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Abstract—Mobility is a key challenge for beam management
in 5G cellular networks due to the overhead incurred at beam
switching and base station (BS) handover events. This paper
focuses on a network that has a multi-tier structure with two
types of BSs operating in the same frequency bands, namely
macro BSs that are sparser but with higher transmit power, and
micro BSs that are denser and with lower transmit power. We
propose a downlink user association policy which is a function of
the user mobility. Typically, high mobility users should associate
with macro BSs so as to incur less beam switching overhead,
whereas low mobility ones should be associated with micro BSs.
The main contribution of the paper is a formalization of the
optimal threshold association policy, when the optimality is un-
derstood with respect to the effective Shannon rate. The analysis
is based on stochastic geometry and on an exact representation of
the effective Shannon rate of the typical user in this beamforming
multi-tier context. Two models are discussed. The simplest one
focuses on a single-user optimization problem. We also discuss a
more realistic model with bandwidth sharing between all users
in the cell. Finally, we identify the mobility and user-density
patterns where the velocity-based threshold association policy
outperforms the classical best mean power association policy.

I. INTRODUCTION

A key feature of 5G is beam-based communications, which
allows one to concentrate the transmit energy in a specific
direction and improve the signal power and simultaneously re-
duce the interference [1]. Although more crucial for millimeter
wave frequencies, a beam-centric design also helps improve
network performance at sub-6 GHz frequencies. However, the
key components and procedures of beam management, namely
beam selection, beam failure detection, and beam switching,
involve different signaling overheads which may degrade the
network performance, especially for highly mobile users [2].
For instance, the signal-to-interference-plus-noise ratio (SINR)
could be improved by using narrower beams, but this benefit
brings a significant cost in terms of more frequent beam
switching and beam misalignment.

The setting of the present paper is that of a network with
a multi-tier architecture, namely featuring different types of
base stations (BSs) using the same frequency bands, where
differences are only in terms of spatial density and transmit
powers. The archetype of such an architecture is that with
micro cells overlaying macro cells. It is well known that
this can quite significantly increase the network performance
[3]. When such a multi-tier network is accessed by users
with different mobility patterns, e.g., pedestrians, vehicles,
and high-speed trains, an important question is that of the
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association policy to be used. The answer to this question
is fundamentally impacted by the beam management used in
each tier. For instance, although connecting to micro cells
may offer a better coverage and throughput to a mobile
user due to some dense deployment of BSs, if this user is
moving at a sufficiently high speed, frequent BS handovers
and beam switching events combined with a higher chance
of beam misalignment may significantly degrade the effective
rate obtained by the user.

The present paper addresses this question and describes a
mobility-aware association policy within this 5G multi-tier
setting. It identifies the optimal association policy within a
class of threshold policies which are particularly simple to
implement. Optimality is in a sense to be defined precisely
in the paper; it is based on a system-level view of different
tradeoffs associated with beam management, mobility, load on
a cell, spectral efficiency, and the multi-tier parameters. This
system-level view allows one to define the notion of the typical
user. The optimization coincides with the maximization of the
expected effective rate that this typical user gets.

A. Related work

Stochastic geometry is widely used to study several types
of wireless networks [4], [5], including multi-tier cellular net-
works [3]. There are several works that study the effect of user
mobility on the optimal tier selection in cellular networks [6]–
[8]. These works have provided important insights into how
user mobility affects the performance metrics such as coverage
probability, Shannon rate, and BS handover rate. While the
works in [6], [7] focus on a single mobile user scenario, [8]
considers the case of multiple mobile users who share the
network resources. However, to the best of our knowledge,
there is no work available on the beam management in a multi-
tier network consisting of mobile users with different speed
profiles. There exists one work [9] that has developed a math-
ematical optimization framework for the beam management
in a 5G network and focused on the tradeoffs associated with
mobility and beam management. But this last work focuses
only on a single-user single-tier cellular network. Overall, the
question of optimal user association policy in the presence of
intra-cell mobility leading to beam switching, BS handovers,
and resource sharing among multiple users is still unanswered.

II. SYSTEM MODEL

A. Network setup
Consider a two-tier downlink cellular network, where we

call the first tier the macro tier and the second one the



micro tier. We assume that BSs are located according to two
independent homogeneous Poisson point processes (PPPs): the
macro BSs form a PPP ΦM ⊂ R2 of intensity λM and the
micro BSs a PPP Φµ of intensity λµ, with λµ > λM . Mobile
users (MUs) are located according to a stationary PPP Φu
of intensity λu. Each MU moves on a straight line with an
orientation chosen at random and independent of other MUs.
Also, each MU travels at a constant velocity v, sampled from a
given distribution f , independently for each user. Without loss
of generality, using the homogeneity and isotropy of the PPP,
we can assume that the typical MU is located at the origin
and that its motion is along the x-axis.

We assume that all BSs are always active. Some of our
results can be extended to the case where BSs with no users
are shut off, but this does not fall in the scope of this work.
The formulas of this section are presented for the macro tier,
but they hold for the micro tier by swapping the roles of the
two tiers.

B. Beamforming

We assume that macro BSs (resp. micro BSs) use directional
beamforming to communicate with the typical MU. Each
macro BS (resp. micro BS) has nM (resp. nµ) beams. Each
beam has the same angular width ψM = 2π

nM
in the macro tier

and ψµ = 2π
nµ

in the micro tier. The main lobe is restricted to
the beamwidth. The antenna gain in the macro tier is assumed
to be:

GM (θ) =

{
GMm if |θ| ≤ ψM/2
GMs else,

where GMm is the main lobe gain and GMs is the side lobe
gain. The probability that an MU lies within the main lobe of
an interfering macro BS is pM,m = ψM

2π = 1
nM

, and that of
an interfering micro BS is pµ,m = 1

nµ
. Thus the BS antenna

gain gM,x, w.r.t. the typical MU, of an interfering BS located
at x in the macro tier is given by

gM,x =

{
GMm w.p. pM,m

GMs w.p. 1− pM,m.
(1)

C. Mobility-based beam misalignment

Due to intra-cell mobility, the MU has to reselect the
beam when it moves from the coverage of one beam to
another. Such a beam reselection in a 5G network occurs
during a synchronization signal block (SSB) burst with period
τ . If the MU moves out of the main lobe of its original
connection beam (also called the reference beam) between
two consecutive SSB bursts without selecting a new beam,
a beam misalignment occurs, namely, the MU receives from
the serving BS via a side lobe. We assume, as in [9], that the
probability pMbm that there is a beam misalignment event for an
MU moving at velocity v is equal to:

pMbm(v) = 1− exp (−vνM,bτ) , (2)

where νM,b is the time intensity of beam reselections. Hence,
taking this beam misalignment into account, the antenna gain
gM,0 at the serving BS of the typical MU is given by

gM,0 =

{
GMm w.p. 1− pMbm(v)

GMs w.p. pMbm(v).
(3)

D. Access policy and SINR

The micro and macro tiers share the same spectrum, so
they interfere with one another. We call the tier with which
the typical MU is associated the association tier, and the
other tier, the interferer tier. An MU in the network always
connects to the closest BS in its association tier. This BS
association results in cells of BSs forming a Poisson-Voronoi
(PV) tessellation [4].

Let `(x) , Kx−α, with α > 2 and K =
(

c
4πfc

)2

, be
the path-loss function for the system, where fc is the carrier
frequency and c is the speed of light. We assume Rayleigh
fading with mean 1 between the BS located at x and the typical
MU at the origin, denoted by hx. Let PM and Pµ denote the
transmit powers for each tier, with Pµ < PM , and GMx and
Gµy the antenna gains for macro and micro BSs located at x
and y, respectively. We define the interference experienced by
the typical MU from macro tier BSs as:

IM (ΦM ) =
∑
x∈ΦM

hxgM,xPM `(‖x‖).

Let XM,0 be the closest macro BS to the typical MU, and
Xµ,0 be its micro counterpart. Conditioned on that the closest
macro BS to which the typical MU connects is at distance
r > 0, the SINR at the typical MU, denoted as SINRM is
expressed as

SINRM =
h0PMgM,0Kr

−α

σ2 + IM (ΦM\{XM,0}) + Iµ(Φµ)
, (4)

where gM,0 (given by (3)) is the gain of the serving BS of the
typical MU and σ2 is the thermal noise density.

E. Parameters

We consider that both tiers use a carrier frequency fc in the
3.5 GHz range with a bandwidth W = 100 MHz. The transmit
powers of macro and micro BSs are assumed to be 20 W and
4 W, respectively. The antenna gain profile we consider for
numerical results is that the main lobe gain is GMm = nM and
the side lobe gain is GMs = 1/nM , but other gain profiles can
be used. The thermal noise σ2 is −174 dBm.Hz−1. Finally,
MU velocities are sampled from an exponential distribution
with scale parameter vu. Table I gives the parameters used in
the numerical results.

III. COVERAGE PROBABILITY AND SHANNON RATE

A. Coverage probability

The coverage probability is defined as the probability that
the SINR received by the typical user is greater than a
predefined threshold T . Conditioning on the fact that the



TABLE I
VALUES OF NETWORK PARAMETERS

Parameter Micro tier Macro tier
Carrier frequency (fc) 3.5 GHz
Bandwidth (W ) 100 MHz
Thermal noise density (σ2) −174 dBm.Hz−1

Transmit powers (Pµ, PM ) 36 dBm 43 dBm
Beam reselection time (Tµ,b, TM,b) 23 ms
BS handover time (Tµ,c, TM,c) 43 ms
SSB burst periodicity (τ ) 20 ms
Path-loss exponent (α) 4
Number of beams (nµ, nM ) 8
MU intensity (λu) 1 m−2

BS intensities (λµ, λM ) 0.1 m−2 0.02 m−2

Velocity scale parameter (vu) [1, 10, 35] m.s−1

Maximum SINR (Qmax) 30 dB

typical MU is associated with a macro BS, the coverage
probability pM can be expressed as follows.

Theorem 1 (Coverage probability): The coverage probabil-
ity with the macro tier association is

pM (v, T ) = (1− pMbm(v))qM (GMm , T )+pMbm(v)qM (GMs , T ),
(5)

where

qM (G,T ) = πλM

∫
r≥0

e−πλMr exp

(
− Tσ2

PMKG
r1/δ

)
exp

(
−πr

(
T

PMG

)δ (
λMP

δ
MρM (G,T ) + λµP

δ
µκµ

))
dr.

Here δ , 2/α, and ρM and κµ are given by

ρM (G,T ) = pM,m(GMm )δ
∫ ∞(

TGMm
G

)−δ
du

1 + u1/δ

+ (1− pM,m)(GMs )δ
∫ ∞(

TGMs
G

)−δ
du

1 + u1/δ
,

κµ =
(
pµ,m (Gµm)

δ
+ (1− pµ,m) (Gµs )

δ
)∫ ∞

0

du

1 + u1/δ
.

The coverage probability in the micro tier is obtained by
swapping the role of both tiers.

Proof: The proof is given in [10].
In an interference-limited network, i.e., when σ2 = 0, the

functions qM and qµ simplify to

qM (G,T ) =
1

1 +
(
T
G

)δ
(ρM (G,T ) + Ωκµ)

(6)

qµ(G,T ) =
1

1 +
(
T
G

)δ (
ρµ(G,T ) + 1

ΩκM
) , (7)

where Ω =
λµP

δ
µ

λMP δM
. When setting Ω = 0, which corresponds

to setting either λµ = 0 or Pµ = 0, i.e., removing the micro
tier, we obtain the same formula as the one from [5].

B. Shannon rate

We denote the Shannon rate per Hertz in each tier byRM =
E [log(1 + SINRM )] and Rµ = E [log(1 + SINRµ)]. Due to

RF imperfections and modulation schemes, we set Qmax to be
the maximum achievable SINR. Thus, we have

RM =

∫ Qmax

0

pM (T )

1 + T
dT (8)

in the macro tier. The same applies in the micro tier by using
the appropriate values. Using Theorem 1, the Shannon rate
achieved by the typical MU can be expressed as

RM (v) = (1− pMbm(v))RM,m + pMbm(v)RM,s, (9)

where RM,m is the Shannon rate achieved with no beam
misalignment, while RM,s is its equivalent with beam mis-
alignment (as discussed in Section II-C).

Notice that, from (8), comparing the Shannon rates in
each tier corresponds to comparing the respective coverage
probabilities. The term Ω in (7) plays an important role in
determining the values of the Shannon rates in each tier. If the
antenna gain profile is the same in both tiers, and if Ω > 1,
i.e., λµP δµ > λMP

δ
M , the Shannon rate in the micro tier is

always larger than that in the micro tier. In the rest of the
paper, we assume that we are in this setup.

Equation (8) gives the Shannon rate for the typical MU
without considering the overheads associated with beam res-
elections during intra-cell mobility and BS handovers during
inter-cell mobility. To take these overheads into account, we
now define the effective Shannon rate.

C. Effective Shannon rate (ESR)

When an MU crosses the boundary of the cell of its serving
BS, it performs a handover to the next BS. Beam reselections
also happen inside the cell when the MU crosses the boundary
between two beams. The time intensity νM,c of BS handovers
and the time intensity νM,b of beam reselections are given in
Theorem 2 of [9]:

νM,c =
4
√
λM
π

v, νM,b =
nM
√
λM

π
v.

When we take beam misalignment into account, if the time
intensity of beam reselections is higher than the frequency
1/τ of SSB bursts, beam reselections happen during each
SSB burst. If the time intensity of beam reselections is lower,
the user may stay in the same reference beam between two
consecutive SSB bursts. Thus the effective time intensity νM,e

of beam reselections in macro tier is

νM,e = min

(
1

τ
, νM,b

)
.

Let TM,c and TM,b be the time of a BS handover and a
beam reselection, respectively, in the macro tier. Then we can
express the total overhead per unit of time TMo as

TMo = νM,cTM,c + νM,eTM,b.

Using the previous definitions and results, we define the
ESR RM,eff in the macro tier as

RM,eff(v) = RM
(
1− TMo (v)

)+
, (10)

where x+ , max(0, x).



IV. VELOCITY-BASED ASSOCIATION POLICIES
IN A SIMPLE CASE

In this section, we introduce the notion of velocity-based
association policy in a simple case with exactly one MU per
cell. The notions introduced in this section will be extended
in the next section to the situation where the density of MUs
and the resulting resource sharing are taken into account. The
results of this section are nevertheless of independent interest
as they allow one to analyze the peak rate that an MU would
get in an ideal network with one MU per cell and hence
without bandwidth sharing between MUs of the same cell.

Here and in what follows, to decide what tier an MU
should associate with, we consider velocity-based association
policies, which are defined as follows: let P(v) be a criterion
based on velocity (namely a subset of the positive real line).
Each MU associates either with the closest macro BS or to
the closest micro BS. If the MU meets the criterion P(v), it
associates with the micro BS, and if not, to the macro BS.

A. The ESR under a given association policy

The metric we use to compare association policies is the
ESR received by the typical MU as given by (10).

Lemma 1: For all velocity-based association policies P , the
average ESR received by the typical MU is given by

R(P) =

∫ ∞
0

(
Rµ,eff(v)1P(v) +RM,eff(v)1P̄(v)

)
f(v)dv, (11)

where 1(·) is the indicator function and P̄ the negation of P .
This result comes from ergodic theory: we compute the spatial
average of the ESR over a large ball of radius R > 0 centered
at the origin. Using Birkhoff’s ergodic theorem [11], we can
prove that this spatial average converges to a constant, R(P),
which is also equal to the ESR experienced by the typical MU.

B. Threshold association policies

A natural set of policies to explore is that of threshold
policies: we select a velocity threshold vT ; all MUs with
velocity v < vT associate with micro BSs and those with
velocity v ≥ vT with macro BSs. Under such a threshold
policy, the average ESR is given by

R(vT ) =

∫ vT

0

Rµ,eff(v)f(v)dv+

∫ ∞
vT

RM,eff(v)f(v)dv. (12)

We have the following Theorem:
Theorem 2 (Threshold velocity-based association policy for

the one MU per cell case): Under the foregoing assumptions,
there exists a unique threshold maximizing the average ESR
per user. This optimal threshold v?T does not depend on the
velocity distribution f of MUs, and is the unique solution to
the following equation:

Rµ,eff(v
?
T ) = RM,eff(v

?
T ). (13)

The proof for this theorem is available in [10]. Fig. 1 shows
the normalized ESR RM,eff/‖RM,eff‖∞, where ‖·‖∞ is the
supremum norm for three exponential velocity distributions;
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Fig. 1. Normalized ESR in the network as a function of the velocity threshold
vT . The optimal threshold does not depend on the scale parameter vu.

we see that the maximum ESR is obtained at the same value
for all velocity distributions.

This network setup mimics an ideal situation, corresponding
to the peak rate that an MU receives in the network. A more
realistic setup with multiple MUs is studied in the next section.

V. LOAD-DEPENDENT VELOCITY-BASED
ASSOCIATION POLICY

In this section, we address the load sharing question be-
tween all MUs of the same cell. We assume a time-division
multiple access (TDMA) setup where radio resources are
equally shared among all MUs connecting to the same BS.

Let P be a given velocity-based association policy. Under
the association policy P , let Z0

µ(P) denote the number of
users associated with the micro BS corresponding to the 0-
cell, i.e., the Voronoi cell containing the typical MU located
at the origin 0, and Z0

M (P̄) be its macro counterpart. Note that
Z0
µ(P) and Z0

M (P̄) are random variables due to the random
network geometry and velocity. For this setup, we can modify
(11) to rewrite the average ESR Rload as follows:

Rload(P) = E
[
Rµ,eff(v)

Z0
µ(P)

1P(v) +
RM,eff(v)

Z0
M (P̄)

1P̄(v)

]
. (14)

In (14), the number of MUs associated to the 0-cell and the
ESR both depend on the geometry of each PV tessellation.
We use the following heuristic to approximate Rload:

R̂load(P) = E
[

1

Z0
µ(P)

]
E
[
Rµ,eff(v)1P(v)

]
+ E

[
1

Z0
M (P̄)

]
E
[
RM,eff(v)1P̄(v)

]
,

(15)

where E
[

1
Z0
µ(P)

]
and E

[
1

Z0
M (P̄)

]
are the average inverse load

in the 0-cell of micro and macro tiers, respectively.

A. Load-dependent threshold association policies

Like in Section IV-B, threshold policies remain good candi-
dates to maximize the average ESR experienced by the typical
MU. Let vT be a velocity threshold. Under the threshold policy
with threshold vT , the intensity of the PPP of users associated



TABLE II
NUMERICAL ILLUSTRATION OF THE LOAD-THRESHOLD HEURISTIC

vu (m.s−1) 1 10 35
vLT (m.s−1) 1.30 4.90 9.41
Rload(vLT) 0.294 0.242 0.201
Optimal ESR 0.289 0.252 0.195

with the micro tier is equal to λuF (vT ), with F being the CDF
of the velocity distribution, and the intensity of the PPP of
users associated with the macro tier is equal to λu(1−F (vT )).
Although we do not have an analytical formula for the average
inverse load in the network, we can use the following heuristic:

Lemma 2: Let Φ and Ψ be two PPPs of respective
intensities λ and ν. Let V0 be the 0-cell of the PV tessellation
associated with the process Φ and let Z = 1+|Ψ∩V0|. Finally,

let L : x 7→ x

(
1−

(
1

1+ 2
7x

)7/2
)

. The moment of order −1

of Z can be approximated by:

E
[

1

Z

]
≈ L

(
λ

ν

)
.

Proof: The proof is given in [10]. It uses the results
from [12] and a heuristic for the distribution of the size of
the typical cell of a PV tessellation developed in [13].
Using this, we set the following notation:

E
[

1

Z0
µ(vT )

]
= L

(
λµ

λuF (vT )

)
≡ Lµ(vT )

E
[

1

Z0
M (vT )

]
= L

(
λM

λu(1− F (vT ))

)
≡ LM (vT ).

Under a velocity-based threshold policy, the average ESR
in the TDMA setup becomes

R̂load(vT ) = Lµ(vT )

∫ vT

0

Rµ,eff(v)f(v)dv

+ LM (vT )

∫ ∞
vT

RM,eff(v)f(v)dv.

(16)

We give a load-threshold heuristic for the optimal threshold
policy in the TDMA setup as follows:

vLT , arg max R̂load(vT ). (17)

As shown in Fig. 2, we numerically observe that vLT is
uniquely defined, meaning that the function R̂load(vT ) goes
through a unique maximum. Specifically, Fig. 2 compares the
simulations under TDMA and the heuristic from (17). The
difference is due to the fact that the inverse of the load and the
ESR are not independent. When comparing the values of the
optimal achieved ESR in simulations with the ESR achieved
using the heuristic from (17) (see Table II), we can see that
the obtained values do not differ significantly, which justifies
the use of the heuristic.

VI. DISCUSSIONS

A. Comparison with a classical association policy
We now compare the optimal average ESR using the load-

threshold heuristic based on (17) to a classical association pol-
icy based on the maximum average received power (MARP),
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Fig. 2. Comparison of the heuristic in (16) (in plain line) and simulations
(circles) for a fixed user density λu = 1.
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Fig. 3. Comparison between the MARP policy (square markers, dashed line)
and the threshold policy under vLT (circles, plain line) with 95% confidence
intervals for a fixed user density λu = 1.

where MUs connect to the BS with the highest average
received power: the typical MU located at the origin connects
to the macro tier BS located at X0,M if the average power it
receives from this BS, RPM = PMG0,M `(|X0,M |), is higher
than the average power it receives from the micro BS located at
X0,µ, RPµ = PµG0,µ`(|X0,µ|). Note that the MARP policy is
based on the received power, and thus, the network geometry
only, whereas the threshold policy is based on velocity only.

As illustrated in Fig. 3, for a given value of the MU density
λu, the average ESR decreases faster with velocity under
the MARP policy than under the load-threshold heuristic;
in addition, while for low values of vu, the MARP policy
outperforms the load-threshold heuristic, the threshold policy
provides MUs with a better average ESR for velocities vu
higher than 11 m.s−1, up to a gain of 45%. Table III displays
approximate values for the velocity threshold v† above which
the load-heuristic threshold policy outperforms the MARP
policy. We can see that v† decreases as the value of λu
increases, which supports the claim the threshold policies
perform better in densely populated networks with fast-moving
MUs. The fact that these results are obtained for parameters
representing accurately the sub-6 GHz setting of 5G new radio



TABLE III
COMPARISON OF MARP AND LOAD-THRESHOLD POLICIES

User density 0.1 1 5
v† (m.s−1) 97 11 7.5

(NR) supports the importance of the study of velocity-based
threshold policies.

We now discuss the reasons behind why these policies
outperform each other in certain regimes. When the MUs move
slowly and the network is sparsely populated, the effects of
mobility-induced beam misalignment and overheads due to
beam reselections and BS handovers are negligible. Thus, the
factor of better average received power outweighs the time
overheads. In this case, the MARP policy outperforms the
threshold policy. On the other hand, when the MUs have a
higher velocity in the network that is more densely populated,
the penalty due to the mobility of MUs (BS handovers, beam
reselections, and beam misalignment) has more impact on
the performance compared to the received power. Thus, it is
beneficial to associate users based on their velocities.

B. Effect of the density of MUs in the network

The density λu of MUs allows us to understand how well the
network performs under different load conditions. Specifically,
as λu → 0, the ESR in the network becomes equal to the
Shannon rate without TDMA, which is its peak rate. This
translates into vLT (given in (17)) becoming equal to v?T
from Theorem 2. Conversely, as λu → ∞, the number of
MUs associated with the micro tier becomes arbitrarily large.
Because its contribution towards the ESR is larger than that
from the macro tier, to maximize the average ESR, the optimal
velocity threshold approaches zero.

The behavior of the optimal threshold for intermediate
values of λu depends on the velocity distribution. Fig. 4 gives
the optimal velocity threshold for the heuristic given in (17).
The MU velocity is a limiting factor in the network: if the
velocity of MUs is higher, the average overhead per unit of
time in the macro tier increases, leading to a decrease in
the contribution of the macro tier to the average ESR. To
balance this effect, more MUs are associated with the micro
tier, resulting in an increase in the optimal velocity threshold.

VII. CONCLUDING REMARKS

This paper discusses a simple velocity-based association
policy for multi-tier 5G networks. The proposed framework
captures essential features of 5G networks, namely,
beamforming, beam misalignment, delay overheads associated
with beam reselections and base station handovers, speed
profiles of users, and network geometry. In this association
policy, users with a velocity smaller than a threshold connect
to the micro tier, otherwise to the macro tier. The threshold
is optimized to maximize the effective Shannon rate that the
typical user gets. The comparison of this policy with the
well-known association policy based on the maximum average
received power reveals that, for parameters that are typical
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Fig. 4. Optimal velocity threshold obtained for the heuristic from (17) (in
plain line) for three velocity distributions against the density of users. In black,
dashed, the equivalent network without load.

to sub-6 GHz 5G networks, when the network is populated
with users moving with variable enough speed patterns, the
former outperforms the latter in terms of effective Shannon
rate. This observation highlights a key tradeoff between
the power (affecting the SINR) and the velocity (affecting
the delay overheads). The fact that simple velocity-based
schemes may significantly outperform the state of the art
association policies opens an interesting line of thoughts
aiming at combining such velocity-based schemes with those
based on maximal received powers to provide a new and
better association policy for mobile users in this 5G context.
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