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ABSTRACT  25 

 26 

The amanitins (namely α- and β-amanitin) contained in certain mushrooms are bicyclic octapeptides 27 

that, when ingested, are responsible for potentially lethal hepatotoxicity. M101 is an extracellular 28 

hemoglobin extracted from the marine worm Arenicola marina. It has intrinsic Cu/Zn-SOD-like 29 

activity and is currently used as an oxygen carrier in organ preservation solutions. Our present 30 

results suggest that M101 might be effective in reducing amanitin-induced hepatotoxicity and 31 

may have potential for therapeutic development. 32 
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1. INTRODUCTION 46 

Amanitins are high-molecular-weight bicyclic octapeptides present in certain mushrooms. When 47 

ingested, these compounds are responsible for potentially lethal hepatotoxicity. The best-characterized 48 

amanitins are α-amanitin and β- amanitin because they are present at high levels in the mushrooms 49 

involved in poisonings (Kaya et al., 2013). After amanitin accumulation in the liver via uptake through 50 

the organic anion transporter OATP1B3 in the hepatocyte’s sinusoidal membrane (Letschert et al., 51 

2006), the compounds inhibit the RNA polymerase II in the nucleus and thus jeopardize mRNA 52 

translation and protein synthesis (Wieland, 2009). The amanitin-induced stress signal has been shown 53 

to induce p53 protein, which then forms complexes with protective proteins (Bcl-XL and Bcl-2) and 54 

subsequent triggers apoptosis via release of mitochondrial cytochrome c into the cytosol (Arima et al., 55 

2005; Leu and George, 2007; Ljungman et al., 1999). Accordingly, Wang et al. (2018) showed that α-56 

amanitin induces significant changes in the mitochondrial proteome and might destroy the 57 

mitochondrial membrane potential (Wang et al., 2018). It has also been suggested that oxidative stress 58 

is important in the development of severe hepatotoxicity, since α-amanitin accumulation leads to an 59 

increase in the activity of superoxide dismutase (SOD) and glutathione peroxidase, the production of 60 

malondialdehyde, and lipid peroxidation, and inhibits catalase activity (DüNdar et al., 2017; Zheleva 61 

et al., 2007). Furthermore, it has been reported that α-amanitin forms phenoxyl free radicals that might 62 

be involved in the production of reactive oxygen species (ROS) (Zheleva, 2013). Interestingly, most 63 

effective antidotes (including N-acetylcysteine, silymarin and silibinin) have antioxidant properties 64 

(Magdalan et al., 2011; Tavassoli et al., 2019; Ye and Liu, 2018). Thus, avoiding oxidative stress 65 

appears to be the most promising treatment option. 66 

M101 is an extracellular hemoglobin extracted from the marine worm Arenicola marina. It is 67 

currently used in medicine as an oxygen carrier in organ preservation solutions. This class III medical 68 

device (commercialized as HEMO2life
®
 by Hemarina, Morlaix, France) was found to improve the 69 

preservation of kidney grafts (Mallet et al., 2014; Thuillier et al., 2019), hearts (Teh et al., 2017) lungs 70 

(Ali et al., 2020; Glorion et al., 2017) and liver transplants (Alix et al., 2020) in vivo. Furthermore, in 71 

vitro studies have demonstrated that M101’s intrinsic Cu/Zn-SOD-like activity can protect against the 72 

damage potentially caused by ROS release (Lemaire et al., 2019; Rousselot et al., 2006; Thuillier et 73 

al., 2019). Moreover, M101’s good safety profile has been demonstrated in preclinical studies - 74 
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prompting its therapeutic development. In this context, the objective of the present study was to 75 

evaluate M101’s effect on the putative mechanisms of amanitin-induced hepatotoxicity and thus its 76 

potential for therapeutic development. 77 

 78 

2. MATERIAL AND METHODS 79 

2.1 Reagents: Phosphate-buffered saline (PBS), Williams’s E medium, Hanks' balanced salt solution 80 

(HBSS), penicillin-streptomycin, and L-glutamine were purchased from Life Technologies (Eugene, 81 

OR, USA). Fetal calf serum (FCS) was obtained from Hyclone (Logan, UT, USA). Insulin, 82 

hydrocortisone, α- and β-amanitin, SOD inhibitors (diethylthiocarbamic acid [DETC] and 1,4,5-83 

dichloro-2-m-tolylpyridazin-3(2H)-one [LCS]) and SOD assay kit were from Sigma Aldrich (St. 84 

Louis, MO, USA). The luminescent ATP detection assay kit was purchased from Abcam (Cambridge, 85 

MA, USA). MitoSOX red mitochondrial superoxide indicator was from ThermoFisher Scientific 86 

(Waltham, MA, USA). M101 (HEMO2life
®
) was provided by Hemarina as a frozen stock solution (50 87 

g/L) and used in these experiments at a final concentration in culture medium of 1 g/L (the 88 

concentration used in organ preservation solutions). Carboxy-M101 (M101-CO) was obtained by 89 

bubbling carbon monoxide gas 99.997% (Rapid’Gaz, Verdun, France) for 10 minutes in the M101 90 

solution. 91 

2.2 Cell cultures: Progenitor HepaRG cells were cultured as described elsewhere (Aninat et al., 2006). 92 

Briefly, the cells were seeded at a density of 2.6 × 10
4
/cm

2 
in 96-well plates in William’s E medium 93 

supplemented with 10% FBS, 50 U/mL penicillin, 50 μg/mL streptomycin, 5 µg/mL insulin, 2 mM 94 

glutamine, and 50 μM sodium hydrocortisone hemisuccinate. After two weeks, cells were cultured for 95 

a further two weeks in the same medium supplemented with 2% DMSO in order to promote 96 

hepatocyte differentiation into both cholangiocyte- and hepatocyte-like cells (Cerec et al., 2007). 97 

2.3 Measurement of amanitin-induced mitochondrial stress: MitoSOX Red Mitochondrial 98 

Superoxide Indicator (ThermoFisher Scientific, MA, USA) was used to measure mitochondrial ROS 99 

production. Briefly, cells were incubated in the dark with 100 µL of MitoSOX (5 µM) probes for 30 100 

minutes at 37°C and with 5% CO2. After the required incubation time, the medium was removed and 101 

the cells were washed once with 100 µL of HBSS at room temperature. The wells were then read 102 

quickly using a fluorescence microplate reader (POLARstar Omega®, BMG labtech, Ortenberg, 103 
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Germany), and the data were analyzed using MARS software (BMG labtech). The results were 104 

normalized for the protein concentration assay (determined with a Pierce
TM

 BCA protein assay Kit, 105 

(ThermoFisher Scientific). 106 

2.4 Cell viability: Cytotoxicity was assessed using a Luminescent ATP Detection Assay Kit (Abcam), 107 

according to the manufacturer’s instructions. Plates were read using a microplate reader (POLARstar 108 

Omega
®
, BMG labtech). 109 

2.5 SOD activity measurement: SOD activity was assessed using SOD assay kit (Sigma Aldrich, St. 110 

Louis, MO, USA) according to the manufacturer’s instructions. HepaRG cell lysis was performed with 111 

RIPA buffer (Sigma Aldrich) and SOD activity was evaluated in 40 µl of cell lysate. 112 

2.6 Statistical analysis: Data were expressed as the mean ± standard error of the mean (SEM). 113 

Intergroup differences as a function of the treatment were probed in a one-way analysis of variance 114 

(ANOVA), with a Bonferroni post hoc test for group comparisons. All analyses were performed using 115 

Prism software (version 5.0, GraphPad Software, La Jolla, CA, USA). All tests were two-sided, and 116 

the threshold for statistical significance was set to p < 0.05. Differences between α- and β-amanitin 117 

were probed in a two-way ANOVA, with a bonferroni post hoc test. 118 

 119 

3. RESULTS 120 

Since amanitin exposure is known to be hepatotoxic, we looked at whether these toxins were able to 121 

dose-dependently decrease viability in a cell-based model of the liver (i.e. differentiated HepaRG 122 

cells). We found that amanitin significantly decreased the viability of differentiated HepaRG cells in a 123 

dose-dependent manner, starting at 1 µM - showing that the model was sensitive (Figure 1A). α-124 

amanitin was more potent than β-amanitin in terms of loss of viability at 1 µM, but not at other 125 

concentrations. Furthermore, we observed that α- or β-amanitin increased mitochondrial ROS 126 

generation in a dose-dependent manner, starting at 2 µM. Mitochondrial ROS production was also 127 

higher with α-amanitin compared to β-amanitin at 2 µM (p < 0.05), but not at other concentrations. 128 

Taken together, these results indicate that the amanitins’ toxic effect on differentiated HepaRG cells is 129 

dependent - at least in part - on mitochondrial ROS production. 130 

In order to investigate M101’s effect on amanitin-induced toxicity, all subsequent experiments were 131 

performed with the concentration of α- and β-amanitin (2 µM) that reduced the viability of 132 
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differentiated HepaRG cells by 50% and induced significant mitochondrial oxidative stress. M101 (1 133 

g/L) was added at the same time as amanitins (H0), 1 h after amanitins (H1), 3 h after amanitins (H3) 134 

or 6 h after amanitins (H6). Under all conditions, M101 remained incubated along with amanitins. We 135 

found that M101 alone (1 g/L) significantly increased cell viability. We observed that after 24 h of 136 

exposure to amanitin, cell viability was significantly higher in the presence of M101 (1 g/L) when 137 

added up to 6 h after β-amanitin (H6) and up to 3 h after α-amanitin (H3) (Figure 2A). This effect was 138 

associated with a significantly lower level of mitochondrial ROS generation in the presence of M101 139 

(1 g/L) when added at the same time as α-amanitin (H0) and up to 6 h after β-amanitin (H6) (Figure 140 

2B). M101 resulted in an increase in cell viability as well as a greater decrease in ROS production 141 

with β-amanitin than with α-amanitin. Taken together, these results show that M101 protects a cell-142 

based hepatic model against amanitin’s toxicity. Furthermore, M101 had a protective effect of the cells 143 

even when added several hours after amanitin. 144 

Since M101 is capable of delivering oxygen to the surrounding environment, we aimed to evaluate 145 

whether M101 without its oxygen carrier proprieties (M101-CO) impacted intracellular SOD activity. 146 

HepaRG cells were incubated with M101 (1 g/L) or M101-CO (1 g/L) with or without SOD1 147 

inhibitors (DETC 100 µM or LCS 10 µM) (Figure 2C). We found that M101 was able to increase 148 

intracellular SOD activity (p < 0.01), even in the presence of DETC (p < 0.01). Similar trend was 149 

observed using LCS without reaching statistical significance. This effect was no longer present using 150 

M101-CO (Figure 2C). Interestingly, none of these conditions resulted in cell death (Figure 2D). 151 

 152 

4. DISCUSSION 153 

In this study, we found that a therapeutic oxygen carrier isolated from Arenicola marina (M101) had 154 

protective effect on amanitin-induced toxicity on in vitro hepatic cell model. We first evaluated the 155 

amanitins’ toxicity on differentiated HepaRG cells in vitro; we observed a dose-dependent decrease in 156 

cell viability and a concomitant elevation in mitochondrial ROS generation, starting at an amanitin 157 

concentration of 2 µM. Therefore, this 2 µM dose was particularly relevant for testing the efficacy of 158 

an antidote on these two parameters. These results are in line with the literature data on the 159 

involvement of oxidative stress in amanitin toxicity (DüNdar et al., 2017; Zheleva, 2013; Zheleva et 160 

al., 2007). Our study showed that differentiated HepaRG cells constitute a sensitive, reproducible 161 
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model for studying the toxicity of amanitin. We found that M101 alone significantly increased cell 162 

viability, probably because M101 has oxygen-carrier properties, resulting in increased mitochondrial 163 

activity. Interestingly, M101 was able to restore HepaRG cell viability and decrease mitochondrial 164 

ROS generation after α- and β-amanitin exposure. However, it is unknown whether a change in cell 165 

viability was due to an increase in ROS production or the changes in ROS was due to reduced 166 

viability. Moreover, we showed that the cells’ ROS production was greater after α-amanitin exposure 167 

than after β-amanitin exposure. This might explain why (i) M101 had a greater effect on β-amanitin-168 

induced effects and (ii) cell viability was even restored when M101 was added several hours after the 169 

toxin. Given that α- and β-amanitin are neutral and acid compounds, one can reasonably hypothesize 170 

that the differing responses to M101 are related to the toxins’ physical-chemical properties (Garcia et 171 

al., 2015). Considering M101’s macrostructure (3600 kDa, 15 x 25 nm), this hemoglobin is unlikely to 172 

enter hepatocytes. However, we hypothesize that M101’s oxygen-carrier antioxidant Cu/Zn-SOD-like 173 

properties might be partially responsible for the beneficial effect observed in vitro. Using M101-CO, 174 

which allowed us to observe the effects of M101 without its oxygen-carrier properties (G. Tsai et al., 175 

2012), we showed that M101 lost its intracellular SOD activating effect. Thus, although the precise 176 

mechanisms are not elucidated, these results suggest that oxygen supply by M101 is an important 177 

feature in its hepatoprotective effect. This does not exclude that other effects may be part the 178 

mechanism. For example, another M101 effect on HepaRG cells might be the down-regulation of pro-179 

inflammatory cytokines and chemokine ligands, or the upregulation of pro-healing mediators and 180 

immune modulators, as already reported (Batool et al., 2020). Lastly, further studies would be needed 181 

to determine whether M101’s antioxidant Cu/Zn SOD-like properties are involved (Rousselot et al., 182 

2006). 183 

Our present results can be considered with regard to the currently available treatments for Amanita 184 

phalloides poisoning. The death rate associated with this poisoning is still high (between 10% and 185 

20%), despite the use of antidotes such as penicillins, thioctic acid, N-acetylcysteine, vitamin C, 186 

silymarin, and silibinin (Enjalbert et al., 2002; Escudié et al., 2007; Ganzert et al., 2005; Le Daré et 187 

al., 2021). The fact that none of these compounds are highly effective means that Amanita phalloides 188 

poisoning is still a challenging medical emergency. We consider that there are two therapeutic 189 
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perspectives for the use of M101. Firstly, intravenous infusion can be considered, since 190 

biodistribution studies in mice have shown that M101 reaches the liver easily (Le Gall et al., 191 

2014). It has also been reported that silymarin enhances SOD activity, which enables a fall in 192 

oxidative stress through the harvesting and recycling of ROS, and thus an overall decrease in 193 

tissue inflammation and cell death. We suggest that M101’s SOD-like activity (alone or in 194 

combination with currently available antidotes) might be of therapeutic value for promoting 195 

hepatocyte survival (Wellington and Jarvis, 2001). Secondly, M101 could be added to an 196 

organ preservation solution if liver transplantation is required after Amanita phalloides 197 

poisoning. Although this requirement is infrequent, there are case reports of reintoxication of 198 

the newly transplanted graft – jeopardizing the clinical outcome (Kucuk et al., 2005). 199 

Furthermore, this hemoglobin was developed first in the organ preservation indication, and its 200 

good safety profile has been reported in many indications - including liver transplant (Alix et 201 

al., 2020; Glorion et al., 2017; Mallet et al., 2014; Teh et al., 2017; Thuillier et al., 2019). 202 

Lastly, Ye et al. (2018) reported that liver transplantation was considered to be the only 203 

approach for guaranteeing survival in Amanita phalloides poisoning with fulminant hepatic 204 

failure (Ye and Liu, 2018). Our present data suggest that a liver transplant incubated with 205 

M101 might offer a better outcome in this context. 206 

In conclusion, the present study is the first to have demonstrated the value of M101 for 207 

reducing amanitin-induced toxicity in an in vitro hepatic cell model. Further studies are 208 

needed to explore the exact mechanisms involved in M101’s hepatoprotective effects. In vivo 209 

studies would be of particular interest. 210 

 211 
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Figure 1: Effect of α- and β-amanitin on the viability of differentiated hepatocytes. Differentiated 354 

HepaRG cells were cultured with α- or β-amanitin (0.2 to 20 µM) or medium for 24 h. Cell viability 355 

was measured using an extracellular ATP assay and expressed relative to the value determined after 356 

treatment with medium alone (arbitrarily set to 100%). Levels of mitochondrial ROS 24 h after 357 

amanitin treatment were detected using a MitoSOX (5 µM) probe and normalized against the protein 358 

content. The data are quoted as the mean ± SEM from at least three independent experiments 359 

performed in triplicate. **
 
 p < 0.01 *** p < 0.001: the control condition compared with α- or β-360 

amanitin at different concentrations. # p < 0.05 # # p < 0.01 : α-amanitin compared with β-amanitin. 361 
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Figure 2: Effect of M101 on amanitin-induced hepatotoxicity. (A and B) Differentiated HepaRG 374 

cells were cultured with α- or β-amanitin (2 µM) or medium for 24 h at 37°C and with 5% CO2 in the 375 

absence or presence of M101 (1 g/L) added up to 6 h after amanitin treatment. (A and D) The viability 376 

of differentiated HepaRG cells was measured using an extracellular ATP assay and expressed relative 377 

to the value determined after treatment with medium alone (arbitrarily set to 100%). (B) Levels of 378 

mitochondrial ROS 24 h after amanitin treatment were detected using a MitoSOX (5 µM) probe and 379 

normalized against the protein content. (C) SOD activity in the presence of M101 (1 g/L), M101-CO 380 

(1 g/L), DETC (100 µM) and/or LCS (10 µM) was determined using SOD assay kit and expressed 381 

relative to the value determined after treatment with medium alone (arbitrary set to 0%). The data are 382 

quoted as the mean ± SEM from three independent experiments performed in triplicate. 
# # 

p < 0.01 
# # # 

 383 

p < 0.001: Control condition compared with α- or β-amanitin alone. * p < 0.05 ** p < 0.01 *** p < 384 

0.001: α- or β-amanitin alone compared with α- or β-amanitin + M101 added at a different time point 385 
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(H0, H1, H3, H6). && p < 0.01 &&& p < 0.001 : α-amanitin compared with β-amanitin. $ p < 0.05 386 

$$$ p < 0.001:  in comparison with DECT alone. ££ p < 0.01 £££ p < 0.001: in comparison with M101 387 

alone. 388 
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