CaCO3

minerals in larval stages of benthic mollusks [6], there is a strong
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need to carefully assess the effects of ocean acidification and the

associated alteration of the carbonate chemistry on their

development. Small changes in the abundance and developmental

success of these larval stages control the size and viability of the

benthic populations [7] and therefore could induce significant

changes in the functioning of coastal ecosystems. Indeed, shellfish

are ecosystem engineers governing energy and nutrient flows in

coastal ecosystems, provide habitats for many benthic organisms

and form an important food source for birds [8,9]. Moreover,

global shellfish aquaculture production reached 13.1 million tons

in 2008 (27% of the global aquaculture yield), corresponding to a

commercial value of US$13.1 billion. The Pacific Oyster

(Crassostrea gigas) was the most cultivated species in 2008 with a

volume of 6.5 million tons or 9.5% of the total world aquaculture

production (FISHSTAT Plus, Universal software for fishery

statistical time series, Version 2.3, Food and Agriculture

Organization of the United Nations, Fisheries Department, Data

and Statistics Unit., 2000).

Several recent studies have focused on the effect of ocean

acidification on the early development of molluscan species

[10,11,12,13,14,15,16,17,18] and most of them have reported

negative impacts of decreasing pH levels on the growth and

development of these organisms. Kurihara et al. [12,13], Parker

et al. [15] and Gazeau et al. [11] have investigated the effects of

decreasing pH on the early embryonic (from fertilization to the D-

veliger stage) development of commercially important bivalve

species. This developmental period is of the utmost importance

since the onset of shell mineralization occurs during the

trochophore larval stage and shells are fully mineralized when

larvae reach the D-veliger stage, at the second or third day after

fertilization [19]. Studies of Kurihara et al. [12,13] on Crassostrea

gigas and Mytilus galloprovincialis showed a strong decrease of

developmental success into viable D-shaped larvae and growth

rates with increased pCO2. However, a pH (on the National

Bureau of Standards scale, hereafter referred to as pHNBS) of ,7.4

was used (0.7 unit lower than control values), a value lower than

that projected to occur at the end of this century. Moreover, due to

low ambient total alkalinity levels, seawater was highly undersat-

urated with respect to aragonite in the low pH conditions in these

two studies (Va of 0.68 and 0.49, respectively). Parker et al. [15]

studied the early embryonic development of the Sydney rock

oyster Saccostrea glomerata at ambient (375 matm), 600, 750 and

1000 matm pCO2 levels. This experiment showed a general

decrease in the percentage and size of D-veliger with increasing

pCO2. However, manipulation of the carbonate chemistry was

performed by addition of a strong acid (HCl) to reduce pH, a

technique that is not recommended as acid addition also decreases

total alkalinity, which is not anticipated to occur in the coming

decades. Moreover, as values of total alkalinity and CaCO3

saturation state were not provided, comparisons with similar

studies are not straightforward. Gazeau et al. [11] reported on the

impacts of decreasing pH levels on the first 2 d development of

blue mussel (Mytilus edulis) larvae. They showed that a decrease of

pHNBS to ,7.8 (control: ,8.1), associated with a supersaturation

with respect to aragonite (Va,1.4), had no effect on the

percentage of embryos developing to viable D-veliger larvae.

The effect on average final shell length was limited (,2561%).

Their results show that a decrease of pHNBS to ,7.6, associated

with a slight undersaturation with respect to aragonite, had

significant effects on the percentage of embryos that developed to

D-veliger larvae normally and more pronounced effects on

average final D-veliger shell lengths (,21361%). However, this

study did not allow the discrimination between the physiological

effect of pH decrease, via a disruption of inter-cellular transport

mechanisms, and the effect of the aragonite saturation state, on the

larval development of this species.

The objectives of the present study are to investigate the effect of

various carbonate chemistry alterations, performed by manipulat-

ing pH, total alkalinity and the saturation state with respect to

calcium carbonate separately on the survival and growth of Pacific

oyster (Crassostrea gigas) larvae during the first 3 days of their

development.

Materials and Methods

Experimental set-up
A batch of one million embryos of the Japanese oyster

(Crassostrea gigas) was provided by the commercial hatchery Roem

van Yerseke (Yerseke, The Netherlands) on 3 June 2009. This batch

was transported within 15 min to a temperature-regulated room

(19uC) at the Netherlands Institute of Ecology (Yerseke, The Nether-

lands) and evenly distributed into 15 beakers of 4.5 l (larval

concentration of ,15 ind. ml21), containing filtered (0.2 mm)

seawater from the Oosterschelde, the nearby tidal inlet. Five

treatments were considered, each of them in triplicate (see Fig. 1

for the experimental setup). One treatment served as a control i.e.

beakers were gently bubbled with external ambient air. Two

beakers were bubbled with air at 1000 and 2000 matm of CO2 (T2

and T3, respectively). The fourth treatment (T4) was bubbled with

external ambient air, after total alkalinity (AT) was decreased to

,1000 mmol kg21 by adding 14 ml of HCl 0.1 N and 10.6 g of

CaCl2-2H2O in order to reach saturation states with respect to

aragonite and calcite of 1.4 and 2.2, respectively. The last group of

beakers (T5) was bubbled with 4000 matm CO2 and AT was

increased by adding 1.6 g of NaHCO3. Gas cylinders with

certified CO2 concentrations (1000, 2000 and 4000 matm) were

supplied by Westfalen. Embryos were allowed to develop, without

additional feeding, until larvae reached the shelled D-veliger stage,

i.e. 72 h.

Carbonate chemistry measurements
Seawater pH (on the total scale, hereafter referred to as pHT)

and temperature were measured twice a day in the beakers. pHT

was measured using a pH meter (Metrohm, 826 pH mobile) with a

glass electrode (Metrohm, electrode plus) calibrated on the total

scale using Tris/HCl and 2-aminopyridine/HCl buffer solutions

with a salinity of 35.0 [20]. Samples for salinity and AT were taken

at the start and at the end of the experiment. Samples for AT were

filtered on GF/F filters, poisoned with HgCl2 and stored in the

dark pending measurement (within few days). Salinity was

measured using a conductimeter (Radiometer CDM230). Tripli-

cate potentiometric measurements of AT were performed using a

Metrohm titrator and a glass electrode (Metrohm, electrode plus).

Measurements were carried out on 50 ml samples at 25uC and AT

was calculated using a Gran function. Titrations of AT from

standard seawater provided by A. G. Dickson (batch 82, n = 10)

were on average within 0.46 mmol kg21 of the nominal value. All

parameters of the carbonate chemistry were determined from

pHT, AT, temperature and salinity using the R package seacarb

[21].

Sampling and measurements
At the end of the incubation period, the beakers were emptied.

Two liters were passed through a 30 mm sieve and concentrated in

50 ml that was fixed in a 5% neutralized-formalin seawater

solution to determine developmental success (% of D-veliger

larvae) and D-veliger shell length and area. The developmental

success into viable D-shaped larvae was defined as the percentage

Oyster Larvae Under Modified Carbonate Chemistry
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of ‘‘normal’’ D-shape larvae following the criteria proposed by His

et al. [22], after observation of at least 500 larvae per replicated

culture. D-veliger larvae shell length (anterior to posterior

dimension of the shell parallel to the hinge) and area were measured

on 100 larvae per replicate based on pictures taken under a

microscope (206; 0.01 mm precision in length measurement), using

the software Leica Qwin Pro version 2.4. At the end of the

experimental period, 2 l of the cultures were filtered onto GF/F

filters for subsequent analyses of calcium (Ca2+) concentrations.

Larvae-free seawater was filtered onto GF/F filters (46) and served

as blanks for Ca2+ measurements. Ca2+ concentrations were deter-

mined by inductively coupled plasma emission spectrophotometry

(ICP-OES) after multiple rinses with deionised water to remove

seawater Ca2+. In addition to Ca2+ from the larvae, Ca2+ retained

on the filters may come from residual sea salts, from the GF/F filters

themselves and/or from the analytical blank of the procedure. To

Figure 1. Experimental set-up. For each treatment (in triplicate; T = 18.960.1uC), the target AT (total alkalinity in mmol kg21), pHT and Va

(saturation state of the seawater with respect to aragonite) are indicated. pHT was controlled by bubbling ambient or high-CO2 air. AT was decreased
in T4 by HCl addition and increased in T5 by NaHCO3 addition. In T4, calcium concentrations have been increased above ambient levels by CaCl2
addition. See text for more details.
doi:10.1371/journal.pone.0023010.g001

Table 1. Environmental parameters and carbonate chemistry for the five different treatments during the course of the experiment
(mean 6 SD).

T1 (control) T2 T3 T4 T5

Measured parameters

Temperature (uC) 18.960.1

Salinity 34.060.1 34.160.1 34.160.1 35.460.1 34.360.0

pHT 8.0360.01 7.7260.03 7.4160.03 7.6760.03 7.6260.12

AT (mmol kg21) 2452.766.6 2446.268.2 2443.163.1 1093.864.0 6726.6637.6

Computed parameters

pCO2 (matm) 448.7615.6 1019.9679.9 2170.56156.9 493.5642.7 3730.46946.5

CT (mmol kg21) 2207.0610.1 2340.8612.3 2443.4610.6 1029.468.9 6589.36133.9

[HCO3
2] 2010.0613.0 2209.4615.1 2320.368.6 972.969.8 6238.06161.9

[CO3
22] 181.964.2 97.366.3 50.463.3 40.062.4 226.5660.3

Va 2.860.1 1.560.1 0.860.1 1.660.0* 3.560.9

Vc 4.460.1 2.360.2 1.260.1 2.460.1* 5.461.4

The partial pressure of CO2 (pCO2), dissolved inorganic carbon concentration (CT) as well as the saturation state of seawater with respect to aragonite and calcite (Va and
Vc respectively) were computed from pHT and total alkalinity (AT).
*: Va and Vc were increased by addition of calcium (CaCl2-2H2O; 62.6 in situ Ca2+ concentrations).
doi:10.1371/journal.pone.0023010.t001
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separate the contribution to total Ca2+ from these components, the

filters were rinsed by soaking three times in 30 ml deionised water,

increasing the duration each time, with approximately 10 sec

allowed for the first rinse, 25 min for the second and an hour for the

third. The water from each rinse was analyzed for Ca2+ and Na+ to

determine the seawater contribution, then acidified to ,0.1 M with

nitric acid and reanalysed to determine the water insoluble

component removed from the filters during rinsing. After the third

rinse, remaining calcium was dissolved from the filters by immersing

in 30 ml 0.1 M nitric acid for 30 minutes and the concentrations

determined by ICP-OES. Ca2+ concentrations were then corrected

for the concentration of Ca2+ observed on the blank filters following

the same procedure and the total acid soluble Ca was calculated. As

only one filter per treatment was analysed, the standard deviations

associated with these measurements presented in the next section

correspond to those for the blank filters. Calcium concentrations

were normalized by the amount of eggs inoculated into the beakers

at the start of the experiment, assuming that the distribution of the

original batch has been performed homogeneously.

Statistics
Since normality and homoscedasticity tests could not be used

due to the small number of replicates (3), differences in percentage

of viable D-shaped larvae, final shell lengths and areas as well as in

the amount of calcium incorporated between the different

treatments were tested by means of Kruskal-Wallis tests and

post-hoc Dunn’s multiple comparison tests (Graphpad Instat

software). For all tests, differences were considered significant at

p,0.05. In the following section, data are presented as means 6

SD. In order to relate the different measured parameters to the

carbonate chemistry parameters at which the organisms were

exposed during the incubations, linear and non-linear regressions

were performed and the significance of these relationships was

tested using student’s t-tests.

Results and Discussion

The environmental (temperature and salinity) and carbonate

chemistry parameters are shown in Table 1 for each treatment.

Figure 2. Carbonate chemistry conditions during the experimental period. pCO2: partial pressure of CO2, pHT: pH on the total scale, AT:
total alkalinity, CT: dissolved inorganic carbon, Va and Vc: saturation state of the seawater with respect to, respectively, aragonite and calcite.
doi:10.1371/journal.pone.0023010.g002
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Parameters of the carbonate chemistry are also presented in Fig. 2

for each experimental beaker. Temperature was constant in the

beakers at 18.960.1uC. Salinity was 3460.1 in the first three

treatments while it was slightly higher in T5 (34.360.0) due to the

addition of NaHCO3 and more than 1 unit higher in T4 due to

CaCl2 addition (35.460.1). pCO2 values were close to target

values in most cases, except for one experimental beaker of T5 in

which bubbling was not optimal and pCO2 was much lower than

the expected value (2502 vs. 4000 matm). pHT varied from

8.0360.01 in the control treatment (T1) to 7.4160.03 in the

beakers that were bubbled with 2000 matm CO2 enriched air (T3).

AT was similar in the first 3 treatments while it has been

successfully decreased to ,1000 mmol kg21 in T4 and increased

to ,6800 mmol kg21 in T5. Total dissolved inorganic carbon (CT)

concentrations were the lowest in T4 (102969 mmol kg21) and the

highest in T5 (65896134 mmol kg21) with variable levels within

the beakers due to the non-optimal CO2 equilibration. Seawater

was supersaturated with respect to calcite in all treatments with the

lowest value for T3 (1.260.1). Undersaturation with respect to

aragonite was observed in T3 (0.860.1) while the other 4

treatments showed Varag values over 1, with a level of 1.660.0

in T4 due to addition of CaCl2.

Developmental success into viable D-shaped larvae, average D-

veliger shell length and area as well as the amount of Ca2+

incorporated per egg inoculated, for the five different treatments,

are shown in Fig. 3. Percentages of viable D-shaped larvae were

90% in the control treatment and not significantly different

between T1, T2, T3 and T5, while significantly lower values were

observed for T4 beakers (average of 1961%). Final D-veliger shell

length and area data showed the same pattern, with no

significantly different values between T1, T2, T3 and T5 and

significantly lower values in T4 as compared to the control

treatment. Final D-veliger shell length and area were respectively

1161% and 2062% smaller in T4 as compared to control values.

Significantly less Ca2+ was incorporated by the population in T4

than in the other treatments with a decrease of 45614% with

respect to control values. Final D-veliger shell length and area as

well as the amount of Ca2+ incorporated are plotted against pHT

and Va in Fig. 4. None of these parameters were correlated with

pHT or Va. Although seawater pHT values in T4, T2 and T5 were

similar at ,7.65, the larvae were smaller in T4. Increasing the

saturation state with respect to aragonite by adding Ca2+ (T4) did

not positively affect the larval development since D-veliger shell

length and area as well as the amount of Ca2+ incorporated were

lower in T4 than in T2 which had similar Va levels (i.e. ,1.5). On

one hand, no significant linear and/or non-linear relationships

were found between all these parameters and pH or Va. On the

other hand, these parameters were significantly correlated with the

concentration of CO3
22 ions. Michaelis-Menten functions were

used to fit the data (shell length: r2 = 0.90; shell area: r2 = 0.90;

calcium incorporated: r2 = 0.74). Carbonate ion concentrations at

the aragonite saturation level were estimated for each treatment

(average of 64.460.2 mmol kg21) and plotted as a dotted line on

Fig. 4. Above the CO3
22 saturation level, the effects of decreasing

CO3
22 concentrations on shell growth and Ca2+ incorporation as

well as on the percentage of viable D-shaped larvae during these

first 72 h of development were not significant (Fig. 4). Below the

saturation level, decreasing CO3
22 concentrations resulted in

Figure 3. Larval developmental parameters at the end of the incubation period in the five treatments (72 h; T1 to T5). Proportion of
embryos that developed to viable D-veliger (6SD; upper left plot), average shell area and length of D-veliger larvae (6SD; upper right and lower left
plot, respectively) as well as the amount of calcium incorporated (6SE; lower right plot) are shown. Different letters on bars indicate significant
differences in the median values (Kruskal-Wallis and post-hoc Dunn’s multiple comparison tests, p,0.05).
doi:10.1371/journal.pone.0023010.g003
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smaller larvae, less Ca2+ incorporation in the shells and much

lower developmental success (decrease in percentage of viable D-

veliger larvae).

The present study is, to the best of our knowledge, one of the

first to investigate the effects of carbonate chemistry modifications

on the growth of a marine calcifier by separately assessing the

effects of decreases in pH, carbonate ion availability and seawater

saturation state with respect to calcium carbonate. Separating

these potential factors is crucial as total alkalinity levels are not

constant in the ocean and a similar decrease in pH does not lead to

similar decline in calcium carbonate saturation state. A similar

study has been performed recently by Jury et al. [23], based on

manipulations of the seawater carbonate chemistry, to determine

which parameter controls coral calcification. They showed that the

calcification rate of Madracis auretenra is mainly governed by the

bicarbonate ions concentration and not, as expected, by the

aragonite saturation state. In contrast, in the present study, the

bicarbonate ion concentration as well as CT concentration are not

correlated with any of the physiological processes measured (data

not shown). Moreover, the present study shows that pH is not the

main driver of the observed decreases in developmental success

and growth rates. For instance, a decrease of pHT to ,7.6 (T5;

below the projected levels for the end of the present century) had

no significant effect on these larvae with similar developmental

success and growth rates as compared to control conditions. It

must be stressed that, for this treatment, AT was artificially

increased in order to maintain a seawater saturation state with

respect to aragonite above 1. This saturation state depends on the

availability of both Ca2+ and CO3
22 ions. Increasing Ca2+

concentrations in order to artificially maintain Va above 1 (T4)

had no beneficial effect on the larval development of oysters. As

Ca2+ concentrations are not limiting in seawater (,10 mmol kg21),

the main factor governing the growth of oyster larvae in our study

was CO3
22 ion concentration. Several studies have already shown

limited effects of calcium addition above 10 mmol kg21 with coral

calcification rates reaching a plateau at these concentrations

[24,25]. The relationship between measured parameters (develop-

mental success, shell length and area and incorporated calcium) and

the availability of CO3
22 showed that decreasing CO3

22 levels only

had significant effects on the larval development below CO3
22

levels corresponding to aragonite saturation. On one hand, this is in

contrast with results from Gazeau et al. [11] that showed that

Figure 4. Relationships between larval developmental parameters and conditions of the carbonate chemistry in the five
treatments. Relationships between the average (6SD) shell length and area of D-veliger larvae as well as the amount of calcium incorporated at the
end of the 72 h incubation period, and the average (6SD) conditions of the carbonate chemistry in the five treatments are shown; pHT: pH on the
total scale (left plots), Va: saturation state with respect to aragonite (middle plots) and [CO3

22]: carbonate ion concentration (right plots). On the right
plots, the dotted lines refer to the carbonate ion concentration at the aragonite saturation level (see text for details).
doi:10.1371/journal.pone.0023010.g004
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D-veliger shells of the blue mussel (Mytilus edulis) were 561% smaller

following a 0.25–0.34 pH unit decrease corresponding to super-

saturated conditions with respect to aragonite. On the other hand,

Gazeau et al. [11] showed that developmental rates into viable D-

shaped larvae at this pH level were not significantly altered, a finding

which is consistent with present results. Accordingly, oyster larvae

appear more resistant than blue mussel larvae to a decrease of pH

as long as CO3
22 concentrations remain above the aragonite

saturation level. Further decreasing CO3
22 concentrations below

CO3
22 values corresponding to aragonite saturation has dramatic

consequences as only ,60% and ,20% of the embryos had

developed to viable larvae at CO3
22 concentrations of 50.463.3

and 40.062.4 mmol kg21, respectively, as compared to more than

90% in the treatments exposed to CO3
22 supersaturated condi-

tions. In the field, the different pressures exerted by the environment

and predators result in considerable mortality rates, during the

free-swimming larval period, possibly approaching 99% [26]. An

additional decrease in developmental success as observed in the

present study, under CO3
22 concentrations below aragonite

saturated conditions, could therefore compromise the survival of

the populations.

Most calcifying species, including mollusks, are able to

concentrate Ca2+ and CO3
22 ions at the site of calcification [27]

and should therefore be able to regulate calcification rates under

suboptimal concentrations of Ca2+ and CO3
22. The fact that,

even under CO3
22concentrations below aragonite saturated

conditions (T3 and T4, assuming calcium addition has no effect

in T4), some larvae were able to produce a shell highlights the

efficiency of regulatory mechanisms. However, the percentage of

embryos developing to viable D-veliger larvae and the shell sizes of

these viable D-veliger larvae were smaller, suggesting that the

regulation is not efficient enough to compensate for the low

CO3
22 ion availability below aragonite saturated conditions.

Nevertheless, many molluskan species are adapted to and able to

survive under low alkalinity conditions such as those in freshwater

ecosystems. In the marine environment, bivalve growth has been

reported by Tunnicliffe et al. [17] under extremely undersaturated

conditions prevailing close to deep hydrothermal sites, although

shell growth rates were significantly lower than in non-acidified

areas. Recently, Thomsen et al. [28] have shown that blue mussels

are actively growing in a bay of the Western Baltic Sea naturally

enriched with high CO2 water, and also juvenile recruitment

occurs in summer time coinciding with low pH levels and

aragonite undersaturated conditions. In the Oosterschelde tidal

inlet (1998–2006, monthly measurements, 5 stations), surface

pHNBS varied annually between 8.00 and 8.24, while AT varied

between 2334 and 2567 mmol kg21 (data not shown). The

organisms inhabiting this ecosystem are therefore never exposed

to corrosive waters and are even used to relatively high calcium

carbonate saturation levels, especially in spring at the time of

recruitment. Whether the organisms inhabiting environments with

relatively high calcium carbonate saturation levels will be able to

adapt to the anticipated decreases in pH and saturation levels in

the coming decades remains an open question. According to the

present results, the effects of ocean acidification on larvae of

Crassostrea gigas from the Oosterschelde estuary during the first 3

days of development are not significant as long as CO3
22

concentrations remains above aragonite saturated conditions. Due

to relatively high levels of total alkalinity in this area, it is not

expected that seawater will become corrosive for aragonite

following a decrease of 0.3 to 0.4 pH unit. However, the present

study only focused on the developmental period between embryos

and D-veliger larvae, there is still a need to perform experiments on

the full larval development of this species and to investigate the

response of other crucial physiological processes that have not been

considered in the present study such as respiration and excretion.
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