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Abstract. This paper proposes an efficient collision detection method which is compatible

with time-stepping methods in the sense that it enables the robust simulation non-smooth con-

tact between rigid bodies with complex shapes, including industrial CAD models of various

topology and in presence of conforming contact situations. It introduces a discrete representa-

tion of rigid body shapes based on dilated simplicial complexes, which generalizes the notion

of triangulation to domains of arbitrary topological dimension. It also defines finite collec-

tions of point contacts between those shapes thanks to quasi-LMDs, which are defined as an

extension of local minimum distances with respect to small relative rotations, between the base

complexes. Smooth gap functions associated to these point contacts are defined, as well as

complete and smooth generalized contact kinematics, enabling the use of non-smooth contact

laws like Signorini or Coulomb. Quasi-LMDs also lead to the stable treatment of conforming

contact cases. An efficient method based on 5D+1 bounding volume hierarchies for comput-

ing quasi-LMDs is presented. Finally, robustness and performance benchmarks show that our

method combined with a fast time-stepping-based solver allows interactive-time simulations of

complex and possibly conforming contact situations.
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1 INTRODUCTION

On one hand, time-stepping methods such as those proposed in Refs. [2], [41] and [20], are

known to be powerful computational mechanics tools for multibody dynamics or quasi-statics

with many contacts and degrees of freedom. However their capacities have been mostly illus-

trated with applications involving simple geometric shapes, like collections of spheres, boxes

and planes, or convex polyhedral models of modest complexity. On the other hand, computer

graphics and real-time applications like virtual reality and haptics have motivated the design

of collision detection algorithms that run efficiently on complex polyhedral models such as in

Refs. [37] or [23]. But the geometric information they compute is often specialized for the

use of computationally inexpensive (but less mechanically correct) contact models like penalty

methods based on penetrations depth or repulsive potentials based on separation distances. In

the next two sections, we will give arguments showing how their direct combination with time-

stepping schemes and more mechanically correct or non-smooth contact models suffers limi-

tations and generally leads to severe robustness issues, therefore introducing the ingredients of

our method as natural and efficient alternatives.

Figure 1: Left: complex shapes from industrial CAD models. Right: a conforming contact situation.

For computational efficiency reasons, our method relies on a discrete representation of the

rigid body shapes which will be described in section 4. Since it is based on simplicial com-

plexes, it has the capacity to represent geometric shapes of arbitrary topological dimension.

This versatility is particularly useful when working with combinations of volumes, shells and

beams for instance. Then the key elements that give consistency and robustness to our approach

will be presented in section 5 with the introduction of the notion of quasi-LMD. Finally the ef-

ficient computational method proposed in section 6 will be illustrated on industrial benchmarks

in section 7 featuring complex shapes and conforming contacts as shown in Fig. 1.

2 ON THE GEOMETRICAL NEEDS OF THE MODELING OF NON-SMOOTH CON-

TACT BETWEEN RIGID BODIES

In this section are reported and discussed the main geometric hypotheses that appear in the

definition of the most common non-smooth contact models between rigid bodies. In order to

introduce the terminology and notations used in this paper, we will begin with restating the

definitions of a few basic concepts.

2.1 Non-interference of rigid bodies and admissible configuration subset representations

Consider a system of N rigid bodies in dimension three, with generalized coordinates q(t) in

the configuration manifold M. The i-th rigid body occupies a time-dependent spatial domain
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Si(t) ⊂ R
3 called its shape, satisfying Si(t) = Hi(q(t), t)Si(t0), where Hi is an at least twice

continuously differentiable function from M × R into SE(3) and t0 a reference time. We

assume that Hi(q(t0), t0) = I . Si(t0) will be called the reference configuration shape of the i-th
rigid body. It is assumed to be a connected compact volume (i.e. having topological dimension

three). Considering shapes of lower topological dimension appears to us as a degenerate case in

the mechanical modeling of solid bodies (in dimension three, even thin shells models include a

positive thickness parameter), which may result in consistency issues in the definition of local

contact models (see subsection 3.1 for examples).

Let us first examine the case of perfect unilateral constraints. With the preceding notations,

the geometrically admissible configuration set C(t) ⊂ M defined by the non-penetration of the

body shapes may receive the following description :

C(t) = {q ∈ M, ∀ (i, j), i 6= j ⇒ Hi(q, t) (Si)
◦ ∩Hj(q, t) (Sj)

◦ = ∅} .

An effective contact situation between two bodies then corresponds to the existence of points

shared between the boundaries of their shapes.

If C(t) is tangentially regular (see section 6.1 for a definition), an abstract formulation of

the perfect unilateral constraints can be (see for example Ref. [6]) that the unilateral constraint

forces f(t) must lie in the opposite of the normal cone to C(t) at q(t):

f(t) ∈ −NC(t)(q(t)).

A case of major practical importance is when the admissible domain C(t) can be explicitly

described by the non-negativity of a finite collection of p constraint functions (gi)i∈{1,...,p}, each

gi being a real function defined over M× R:

C(t) = {q ∈ M, ∀ i ∈ {1, ..., p}, gi(q, t) ≥ 0} .

If the constraint functions are differentiable with respect to q and satisfy a weak qualification

hypothesis, then C(t) is tangentially regular and the normal cone to C(t) at q can be described

in the following way :

NC(t)(q) =

{

−

p
∑

i=1

αi∇gi(q, t), α ≥ 0, α ⊥ g(q, t)

}

,

with g = (g1, ..., gp), thus leading to gradient-type complementarity formulations of perfect

unilateral constraints between rigid bodies rather than more abstract differential inclusions.

Many authors implicitly or explicitly (see for example Ref. [4], Ref. [20] or Ref. [38]) sup-

pose that those constraint functions can be defined thanks to the notion of gaps associated with

a finite number of point contacts between rigid bodies. In the following subsections, we will

discuss reasonable geometric hypotheses under which such situations may arise.

2.2 Rigid body shapes regularity and smooth contact kinematics

In a first but restrictive definition attempt, we could consider a relative rigid body displace-

ment h ∈ SE(3) such that the rigid body shapes Si(t0) and hSj(t0) have disjoint interiors, and

think of point contacts between the rigid bodies as being isolated points of ∂Si(t0)∩ h ∂Sj(t0).
Let P be such a point for h = h∗. Intuitively, the associated gap function gp : h ∈ SE(3) → R

should be based on some kind of “signed local distance” between the shapes Si(t0) and hSj(t0),
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and be defined in a whole vicinity of h∗: the gap value must be positive in case of separation

(i.e locally disjoint shapes), negative in case of interpenetration (i.e. non-empty intersection of

the shape interiors “at the vicinity P ”), and zero otherwise (i.e. in case of exact contact), like in

the typical situation of Fig. 2. This definition and terminology agrees with most of the existing

literature. If gP is differentiable on a vicinity of h∗, then, thanks to the smoothness of Hi and

Hj , it can be used to define a differentiable constraint function, locally in an open subset of

M× R.

If we suppose that the shape boundaries are twice continuously differentiable in the vicinity

of a point contact P obtained at relative pose h∗, then they must be strictly relatively convex (see

for example Ref. [30]) in the vicinity of P . In such a situation, gp(h) may receive an adequate

definition, to which we will come back in the two next subsections, based on the local geometry

of the shape boundaries, that makes it a smooth function at the vicinity of h∗.

In contrast, point contacts located on non-smooth areas of shape boundaries, like vertex-

vertex contacts between polyhedral shapes, are known to be the source of reentrant corners in

C(t). In those cases, C(t) is not tangentially regular, hence if gap functions are ever defined for

these point contacts, they cannot be smooth functions. Those situations have been identified

by numerous authors : Baraff in Ref. [3] calls them “degenerate point contact cases” between

polyhedral shapes and, for convenience, converts them into vertex-plane contacts by arbitrarily

choosing a normal direction, Park et al. categorizes them as “singular contacts” in Ref. [32],

while in Ref. [13] Glocker proposes the extension of impact laws that apply in those cases.

Figure 2: Left: the usual vision of the gap values associated to a point contact P . Center: LMDs between non-

penetrating compact shapes. Left: typical issue concerning the locality of penetrations between non-convex shapes.

Anyway, in the cases where a normal direction to contact does not receive a reasonable and

univocal geometric definition, the use of frictional contact laws (like non-smooth Coulomb’s

law), or even more sophisticated or regularized contact laws, is severely compromised. More

precisely, the availability of smooth point contact kinematics, including smooth gap functions,

as derived in Ref. [34], and with a slightly different formalism in Refs. [9] and [44], is a pre-

requisite to a wide range of non-smooth and smooth contact models between rigid bodies (see

for example Refs. [28], [40] or [5]).

2.3 Defining point contacts and non-negative gaps through LMDs

We claim that a natural and less restrictive definition of point contacts between two non-

penetrating rigid bodies of non-necessarily convex shapes Si(t0) and hSj(t0), which are re-

called to be compact volumes, should be based (see Fig. 2) on the strict local minima of the

Euclidean distance function restricted to Si(t0) × hSj(t0). Since shapes are compact, such a

minimum will be attained at a minimizing couple of points (ai, aj) ∈ Si(t0) × hSj(t0), called

a local minimum distance, or simply LMD, between Si(t0) and hSj(t0). It is easy to see LMDs
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between Si(t0) and hSj(t0) lie in ∂Si(t0)×h ∂Sj(t0). LMDs consistently extends the definition

of point contacts given in the preceding subsection to all the relative configurations h where the

shape interiors are disjoint. It also defines associated non-negative gaps without ambiguity, and

is coherent with the definition of generalized contact kinematic given for convex shapes in Refs.

[34] and [9]. Each resulting gap function g is hence defined at least on a non-empty subset of

SE(3). If the boundary surfaces are twice differentiable at the vicinity of a LMD, then the

resulting generalized contact kinematics are smooth (e.g. the gap function and normal direction

to contact are differentiable with respect to h).

2.4 Negative gaps definition issues

The problem of defining negative gap values that extend the gap functions defined in the

preceding subsection is more difficult. When two shapes are convex, with at least one them

being strictly convex, then the non-intersection of their interiors implies that there exists exactly

one LMD between them. Otherwise, if the shapes interiors intersect, then one could try to

invoke the notion of penetration depth between convex sets A and B, defined as:

π(A, B) = inf ‖τ‖, τ ∈ R
3, (A + τ) ∩ B = ∅. (1)

Suppose now that Si(t0) and Sj(t0) meet sufficient supplementary conditions for the following

assertions to hold:

• For any h in SE(3), π(hSj(t0),Si(t0)) is attained for a unique translation vector τ ∗(h).

• If Si(t0) and hSj(t0) interpenetrate for some h, then Si(t0) ∩ (hSj(t0) + τ ∗(h)) is an

isolated point of ∂Si(t0) ∩ h ∂Sj(t0) + τ ∗(h), denoted a(h).

With these conditions, the couple of points (a(h), a(h)− τ ∗(h)) may serve as a basis for defin-

ing generalized contact kinematics in interpenetration situations. If the shapes boundaries are

sufficiently smooth, one can hope for the smoothness of these contact kinematics. The most

typical and widely used example of shapes that satisfy all the conditions listed above is the one

of balls (see for example Ref. [38]). For convex polytopes, the inf bound in (1) is a min bound

(see Ref. [1]) but it is attained for some non-unique τ ∗ translation vector.

For non-convex shapes, defining a “local penetration depth” is difficult. Strong local con-

vexity assumptions are necessary, and the resulting definition is necessarily limited to “small”

penetrations due to the lost of locality of penetration (see Fig. 2). The domain of validity of

such a local definition is difficult to estimate in practice on complex non-convex shapes, caus-

ing well-know consistency problem. Circumventing solutions that use causality principles in

the definition of local penetration depth have been proposed in several approaches (see for ex-

ample Refs. [3], [4], [17] and [37]). Their main weak point is that the use of history introduces

hysteresis in the definition. For instance, Baraff proposes in Refs. [3], [4] to go back in time in

a situation of exact contact and use polyhedral contact models defined in this configuration (see

also the next subsection).

Another encountered solution for defining generalized contact kinematics in interpenetration

situations relies on the notion of extreme distance between surfaces, which in general is not

precisely defined (see for example Refs. [4] and [25]). The one found in Ref. [4] closely

resembles a local penetration depth definition and demands both local convexity and regularity

assumptions. The one found in Ref. [25] relies on discrete considerations.
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2.5 Conforming contact situations and point contacts selection strategies

Now let us take again h ∈ SE(3) such that the rigid body shapes Si(t0) and hSj(t0) have

disjoint interiors. The connected components of ∂Si(t0) ∩ h ∂Sj(t0) which have topological

dimension one or two will be called conforming contacts. Even in the case of twice differen-

tiable boundaries, an immense diversity of cases may arise, and we will restrict our discussion

to planar contact regions.

Under the assumption of perfect unilateral constraints, one could be tempted to extend the

notion of point contacts to non-isolated points, provided that the associate gap and contact kine-

matics can still receive an acceptable definition, and decide that every extreme point of the

convex hull of a planar contact is a point contact, hoping that this construction, that we call se-

lection of point contacts, will providing a satisfying set of constraint functions to describe C(t).
Baraff calls this procedure “restriction of contact points” in Ref. [3], and remarks in Ref. [4]

that such points may exist in infinite number, like in the example of a cylinder resting on a plane

along one of its bases. The same author also remarks that contacts between polyhedral shapes

give conforming contact regions which are planar polyhedra, and hence yield to a finite number

of selected point contacts.

However, since these points are not isolated in the intersection of the shape boundaries, it is

generally not possible, except maybe in special cases, to define associated gap functions based

the considerations of the preceding subsection, especially in the case of polyhedral shapes (take

for example a cube resting on a plane along one of its faces), since arbitrarily small relative dis-

placement of the contacting bodies may cause penetrations which do not remain local to each

selected point contacts. Baraff proposes a solution in Ref. [3], which consists in referring to

an exact contact situation and applying a contact model (vertex-plane or edge-edge) for each

selected point contact. We think that the main drawback of Baraff’s approach is that it implies

a penetration-withdraw operation to define the exact contact reference configuration. This op-

eration introduces hysteresis in the definition of the point contacts and may pose compatibility

problems with time-stepping methods (see 3.3 for a more detailed discussion).

We finally remark that the frequently encountered combination of such selection strategies

with a non-smooth frictional point contact model, like Coulomb’s, seems to us to be an arbitrary

modeling choice of frictional conforming contact between rigid bodies that has no particular

mechanical justification.

3 EFFICIENT COLLISION DETECTION METHODS

From the point of view of computational contact mechanics, collision detection can be seen

as the effective computation of sufficiently complete geometric information, as detailed in sec-

tion 2, for the chosen contact models to be used in a simulation framework. Hence, apart from

the computational efficiency of collision detection methods, which is of major importance for

real-time or interactive simulations, the first question that be can asked is about the exact nature

of the output of such algorithms. Its variable definition explain the various understanding of the

term “collision detection”. The second one is about its quality : in other words, does the com-

puted geometric information satisfy sufficient hypotheses for the computational methods used

for solving the possibly non-smooth contact dynamics or quasi-statics to exhibit satisfactory

numerical behavior, and hopefully convergence ?
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3.1 Diversity of existing methods

Although determination of contact between simulated rigid or flexible bodies is a common

issue to several research areas and technical applications, including computational mechanics,

computer graphics and real-time mechanical simulations (for computer games, virtual reality,

haptics and robotics), the two latter communities seem to have been the most productive in

the field of computationally efficient methods, which are commonly referred to as collision

detection algorithms. Due to the immense literature on the subject, we have preferred selecting

some key references cited in the next paragraph. From a more complete panorama, we orient

the reader in direction of several good surveys that can be found in Refs. [29], [21], [43], [27]

and the book Ref. [11] which also details many important implementation issues.

Indeed, the problem of collision detection have received numerous formulations correspond-

ing to different interpretations and levels of richness of the computed geometric information

(from mere boolean intersection queries to spatial and/or temporal localization of contact), with

diverse geometric definitions of contact situations: either based on interference or proximity

of shapes, global separation distance, local penetration depths and vectors with possible use

of convex decompositions and incremental computations (see Refs. [35], [10] and [26]), in-

terference volumes (see Refs. [18] and [16]) or even more exotic approaches like intersection

contours like in Ref. [45]. Some methods are dedicated to particular regularized contact models,

like the approach found in Ref. [33] which is based on point cloud representations in the context

of computer animation, or the one explained in Ref. [19] which explicitly computes polyhedral

intersections. Others are especially designed for the use of mechanical solvers which are not

based on time-stepping algorithms, like “continuous collision detection” as defined in Ref. [36].

The latter approach is closely to related to the determination of the instant of first contact, as ex-

ploited in event-driven methods (see again Baraff’s excellent descriptions in Refs. [3] and [4]).

However we retain that collision detection methods can be considered as belonging to the

field of computational geometry and may show a relatively high level of algorithmic complexity.

Besides, when involving polyhedral shapes, these methods very often demand strong confor-

mity hypotheses like 2-manifold triangulations of shape boundaries (see section 4.3).

3.2 Necessity of discrete shape representation

Another recurrent aspect of discussions about collision detection methods is the necessity

of a tradeoff between efficiency and the quality of the computed geometrical information. As

body shapes defined by CAD models are mostly made of piecewise smooth surfaces and curves,

some methods, seeking geometric accuracy, have been proposed in order to compute distances

or penetration depths between curved surfaces (see Refs. [22], [24], [39] and [15]). All of them

exhibit computation times that currently make them incompatible with interactive multibody

contact simulations with complex shapes, since they mostly rely on iterative optimization algo-

rithms with possibly slow convergence rates or involving high-degree polynomial root-finding

subroutines. In contrast, methods based on approximate discrete shape representations can ben-

efit from the use of bounding volume hierarchies of diverse types (see Ref. [14] and the surveys

cited in the preceding subsection) to attain tractable efficiency. The control of geometric ap-

proximation will be discussed in section 4.

3.3 Time-stepping compatibility issues

In section 2, we have already pointed out that, when relying on set of point contacts for defin-

ing the admissible domain C(t)), smooth gap functions taking both positive, zero and negative
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values have to be geometrically defined. In their practical resolution, time-stepping methods as

those presented in Refs. [41], [2], [6], [42] and [38] effectively need gap functions to be able to

take both positive and – at least small – negative values.

The first element that may interfere with the convergence of these methods is the introduc-

tion, that we already mentioned in subsections 2.4 and 2.5, of hysteresis in some definitions of

negative gaps. Another issue comes from the fact that in some methods (e.g. those based on

penetration depths only), numerical access to positive gaps is possible only after exploring a

penetration configuration. In these two cases, dangerous “accumulation of constraints” heuris-

tics may be necessary, for example during iterations of Josephy-Newton or other Newton-like or

Gauss-Seidel-like algorithms used to solve nonlinear complementarity problems or discretized

differential inclusions, leading to robustness issues in regions where C(t) is not convex. Note

that the use of popular fast time-stepping solvers, relying on a single execution of the collision

detection method and linearizing contact equations in order to solve only one LCP per time step,

may then give unstable numerical behaviors and/or large interpenetrations, unless the contact

unilateral constraints are heuristically accumulated from the preceding time steps.

The second class of frequently encountered issues comes from the fact that the computed

geometric information may not be adapted to the use of a non-smooth contact model like Sig-

norini or Coulomb, because of a lack a regularity in the computed contact kinematics. If those

are known to be non-smooth for modeling reasons, then non-smooth numerical methods that

are able to treat those non-regularities have to be invoked. Otherwise, if the smoothness of the

contact kinematics is an hypothesis which is exploited by the time-stepping method, then its

numerical violation may result in unpredictable numerical behavior.

4 SIMPLICIAL COMPLEXES AS VERSATILE DISCRETE SHAPE REPRESENTA-

TIONS

In the preceding section, we have seen that efficient collision detection methods applying

to objects with complex shapes currently make mandatory the use of discrete representations.

Moreover, working with industrial CAD models implies being able to represent shapes of arbi-

trary topology and to control all geometric approximations. We thus propose a unified repre-

sentation of shapes using simplicial complexes generated by meshing tools.

Roughly speaking, a 3D simplicial complex can be seen as generalized triangulation made

of simplices of R
3. In this section the reader will first find a rigorous definition of a simplicial

complex and may get familiarized with the associated terminology and the notations we will

use in the rest of the paper. Secondly, we motivate and explain the use of simplicial complexes

as rigid body shape representations, especially in the case of industrial CAD models, and give

guidelines about their generation by meshing tools.

4.1 A short introduction to simplicial complexes

Simplicial complexes generalize the notion of triangulation to domains of arbitrary topologi-

cal dimension (see for example Fig. 3 at the right hand side). Particular cases include tetrahedral

meshes, triangulated surfaces, polylines and sets of isolated points.

Formally (see for example Ref. [31]), we recall that a simplex (or k-simplex) S in R
d is

defined as the convex hull of k + 1 affinely independent points {p0, ..., pk}. The simplices

defined as the convex hulls of subsets of {p0, ..., pk} are called the faces of S.

A simplicial complex K in R
d is a collection of simplices, called its faces, such that:

• every face of a simplex of K is in K;
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• the intersection of any two simplices of K is a face of each of them.

In the terminology of algebraic topology, the union of all the faces of a simplicial complex

K, equipped with the smallest topology which is compatible with the ones of its faces (see

Ref. [31] for details), is called the polytope of K and denoted |K|. A topological space which

the polytope of a finite simplicial complex will be called a polyhedron.

We also give a few more definitions that will be useful in the next section. Let S be a simplex

in R
d. The faces of S which are different from S itself are the proper faces of S. Their union is

called the simplicial boundary of S and denoted Bd S. The simplicial interior of S is defined as

S \Bd S. We also recall that the relative interior (resp. the the relative boundary) of a subset A
of R

d if the interior (resp. the boundary) of A in the natural topology (i.e. the one which comes

from the Euclidean structure) of the affine subspace of R
d generated by A. The relative interior

(resp. boundary) of a simplex coincides with its simplicial interior (resp. with its simplicial

boundary).

Figure 3: Left: a simplicial complex. Right: A point contact between a plane and adilated shell.

From a numerical point of view, simplicial complexes appear as generalized meshes, built

upon 1-simplices of the complexes. The points in R
d which belong to a 1-simplex of a complex

S are called the vertices of S, but we will also use the term vertex for a 1-simplex itself. Hence

a natural way to represent a simplicial complex in a data structure is to first give a list of its

vertices as numbered points in R
d, and then represent each of its k-simplices by a list of k + 1

vertex numbers. A necessary conformity condition is that each for each represented k-simplex,

the k + 1 listed points are affinely independent. Otherwise, we will speak of a degenerate

simplex. Examples in 3D include flat triangles and tetrahedra and zero-length edges. A complex

containing such simplices will also be called degenerate.

4.2 Working with complex shapes from industrial CAD models

Another reason for the use of discrete shape representations instead of continuous models is

an industrial motivation, since discrete representations are not dependant on a particular CAD

kernel native format. As industrial constraints impose a complete control geometric errors,

including during collision detection and contact simulation, one could think of reducing the

total errors by directly working on native formats for collision detection. Unfortunately, not all

of these format are open, and the transfer formats containing continuous representations and

made available in industrial CAD software products, like IGES for instance, are also based on

approximations of the native models.

We actually propose to use dilated1 simplicial complexes for representing geometric shapes

of arbitrary topological dimension, as in Fig. 3. This is coherent with our preliminary assump-

1The ε-dilation of a subset A in R
3 is an operation defined for any non-negative ε value which consists in
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tion stating that the body shapes should be compact volumes (see section 2), even if they are

obtained by dilating geometric shapes of lower (and even not uniform) topological dimension.

We propose to represent two-dimensional models like thin shells by triangulations of the

medial surfaces dilated by half the thicknesses of the shells. One-dimensional models like thin

beams or cables will be preferably represented by dilated polylines (chained straight line seg-

ments) coming from the discretization of their medial fiber. For volumes, two options exists:

use a complete tetrahedral triangulation of the volume, or simply an oriented 2-manifold trian-

gulation of the boundary. We will see in the next section that our method has the drawback of

requesting a positive dilation of complexes. To satisfy this constraint, the use of a small neg-

ative offset before or during the boundary surface meshing of volume models can compensate

the necessary dilation.

4.3 Meshing recommendations, mesh flaws and geometric error control

The geometric approximations made during the meshing operations are generally controlled

via error criteria, like the maximum chordal deviation. Other meshing constraints may imposed

in order satisfy geometric conformity criteria. Industrially available tools for generating (gen-

eralized) triangulations may be classified in two main categories, which are tessellators and

meshers.

On one hand, tessellators are generally first aimed at generating discretized representation

of lines (or “polylines”) and triangulations of surfaces (including volume boundaries) for vi-

sualization purposes. Therefore they must be capable of treating every native model of almost

arbitrary quality with an extremely reduced reject rate, but the conformity criteria they enforce

will be very modest, focalizing on the optimization of the number of generated triangles. Be-

sides industrial tessellators exhibit fairly diverse output quality. However, high-quality tessella-

tors are able to generate 2-manifold triangulations of “clean” CAD surface models and volume

boundaries, with a control over the maximum edge length and sometimes over the maximum

dihedral angle between neighbor triangles. Such tessellators are currently available in a strong

proportion of industrial CAD software suites.

On the other hand, meshers are expected to give the possibility to control more various

geometric criteria for the needs of numerical methods like finite elements. A volume tetrehedral

mesher is also the only solution for the triangulation of the interior of volumes. Unfortunately,

meshers are known to demand input CAD models of relatively high quality, and sometimes

manual corrections on their output, which may represent large amounts of pre-processing time.

In industrial contexts where rigid multi-body simulations would be useful, large pre-process-

ing delays and costs are not always acceptable. In the early conception stages of a product,

they could even destroy the potential advantages of digital mock-ups over traditional physical

ones. In those cases , a high-quality tessellator may be the tool of choice. Still, if the input

CAD models are of poor quality and suffer flaws like cracks, holes, or more serious topological

aberrations, the output tessellation is likely to exhibit comparable defects. Therefore multi-

body simulators relying on collision detection algorithms which absolutely require flawless

input triangulations are practically unusable in these contexts.

Our method only requests (see section 6) that the input simplicial complexes are non-degene-

rate, which is most of the time attained by the use a high-quality tessellator followed by very

basic mesh untangling algorithms when degenerate simplices are detected. If cracks, holes, or

performing the union all closed balls of radius ε having their centers in A. The resulting set is the Minkowski sum

of A and the closed ball of radius ε centered at the origin.

10
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non-manifold edges are detected in the triangulation of a volume boundary, then we can choose

to treat it as a shell from the point of view of collision detection.

We conclude this section by signaling that the control of geometric errors induced by the suc-

cessive negative offset (for volumes only), meshing, and dilation operations can be completely

controlled, provided that the tools used for the two first steps enforce at least a maximum chordal

deviation criterion.

5 TIME-STEPPING COMPATIBLE COLLISION DETECTION BETWEEN DILATED

SIMPLICIAL COMPLEXES

We follow our claim of subsection 2.3, and we propose to define point contacts between

dilated simplicial complexes thanks to LMDs, using the dilation for defining negative gaps. We

will define actually the slightly weaker notion of quasi-LMDs which enables the stable treatment

of conforming contact cases.

5.1 A retraction method for defining negative gaps and smooth contact kinematics

Consider two dilated simplicial complexes and suppose that the non-dilated complexes are

disjoint. If the shapes obtained by dilation are disjoint too, we remark that each LMD between

them can be obtained by “shortening” a LMD between the complexes as shown in Fig. 4 at the

center. Moreover, the non-penetration of the dilated simplicial complexes is equivalent to the

condition that all the LMDs between the base complexes give distances greater than the sum of

the dilations.

Starting from these central remarks, our approach consists in using the LMDs between the

non-dilated simplicial complexes for defining point contacts between the dilated complexes. Let

(ai, aj) be a LMD between the disjoint simplicial complexes Ki and Kj . For each such LMD,

we define a point contact between the shapes obtained by εi-dilation of Ki and εj-dilation

Kj by deciding that the couple of points defining the generalized point contact kinematics is

(ai + εi ni, aj + εj nj), where ni and nj are defined by:

ni = −nj =
aj − ai

‖aj − ai‖
.

ni defines the normal direction to contact.

Maintaining the complexes separated during simulation is then ensured by the use of non-

smooth contact laws imposing non-negative gaps, although small positive and negative gap

values are accessible for internal time-stepping computations2. Note that the resulting general-

ized contact kinematics are smooth, hence enabling the introduction of frictional contact laws.

Moreover all computations are reported on the non-dilated simplicial complexes. Consequently

this purely implicit “retraction method” appears like an advantageous alternative to local pen-

etration depths or any other difficult construction mentioned in subsection 2.4. It makes the

definition of generalized contact kinematics as easy as if the shapes were simply two balls, and

it is not surprising since actually they are unions (a potentially infinite number) of balls.

Besides, our method is purely geometric and does not invoke the history of relative move-

ment between the shapes. Thanks the positive dilation, it also avoids the well-known consis-

tency issues in defining contacts between pure surfacesor thin beams or cables. A comparable

2Incremental control of displacements, resembling incomplete descent strategies, can be used to prevent the

possible intermediary computation of time-stepping solvers to explore configuration where the base complexes

interpenetrate.
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dilation method applied to convex polyhedra is described in Ref. [7], but we have not found any

reference which exploits it in the case of non-convex complex shapes.

Figure 4: Left: condition (2) in configuration manifold M. Center: gaps between dilated simplicial complexes.

Right: a LMD and a quasi-LMD (at the right hand side in green).

5.2 Quasi-LMDs : stable and generic treatment of conforming contact cases

First remark that conforming contact regions, as defined in subsection 2.5, between two

shapes obtained by the dilation of simplicial complexes are planar polyhedra. To treat those

cases, we would like our method to reproduce a contact selection strategy, but without relying

on history.

Now let us examine the simple example of a dilated cube resting a plane, the contact region

being a square. Since it exists no strict local minimum of the distance function restricted the

cartesian product of the shapes, all LMDs vanish in this relative configuration. Ideally we would

like to define point contacts based on the four contacting corners of the cube, by it is easy to see

that, for any relative pose, at most two LMDs exist between the cube and the plane.

If for defining LMDs we accept all minima of the distance function, then an infinity of them

can be defined for a conforming contact region. Further restricting those minima to the corners

of the cube is only a partial solution, since at least two of the point contacts defined in this

manner vanish under infinitely small rotations of the cube, impeding convergence of most time-

stepping scheme and giving rise to unstable numerical behaviors.

Our approach is actually based on the definition of quasi-LMDs, which corresponds to a

prolongation of the definition of particular LMDs under small rotations (see Fig. 4 at the right

hand side). If the LMDs supported by the corners of the cube receive such a regularization, then

four point contacts are defined for every sufficiently small perturbation of the exact conforming

contact situation. This regularization of constraints with respect to small rotations yields a stable

treatment of conforming contact cases with a typical time-stepping scheme, for example a fast

solver based on a single LCP, as will be demonstrated in section 7.

The general definition of quasi-LMDs necessitates the introduction of supplementary mate-

rial and will be done in section 6, but the following subsection gives an immediate analysis of

the regularization of constraints giving by LMD gaps with respect to small rotations.

5.3 Admissible domain boundary covering conditions

With non-convex simplicial complexes, constraint functions based on LMD gaps are defined

only locally in the configuration manifold M, having the convention that the constraint defined

by a gap function is simply ignored outside of its definition domain. Let us denote by Di(t)
the domain where the i-th constraint function gi(·, t) is defined and continuously differentiable,

12
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by V(X) the set of all neighborhoods of any set X ⊂ R
n. C(t) is the domain where all gap

functions are non-negative. The prolongation of LMDs into quasi-LMDs actually corresponds

the enlarging the Di(t) domains without modifying C(t).
Actually typical time-stepping schemes need the constraints functions gi(·, t) to be defined

on a whole vicinity of the portion of its zero level which belongs to the boundary of C(t), which

can be formalized by the following qualification condition (see Fig. 4 at the left hand side):

∀ t, ∀ i ∈ {1, ..., p}, ∃Ωi ∈ V
(

(gi(·, t))
−1({0}) ∩ ∂C(t)

)

. Ωi ⊂ Di(t). (2)

Otherwise, “flip-flop” instabilities may occur in the corners of ∂C(t), the constraint solver used

by time stepping scheme retaining only a subset of the constraints forming the corner, either

during its successive iterations in the same time step or from one time step to another. Indeed

condition (2) is equivalent to the following one:

∀ t, ∀x ∈ ∂C(t), ∃Ωx ∈ V({x}), ∀ i ∈ {1, ..., p}, gi(x, t) = 0 ⇒ Ωx ⊂ Di(t),

which means that all constraints which are active at a corner of C(t) (corresponding for example

to a conforming contact situation) should still be defined under sufficiently small displacements

in M. Such small displacements may cause both relative translations and rotations of the

contacting rigid bodies, which explains the stabilizing effect of quasi-LMDs.

6 EFFICIENT QUASI-LMD COMPUTATIONS BASED ON AUGMENTED BOUND-

ING SPHERE-CONE HIERARCHIES

Our method computes LMDs and quasi-LMDs efficiently thanks to a bounding volume hi-

erarchy (BVH) inspired from Johnson and Cohen’s (see Ref. [23] and Ref. [25]). However the

definition of normal cones given in Ref. [23] is derived from normals to volumes with smooth

boundaries. The adequate tools for giving a rigorous characterization of a LMD between vol-

umes with polyhedral boundaries are actually provided by convex analysis and apply to general

simplicial complexes. The cones that have to be considered are the polar cones of the tangent

cones to the complexes, which are slightly different from the normal cones.

6.1 Tangent and normal cones, Gauss map

We follow the terminology found for example in Ref. [8], and adopt the following definitions

for the tangent and normal cones.

Let X be a subset of R
3 and x a vector in X . A vector y ∈ R

3 is said to be a tangent of X at x
if either y = 0 or there exists a sequence (xk)k∈N such that xk ∈ X \x for all k, limk→∞ xk = x
and limk→∞(xk − x)/‖xk − x‖ = y/‖y‖. The set of all tangents of X at x is called the tangent

cone of X at x, and is denoted TX(x). A vector z ∈ R
3 is said to be a normal of X at x is

there exists sequences (xk)k∈N and (zk)k∈N, with respective limits x and z and such that for all

k, xk ∈ X and zk ∈ TX(xk)
∗. The set of all normals of X at x is called the normal cone of X at

x and is denoted NX(x). If NX(x) = TX(x)∗, X is said to be regular, or tangentially regular,

at x. We also define the Gauss map of X , denoted GX , to be the set-valued function defined by

GX(x) = TX(xk)
∗ ∩ S2, where S2 is the unit sphere in R

3.

Now, let S be a d-simplex in R
3 with d > 0, σ a face of S of dimension d − 1 and v the

vertex of S opposite to σ. Let a be the orthogonal projection of v on the affine hull on of σ. The

points a and v are distinct. The unit vector (v − a)/‖a − v‖ will be denoted uS(σ).
Now let K be a finite simplicial complex in R

3. The relative interiors of the faces of K form

a partition of |K|. It is not difficult to show that, for each face σ of K, the function x 7→ T|K|(x)∗
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takes a constant value over Int σ, which will be denoted T|K|(Int σ)∗, and is described by:

T|K|(Int σ)∗ = (Dir Aff σ)⊥ ∩ UK(σ)∗, (3)

where Dir Aff σ denoted the direction of the affine hull of σ and UK(σ) denotes the set

{uσ′(σ), σ′ ∈ K, σ ⊂ σ′, dim(σ′) = dim(σ) + 1}.

Let x be a point in |K|, and denote σx be the unique face K which contains x in its relative

interior. We have:

T|K|(x)∗ = T|K|(Int σx)
∗. (4)

6.2 Characterization of LMDs between simplicial complexes

Let K1 and K2 be two finite and disjoint simplicial complexes in R
3, and denote d|K1|×|K2|

the restriction of the Euclidean distance to |K1| × |K2|. Actually we will characterize all local

minima, strict or not, of the function d|K1|×|K2|. A couple (x1, x2) ∈ |K1| × |K2| is a local

minimizing point of d|K1|×|K2| if and only if the following condition holds:

x2 − x1 ∈ T|K1|(x1)
∗ ∩ −T|K2|(x2)

∗. (5)

Here is an outline of the proof: assume that (5) holds. Thanks to (3) and (4), we can show that

for each i, there exists εi > 0 such that T|Ki|(xi)
∗ = TVi

(xi)
∗, where Vi denotes the convex hull

of |Ki|∩B(xi, εi). Besides T|K1|×|K2|(x1, x2)
∗ is equal to T|K1|(x1)

∗×T|K2|(x2)
∗ and (5) implies

that −∇d|K1|×|K2| is in T|K1|×|K2|(x1, x2)
∗. Hence −∇d|K1|×|K2| is in TV1×V2

(x1, x2)
∗, and since

d|K1|×|K2| and V1×V2 are convex, (x1, x2) locally minimizes d|K1|×|K2| in V1×V2 ⊂ |K1|×|K2|.
The converse implication is straightforward.

Now let X1 and X2 be subsets of |K1| and |K2| respectively. A necessary condition for

the existence of a couple (x1, x2) ∈ X1 × X1 which locally minimizes d|K1|×|K2| is that the

following condition holds:

⋃

x∈X1

T|K1|(x1)
∗ ∩

⋃

x∈X2

−T|K2|(x2)
∗ ∩ X2 − X1 6= ∅. (6)

6.3 Definition of quasi-LMDs

Let K1 and K2 be two finite and disjoint simplicial complexes in R
3. The definition quasi-

LMDs comes with a special classification of the faces σ of each complex Ki, depending on the

topological dimensions of σ and T|K|(Int σ)∗, which is summarized in table 1. We define eight

classes numbered from 0 to 7, and the class of σ in K is denoted cK(σ). Table 2 then defines a

symmetric binary compatibility relation between the classes as well as a regularization function

ε which determines which type of regularization of LMDs with respect to orientation is to be

made.

Precisely, we define the quasi-LMDs between K1 and K2 as follows. Let σ1 and σ2 be faces

of K1 and K2 respectively. A quasi-LMDs (x1, x2) is supported by σ1 and σ2 if the following

conditions hold:

• The classes of σ1 and σ2 are compatible, i.e. the value of ε(cK1
(σ1), cK2

(σ2)) is defined.

• dAff σ1×Aff σ2
has a unique minimizer which is (x1, x2).

• (x1, x2) is in Int σ1 × Int σ2.

• For each i {1, 2}, for all σ′ ∈ UKi
(σi), 〈xj−xi/‖xj−xi‖, uσ′(σ)〉 < sin(εi(cK1

(σ1), cK2
(σ2)),

with j ∈ {1, 2} \ i.
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dim(σ) dim
(

T|K|(Int σ)∗
) [

StK σ ∩ ∂|K|
]

is a plane cK(σ)
0 3 · 0

0 2 · 1

1 2 · 2

0 1 false 3

0 1 true 4

1 1 · 5

2 1 · 6

· 0 · 7

Table 1: Classification of the simplices σ of the complex K. A dot indicates all possible values.

ε(c1, c2) 0 1 2 3 4 5 6 7

0 (0, 0) (0, 0) (θ, 0) (θ, 0) (θ, 0) (θ, 0) (θ, 0) n.d.

1 (0, 0) (θ, θ) (θ, θ) (θ, 0) n.d. n.d. n.d. n.d.

2 (0, θ) (θ, θ) (θ, θ) (θ, 0) n.d. n.d. n.d. n.d.

3 (0, θ) (0, θ) (0, θ) n.d. n.d. n.d. n.d. n.d.

4 (0, θ) n.d. n.d. n.d. n.d. n.d. n.d. n.d.

5 (0, θ) n.d. n.d. n.d. n.d. n.d. n.d. n.d.

6 (0, θ) n.d. n.d. n.d. n.d. n.d. n.d. n.d.

7 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

Table 2: Definition of the values of the regularization function ε, the scalar θ being a fixed small positive angle

which is a parameter of our method. “n.d.” indicates an undefined value, i.e. incompatibility between the classes.

• For each i, let nKi
(σi) ⊂ S2 be a minimal generator of the polyhedral cone UKi

(σi)
∗,

and let CKi
(σi) be the smallest semi-infinite revolution cone, with axis co-linear with the

mean of the vectors in nKi
(σi), which contains UKi

(σi)
∗. The vector xj − xi should be

in the revolution cone obtained by augmenting of εi(cK1
(σ1), cK2

(σ2)) the half angle of

CKi
(σi).

6.4 Bounding volume hierarchies for efficient quasi-LMD computations

We propose to use a sphere-cone bounding volume hierarchy (BVH) similar to introduce in

Ref. [23], and generalize it by deciding that the leafs of the hierarchy contains the simplicial

interiors of the faces of a simplicial complex K, which we recall to be a partition of ‖K‖. We

also augment this 5D BVH to a 5D+1 by addition the discrete dimension of the simplex classes,

i.e. we add eight boolean value to each sphere-cone bounding volume indicating whether the

node of the hierarchy contains simplices of each class. Our node-node test is based on the

compatibility relation defined by table 2 on the necessary condition (6) just like in Ref. [23],

but with the half-angles of the node cones augmented of the regularization parameter θ. The

leaf-leaf test immediately follows the preceding subsection.

Moreover, for the top-down creation of the hierarchy, we propose to adopt a dimensional

splitting strategy. Recursive subdivision is done by alternating between relying on the position

and relying on the value of the Gauss map of the primitives (we perform a median cut along

the first principal axis). For the computation of sphere bounding volumes, we use a layered

hierarchy and compute the minimal enclosing ball of the simplices (see Ref. [12]). For the

bounding cones, we adopt a nested hierarchy, starting from the leafs and using the cones CK(σ).
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For the special case of volumes, the quasi-LMDs are located on the boundaries which are

two-dimensional oriented simplicial complexes. In this particular case, our method, like John-

son’s, can take as input this 2D complex and rely on its orientation instead of using a triangula-

tion of the whole volume (which would also contains the filling tetrahedrons).

7 EFFICIENCY AND ROBUSTNESS BENCHMARKS ON INDUSTRIAL DIGITAL

MOCK-UP CASES

Our method has been integrated in an interactive multibody simulation engine developed

at CEA and based on a complementarity formulation of non-smooth unilateral contact solved

by a semi-implicit time-stepping scheme based on Ref. [20]. This section shows experimental

results demonstrating the robustness and efficiency of our approach.

7.1 Complex conforming contacts

Tests of robustness and time-stepping compatibility have been performed on various models

ranging from the simple cube example introduced in section 5.2 (see Fig. 5) to complex shapes

coming from industrial CAD models (see Fig. 1 and Fig. 5). Stable conforming contacts are

obtained thanks to quasi-LMDs, even in geometrically complex situations.

Figure 5: Left: exact conforming contact between a cube and plane, showing four quasi-LMDs. Center: quasi-

LMDs do not vanish under small rotations of the cube. Right: a complex conforming contact situation.

7.2 Efficiency and robustness evaluations on industrial models

Industrial benchmarks featuring volumes and shells (see Fig. 1 and Fig. 6) have been used for

the quantitative evaluation of efficiency and robustness of our method. The evaluation has been

done in the case of a fast solver, with explicit collision detection (only one quasi-LMD query

per time step, LCP formulation of perfect unilateral constraints). Table 3 summarizes statistics

made on whole trajectory which corresponds to the mounting of a winds shield wiper’s actuating

mechanism (rigidified during the mounting phase). All other mechanical parts are rigid bodies

which are fixed to the global inertial frame. The trajectory starts outside of the car structure,

goes through a narrow passage between the base of the windshield and the superior edge of the

hood, and finishes with a peg-in-hole insertion into the supporting parts (see Fig. 6). This is real

scenario which was proposed to us by PSA-Peugeot-Citroën.

Several meshing parameters have used for the generation of the triangulations and shells and

volume boundaries, which were obtained using CATIA V5 tessellator. The maximum chordal

deviation s was chosen between 1 and 2 millimeters, which is coherent with level of geometrical

accuracy demanded in the scenario. The maximum edge length l was varied between 3 and 20
millimeters, and in table 3 we have retained only two combinations of these parameters which

are (s, l) = (2, 10) and (s, l) = (1, 5). The corresponding tessellations had respectively 521, 965
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Figure 6: Left: a highly constrained industrial part mounting scenario. Right: a peg-in-hole situation.

and 1, 357, 649 triangles for the whole scene, which lead to a total of respectively 1, 577, 453
and 4, 091, 987 simplices, for a total number of 26 rigid body shapes.

The performance measurements were done a Hewlett-Packard Proliant DL 145 G2 server,

equipped with two dual-core Opteron 275 processors. Our implementation is multithreaded at

the level of the 25 pairs of shapes on which quasi-LMD computations are requested. The query

times performed by our method have enabled the interactive simulation of the whole mounting

process using a space-mouse for 6-degree-of-freedom manipulation of the moving body and

visual feedback about the contact constraints indicated by colored arrows for each quasi-LMD.

With other models of slightly more modest complexity, real-time simulation rates were ob-

tained, enabling high-quality haptic interaction. Those results will be presented in a future

communication.

Time per request (ms) (s, l) = (2, 10), “no opt.” (s, l) = (2, 10) (s, l) = (1, 5)
Average 15.42 14.00 10.06

Min 0.16 0.30 0.41

Max 142.58 45.04 29.18

Table 3: First column: 5D BVH, no use of orientation in the recursive subdivisions when building the BVH, which

is very close to Johnson’s original method found in Ref. [23]. Other columns: our full 5D+1 BVH method.

7.3 “Less simplices implies faster queries” is false

Efficiency of bounding volume hierarchies is known to greatly depend on the properties of

the discretized models, classical approaches consisting in minimizing the number of triangles

in surface meshes. We conclude this section by signaling that experiments show (see third col-

umn of table 3) that optimal efficiency of our method is attained for a certain size of simplex,

controlled here by imposing by a maximum edge length during the mesh generation. Inhomo-

geneous triangle sizes, as found in visual tessellations, are also to be avoided.

8 CONCLUSION AND FUTURE WORK

Our collision detection method enables time-stepping schemes to be used robustly for non-

smooth contact between rigid bodies of arbitrary topology and geometric complexity, including

industrial CAD models, with a high level of efficiency, an all-time control of geometric approx-

imations, and a stable and generic treatment of conforming contact situations. The computed

contact kinematics are sufficiently smooth and complete for classical non-smooth contact mod-

els to be applied.

We see no obstacle in using our method in the context of event-driven schemes, or with

some compliant or regularized point contact models. In addition, a highly optimized parallel
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implementation for distributed memory architectures is in progress, as well as an adaptation to

the case of deformable bodies. Future work also includes quasi-LMD computations between

shapes represented by medial axis transforms in the rigid case, remarking that those shapes are

also defined by the union of an infinite number of balls, but with variable radius.
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