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Summary

This paper introduces a systematic approach to synthesize linear parameter-varying
(LPV) representations of nonlinear (NL) systems which are described by input affine
state-space (SS) representations. The conversion approach results in LPV-SS repre-
sentations in the observable canonical form. Based on the relative degree concept,
first the SS description of a given NL representation is transformed to a normal form.
In the SISO case, all nonlinearities of the original system are embedded into one NL
function, which is factorized, based on a proposed algorithm, to construct an LPV
representation of the original NL system. The overall procedure yields an LPVmodel
in which the scheduling variable depends on the inputs and outputs of the system and
their derivatives, achieving a practically applicable transformation of the model in
case of low order derivatives. In addition, if the states of the NL model can be mea-
sured or estimated, then a modified procedure is proposed to provide LPV models
scheduled by these states. Examples are included to demonstrate both approaches.
KEYWORDS:
Linear parameter-varying systems, behavioral approach, dynamic dependence, equivalence transforma-
tion

1 INTRODUCTION

The linear parameter-varying (LPV) framework was introduced to address the control of nonlinear (NL) and time-varying (TV)
systems using the extensions of powerful linear time-invariant (LTI) approaches such as 2∕∞ optimal control and model
predictive control, see e.g.,1,2,3,4,5. LPV systems are dynamical models capable of describing NL/TV behaviors in terms of a
linear structure. Signal relations between the inputs and outputs in an LPV representation are assumed to be linear, but, at the
same time, dependent on a so-called scheduling variable p (np-dimensional signal), which is assumed to be measurable and
free (external) in the modeled system and taking values from a so-called scheduling region ℙ ⊆ ℝnp , often restricted to be a
compact set. In this way, variation of p represents time-variance, changing operating conditions, etc., and aims at the embedding
of the original NL/TV behavior into the solution set of an LPV system representation6,7. While the former objective is pursued
by the so-called global LPV modeling approaches, alternatively, one can aim at the approximation of the NL/TV behavior by
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FIGURE 1 The concept of LPV modeling.

the interpolation of various linearizations of the system around operating points or signal trajectories, often referred to as local
modeling, see, e.g.,8,9,10.
For the global modeling methodology we intend to investigate in this paper, it is important to shed light on the often vaguely

defined concept of LPV embedding. Assume that a continuous-time system , depicted in Fig. 1.a, is given which describes the
(possibly nonlinear) dynamical relation between the signals w ∶ ℝ → W, where W is a given set. For example consider the
forced Van der Pol equation11:

ẋ1 = x2, (1a)
ẋ2 = −x1 + �(1 − x21)x2 + u, (1b)
y = x1, (1c)

where, [ x1 x2
]⊤ ∶ ℝ → ℝ2 is the state variable, while w =

[

u y
]⊤ are the inputs and outputs of the system with W = ℝ2.

Let B ⊆ Wℝ (Wℝ stands for all maps from ℝ to W) containing all trajectories of w that are compatible with , i.e., they are
solutions of (1). We call B the (manifest) behavior of the system . A common practice in LPV modeling is to introduce an
auxiliary variable p, with range ℙ, and reformulate  as shown in Fig. 1.b, where it holds true that if the loop is disconnected
and p is assumed to be a known signal as in Fig. 1.c, then the “remaining” relations of w are linear. This can be achieved in (1)
by taking, as a possible choice, p = x1 = y:

[

ẋ
y

]

=
⎡

⎢

⎢

⎣

0 1 0
−1 �(1 − p2) 1
1 0 0

⎤

⎥

⎥

⎦

[

x
u

]

. (2)

Applying this reformulation with a disconnected p and assuming that all trajectories of p are allowed, i.e., p is a free variable
with p ∈ ℙℝ independent of y, the possible trajectories of this reformulated system ′ form a solution set of (2), denoted
as B′, which contains B as visualized in Fig. 1.d. This concept of formulating ′, a linear, but p-dependent description of ,
enables the use of simple stability analysis and convex controller synthesis, see e.g.,1,2,3, which can be conservative w.r.t. , but
computationally more attractive and robust than other approaches directly addressing B. Control synthesis based on the above
mentioned modeling procedure results in the implementation of an LPV controller visualized in Figure 2. It is obvious that a
key assumption is that p must be “observable” from the real system. The observed value of p is required to complete the hidden
relation of p to the other variables in (2) and enable a linear controller to schedule its behavior according to p to regulate (1).
Hence, this can be seen as a multi-path feedback linearization, similar to the well-known approach in NL system theory, see12,
as the obtained information from the system in terms of p is fed back to arrive to a varying linear relation (2) (in contrast with
the NL theory where the resulting behavior is intended to be LTI).
Following the above procedure, the scheduling variable p itself can appear in many different relations w.r.t. the original

variables w. If p is a free variable w.r.t. , e.g., wind speed for a wind turbine13, then we can speak about a true parameter-
varying systemwithout conservativeness. However, in many practical applications, like in our example, it happens that p depends
on other signals, like inputs, outputs or states of the modeled system (e.g., operating conditions). Such situations are often
warningly labeled to be quasi-LPV (q-LPV). Based on the toy example (2), what really happens in those cases is that the assumed
freedom of p only introduces conservativeness in the embedding of the nonlinear behavior. Hence, one important objective of
LPV modeling, besides achieving complete embedding, is to minimize such conservativeness. Furthermore, it is often tempting
to choose state variables as p that are hardly measurable or cannot be reliably estimated from the measurements. For example,
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FIGURE 2 The concept of LPV control.

in (1), we could have chosen p = x1x2 which is not directly measurable. Such choices can result in a loss of internal stability of
the closed-loop system, as an uncontrollable/unobservable mode can be introduced between the observer used to track p and the
controller that schedules based on it. These problems often undermine the results that can be obtained in practical applications
of the LPV methodology leaving conversion of NL models to LPV representations to be a cumbersome procedure with many
pitfalls for the regular user14,6.
Existing approaches for globalLPVmodeling ofNL dynamical systems can be classified into twomain categories: substitution

based transformation (SBT) methods15,16,17,18,7,19,20 and automated conversion procedures21,22,6,23. For a detailed comparison,
see6. In general1, the existing techniques do not pay serious attention to several issues regarding the resulting LPV models,
namely: how the scheduling variable and its bounds are chosen, what is the relation between these choices and the behavior of
the system including the practical implementation of LPV controllers based on them, and the usefulness of the resulting LPV
form for control synthesis or as a source of model structure information for identification. In addition, most techniques are based
on ad-hoc mathematical manipulations (non-unique and non-systematic) and require a serious level of experience to be used.
In this paper2, inspired by the strong link between feedback linearization of NL representations12 and global LPV modeling,

our objective is to provide systematic LPV embedding of the behavior of NL representations such that
• the precise relationship between the behavior of the NL representation and the LPV representation is mathematically

formalized;
• the choice of p and its bounds are explicit.

Specifically, a systematic procedure is proposed to convert control affine NL-SS representations into state minimal LPV-SS
representations in an observable canonical form. A particular advantage of this canonical form is that it can be directly converted
into an equivalent LPV-IO form using the recently developed LPV realization theory6 and hence it is highly useful for both LPV
control synthesis (due to the SS form) and model structure selection in LPV identification (due to a direct LPV-IO conversion).
The method is based on transforming the states of a given NL representation into a normal form such that, in the SISO case,
all nonlinearities in the NL model are realized in only one NL term. Then, an exact substitution-based technique is presented to
provide the LPV model. The state transformation leads to the systematic construction of scheduling signals. More precisely, the
scheduling signals depend either on the inputs, outputs, and their derivatives, or on some of the observable states of the original
NL representation. Explanation on why such a scheduling construction is practically useful will be provided in detail. Examples
are also given to illustrate the procedure.

2 LPV REPRESENTATIONS

As the first step, we define the class of the considered LPV system representations and their associated solution sets, i.e.,
behaviors, which will be used to describe/embed the solution set of nonlinear systems, further defined in Section 3.

1Except for the decision tree algorithm in 6 and 23.
2Preliminary ideas leading to the theorems presented in this paper appeared in the conference contribution 24.
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2.1 Mathematical preliminaries
Let k(ℝ,W) be the space of k-times continuously differentiable real functions w ∶ ℝ → W ⊆ ℝnw with left compact support
that satisfy di

dti
w(t) ∈ W for all t ∈ ℝ and i ∈ Ik1 = {1,… , k}. Let ℙ be an open subset of ℝnp and let k(ℙ) denote the set

of real-analytic functions of the form f ∶ ℙk → ℝ in npk variables. For k̂ > k, any f ∈ k(ℙ) is called equivalent with a
f̂ ∈ k̂(ℙ) if f̂ (�1,… , �k̂) = f (�1,… , �k) for all �1,… , �k ∈ ℙ, as f̂ is not essentially dependent on its arguments. Define
the set operator ⊝, such that k+1(ℙ) ⊝ k(ℙ) contains all f ∈ k+1(ℙ) not equivalent with any element of k(ℙ). This
prompts to considering the set (ℙ) = ⋃∞

k=0k(ℙ) ⊝ k−1(ℙ) where 0(ℙ) = ℝ and −1(ℙ) = ∅. We can define addition
and multiplication in (ℙ) analogous to that of25: if f1, f2 ∈ (ℙ), then fi ∈ ki(ℙ) ⊝ ki−1(ℙ), for some integer ki ≥ 0,
i = 1, 2, and, by taking k = max{k1, k2}, the equivalence described above implies that there exist equivalent representations of
these functions ink(ℙ). Then f1+f2, f1 ⋅f2 can be defined as the usual addition and multiplication of functions ink(ℙ) and
the result, in terms of the equivalence, is considered to be a f ∈ (ℙ). For a p ∈ ∞(ℝ,ℙ), we define the following notation:
if f ∈ (ℙ), then f ⋄ p ∶ ℝ → ℝ is

∀t ∈ ℝ ∶ (f ⋄ p)(t) = f
(

p(t), d
dt
p(t),… , d

k

dtk
p(t)

)

, (3)
where k is an integer such that f ∈ k(ℙ) ⊝ k−1(ℙ). We denote by k×l(ℙ) the set of all k × l matrices whose entries are
elements of (ℙ) which also extends the operator ⋄ to matrices whose entries are functions from(ℙ).

2.2 State-space representation
For the sake of simplicity for defining the embedding of the dynamics of an NL system into the solution set of an LPV represen-
tation, we will introduce a slightly extended definition of LPV state-space representations compared to the regular definitions
treated in the literature7,10.
Definition 1 (LPV-SS representation). A continuous-time LPV-SS representation with an open scheduling region ℙ of
dimension np is a tuple of matrices of analytic functions:

[

A B

C D

]

∈
[

nz×nz(ℙ) nz×nu(ℙ)
ny×nz(ℙ) ny×nu(ℙ)

]

. (4)
A solution of this representation is a tuple (u, z, y, p) ∈ nz(ℝ,U × ℤ × Y ) × ∞(ℝ,ℙ) such that

d
dt
z = (A ⋄ p)z + (B ⋄ p)u, (5a)
y = (C ⋄ p)z + (D ⋄ p)u, (5b)

where z is the state vector3, ℤ = ℝnz is the state space, u ∶ ℝ → U = ℝnu is the input while y ∶ ℝ → Y = ℝny is the output of
the represented system. We denote by

BSS =
{

(u, z, y, p) ∈ nz(ℝ,U × ℤ × Y ) × ∞(ℝ,ℙ) ∣ (5a)-(5b) hold
}

, (6)
the solution set (latent behavior) of (5a)-(5b).
Note that in the above defined SS representation, the operator ⋄ expresses the dependence of the state-space matrix functions

along a scheduling trajectory p and its derivatives; in other words, it expresses a dynamic mapping between p and (A,B,C,D).
We refer to this dynamic mapping between the scheduling signal and the system matrices as dynamic dependence, whereas the
dependence on the value of p(t) only is referred to as static dependence. The latter is used in the conventional definitions that
can be found in the literature7,10, however, we need the notion of dynamic dependence here to show how systematic embedding
of NL systems can be achieved by LPV models. Moreover, LPV models with dynamic dependence arise naturally as a result of
system manipulations, such as state transformations, observability, controllability canonical forms, etc.25. For technical reasons,
in this paper we work with LPV-SS representations in observable canonical form. As its name suggests, an LPV model in
observable canonical form is state observable and it allows a simple conversion to input-output (IO) representations. The latter
is important for system identification, since IO representations are easier to identify than state-space models. Conditions for
existence of a state-space isomorphism transforming an LPV-SS representation to an observable canonical form are discussed

3We use z to denote the state vector in an LPV-SS representation. This allows later to distinguish z from the state vector x associated with an NL-SS representation.
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in26,25. The matrices, associated with the observability canonical representation of (5) in the SISO case, under the assumption
of minimality of (5), are given by6:

[

A B

C D

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 1 … 0 �nz−1
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 1 �1
�0 �1 … �nz−1 �0
1 0 … 0 �nz

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (7)

where {�i}nz−1i=0 and {�j}nz−1j=0 are analytic functions in(ℙ). A special case of (7), when �nz = … = �1 = 0, is given by

[

A B

C D

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 1 … 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 1 0
�0 �1 … �nz−1 �0
1 0 … 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (8)

which is of particular importance in this work as demonstrated later. In the sequel, we refer to the forms (7) and (8) as the full
and simplified observability forms, respectively. In this paper, we present a method for transforming a nonlinear system to LPV
simplified observability form and another method which yields an LPV representation in full observability form.

3 CONVERSION TO THE SIMPLIFIED OBSERVABILITY FORM

In this section, we discuss conversion of input-affine nonlinear models to simplified LPV observability canonical forms.

3.1 The problem setting
Consider a SISO NL system  represented in the form of

d
dt
x = f (x) + g(x)u, (9a)
y = ℎ(x), (9b)

where f, g ∶ X → ℝnx and ℎ ∶ X → ℝ are real analytic functions, X is an open subset of ℝnx and u ∶ ℝ → U ⊆ ℝ is the
input with y ∶ ℝ → Y ⊆ ℝ being the output signal and x ∶ ℝ → X is the state variable. We consider the solutions of (9) in the
following sense

ℭSS =
{

(u, x, y) ∈ nx(ℝ,U ×X × Y ) ∣ (9a–b) hold for all t ∈ ℝ
}

. (10)
The form (9) represents a rather general class of NL systems, commonly referred to as input-affine systems, which includes
common models of mechanical systems27 and many first-principles models in process control28. More general representation
of NL systems characterized by ẋ = f (x, u), with f ∶ X ×U → ℝnx being an analytic vector field, can be rewritten in the input
affine form (9) according to the procedure detailed in27. Furthermore, in (9b), there is no direct feedthrough term as, w.l.o.g.,
such feedthrough terms can be easily eliminated via the projection of y.
To achieve our objective, i.e., to embed the dynamical behavior of NL systems represented by (9) into the solution set of an

LPV-SS representation in a simplified observable canonical form given by (8), we intend to use the concept of the embedding
principle discussed in Section 1 to develop multi-path feedback linearization of (9). Before going into the mathematical details,
we present the main idea informally. Consider a solution (x, y, u) of (9), and define

z =
[

y d
dt
y … dnx

dtnx
y
]⊤
, (11a)

v =
[

u d
dt
u … dnx

dtnx
u
]⊤
. (11b)

Let (9) be observable, i.e., x = Ψ(z, v) for some map Ψ and let Φ (an implicit function of Ψ) be such that
z = Φ(x, v). (12)
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Then, we can obtain a new state-space description of (9):
d
dt
z1 = z2, … d

dt
znx−1 = znx , (13a)

d
dt
znx = �̄(z, v), (13b)
y = z1, (13c)

where �̄ is an analytical function, such that if (u, x, y) is a solution of (9), then (u, z, y) is a solution of (13) with z and x related
by (12). If �̄ can be factorized as

�̄(z, v) = �0(z, v)u +
nx−1
∑

i=0
�i(z, v)zi+1, (14)

for some analytic functions �0 and {�i}nx−1i=0 , then by setting p = [ y u ]⊤, and changing the ordering of the arguments of �0 and
{�i}

nx−1
i=0 , (13b) can be written as

d
dt
znx =

nx−1
∑

i=0
(�i ⋄ p)zi+1 + (�0 ⋄ p)u, (15)

which implies that (u, z, y, p), with z being related to x by (12) and p = [ y u ]⊤, is a solution of an LPV observable canonical
form (8) with nx = nz. As p of the resulting LPV-SS model is composed of the output and input signals of the system, it is
measurable/available in most real-world applications, i.e., the transformation yields an LPV-SS form that opens the possibility to
design LPV controllers for which implementation can avoid or mitigate the need for state measurements or scheduling observers.

3.2 Mathematical details of the construction
Below we present the ideas outlined above in a more rigorous way. First of all, note that we need to choose a point x0 ∈ X
around which the embedding can be developed and its validity can be analyzed. From the point of view of controller synthesis,
it is often desirable to consider x0 = 0 so that any stabilizing controller designed for the resulting LPV-SS form will aim at
keeping the state of the original system in a neighborhood of x0. To this end, we will make the following assumption.
Assumption 1 (Centering). To simplify the discussion, in the sequel, we will assume w.l.o.g. that f (x0) = 0 and ℎ(x0) = 0.
Note that f (x0) = 0 can easily be achieved by state and input transformation, while ℎ(x0) = 0 requires transformation of the

output signal y.
Definition 2 ((U0,X0,Y0)-admissible solutions). Let X0 be an open neighborhood of x0 in X. Furthermore, choose open sets
0 ∈ U0 ⊆ ℝ, 0 ∈ Y0 ⊆ ℝ. A solution (u, x, y) ∈ ℭSS of (9) is said to be (U0,X0,Y0)-admissible, if u ∈ nx(ℝ,U0), x ∈
∞(ℝ,X0) and y ∈ nx(ℝ,Y0).
Next, we recall from29,30 the notion of local uniform observability.

Definition 3 (Local uniform observability). The representation (9) is called locally uniformly observable on the open sets
x0 ∈ X0 ⊆ ℝnx , 0 ∈ U0 ⊆ ℝ, 0 ∈ Y0 ⊆ ℝ, if there exists an analytic map

Ψ ∶ (Y0 × U0)nx → X0, (16)
such that for any (U0,X0,Y0)-admissible solution (u, x, y) of (9), it holds that

x = Ψ
([

y
u

]

, d
dt

[

y
u

]

,… , d
nx−1

dtnx−1

[

y
u

])

. (17)
We will call the mapΨ the (U0,X0,Y0)-observability map or observability map, if (U0,X0,Y0) is clear from the context and call
(9) locally uniformly observable, if it is locally uniformly observable on (U0,X0,Y0) for some open sets U0,X0,Y0.
If (9) is locally uniformly observable, then it is possible to express the nx-th derivative of its output y as a function of { didti y}

nx−1
i=0

and { dj
dtj
u}nx−1j=0 . In order to present the construction formally, we define the following collection of functions.
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Definition 4 (Output derivative function). For each k ∈ ℕ, define the functions Φk ∶ X × Uk → Y as follows:
Φ0(x) = ℎ(x), (18a)

Φk(x, v1,… , vk) =
nx
∑

i=1

[

(

fi(x) + gi(x)v1
) )Φk−1

)xi
(x, v1,… , vk−1) +

k−1
∑

j=1
vj+1

)Φk−1

)vj
(x, v1,… , vk−1)

]

, (18b)

where fi and gi denote the i-th element of these functions. The map Φk will be called the k-th output derivative map.
For any (U0,X0,Y0)-admissible solution (u, x, y) of (9):

dk

dtk
y = Φk(x, u,

d
dt
u,… , d

k−1

dtk−1
u), (19)

which leads to the following corollary:
Corollary 1 (NL-IO realization). If (9) is locally uniformly observable on (U0,X0,Y0) with the observability function Ψ, then
for any (U0,X0,Y0)-admissible solution (u, x, y) of (9):

dnx
dtnx

y = Γnx

([

y
u

]

, d
dt

[

y
u

]

,… , d
nx−1

dtnx−1

[

y
u

])

, (20)
where the analytic map Γnx ∶ (Y0 × U0)nx → Y0 is defined by

Γnx

([

�1
�1

]

,… ,
[

�nx
�nx

])

= Φnx

(

Ψ
([

�1
�1

]

,… ,
[

�nx
�nx

])

, �1,… , �nx

)

, (21)
for all �1,… , �nx ∈ Y0 and �1,… , �nx ∈ U0.
Corollary 1 paves the way to represent (U0,X0,Y0)-admissible solutions of (9) as solutions of an LPV observer canonical

form. In order to present the precise result, we have to introduce some concepts related to factorization of functions.
Note that for a given open set V ⊆ ℝn, any analytic function f ∶ V → ℝ can be decomposed as

f (�) =
N(�, �1(�),… , ��(�))
D(�, �1(�),… , ��(�))

, ∀� ∈ V , (22)
where � is the indeterminate of f , N and D are polynomial maps: ℝn+� → ℝ and {�i ∶ V → ℝ}�i=1 are analytic functions. If(22) holds, we will say that f is rational w.r.t. {�i}�i=1. Note that if the functions {�i}�i=1 are algebraically independent and f is
rational w.r.t. to {�i}�i=1, then there is a unique pair of co-prime polynomials (N,D) which satisfies (22).
Definition 5 (Factorization). Consider a given open set V ⊆ ℝn and an analytic function f ∶ V → ℝ, rational w.r.t. some
analytic {�i}�i=1 in terms of (22). Under {�i}�i=1, factorization of f with respect to the first m variables is a tuple ({ri ∶ V →
ℝ}mi=1, s ∶ V → ℝ) of analytic functions such that ri = Mi∕D and s = S∕D in terms of (22) with {Mi}mi=1, D and S being
polynomials in n + � variables X1,… , Xn+� such that

N =M1X1 +⋯ +MmXm + S, (23)
and, for all i ∈ Im1 ,Mi does not depend on {Xl}ml=i+1 and S does not depend on {Xl}ml=1.
The polynomials {Mi}mi=1 are the result of the division ofN by {Xl}ml=1 and S is the remainder of this division, in the sense

of31, Theorem 3, pp. 61-62. As {Xl}ml=1 are monomials, a simplified form of the algorithm described in31 is available to compute the
factorization (see Algorithm 1 later). Note that if f is rational with respect to {�i}�i=1, then a factorization ({ri}mi=1, s)with respectto the firstm variables always exists in the form of f (�) = ∑m

i=1 ri(�)�i+s(�). This factorization depends on {�i}�i=1, i.e., differentchoices of these functions will lead to different factorizations, the consequences of which will be discussed in Section 3.3.
Introduce the selection matrix4 R ∈ ℝ2nx×2nx , which rearranges the arguments of Γnx(� ) ∶ (Y0 × U0)nx → Y0 such that

Γnx(R�) ∶ Y nx
0 × Unx0 → ℝ is equivalent with Γnx . Formally this means that for �1,… , �nx ∈ Y0 and �1,… , �nx ∈ U0, � =

[

�1 �1… �nx �nx
]

= R� where � = [

�1… �nx �1… �nx
]. We identify the resulting function as Γnx◦ R. Furthermore, consider a

set of functions {fi ∶ Wl → ℝ}�i=1, whereW ⊆ ℝn is not necessarily open. The matrix T ∈ ℝm×n, m ≤ n, is called the selection
matrix of the essential support of {fi}�i=1 under W, if T has full row rank, and the functions {fi(�1,… , �l)}�i=1 with �j ∈ W
depend only5 on T�j . For example, if f ∶ ℝ4 → ℝ depends only on its first and third arguments, then T = [

1 0 0 0
0 0 1 0

] is a selection

4A selection matrix contains zeros and a single element 1 in each row.
5∀{� (1)j , � (2)j ∈ W}lj=1 and ∀i ∈ I�1 , � (1)j − � (2)j ∈ ker T for all j ∈ Il1 ⇐⇒ fi(�

(1)
1 ,… , � (1)l ) = fi(�

(2)
1 ,… , � (2)l ) for all i ∈ I�1
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matrix of the essential support of f under ℝ4, while T = [ 1 0 ] is the selection matrix under ℝ2. If T is a selection matrix for the
essential support for {fi}�i=1, then T−1 = T⊤ is a selection matrix such that T ⋅T−1 = I and we can identify the functions {fi}�i=1with the functions {fi ◦ T−1}�i=1. Note that while the former are functions of n ⋅ l variables, the latter have m ⋅ l ≤ n ⋅ l variables.
Theorem 1 (LPV embedding, simp. observability form). Assume that (9) is locally uniformly observable on (U0,X0,Y0) with
observability function Ψ. Furthermore, assume that there exists a set of analytic functions {�i ∶ Y nx

0 × Unx0 → ℝ}�i=1 such that
the map Γnx◦ R in (20) is rational with respect to {�i}�i=1. Let ({ri}nx+1i=1 , s) be a factorization of Γnx◦ R with respect to the first
nx +1 variables. If s = 0, i.e., factorization is possible without a remainder and T is the essential support of {ri◦R−1}nx+1i=1 under
Y0 × U0, then the LPV-SS representation (8) with

p = T[ y⊤ u⊤ ]⊤, (24a)
{�i ∶= ri+1 ◦ R−1 ◦ T−1}

nx−1
i=0 , �0 ∶= rnx+1 ◦ R

−1 ◦ T−1, (24b)
and scheduling region ℙ = T(Y0 × U0) satisfies

ℭoSS ⊆ �pB
o
SS, (24c)

where
�pBo

SS =
{

(u, x, y) ∈ nx(ℝ,U0 ×X0 × Y0) ∣ ∃p ∈ nx(ℝ,ℙ),∃z ∈ nx(ℝ,Y
nx
0 ) such that (5a–b) hold

while x = Ψ(z, u,… , d
nx

dtnx
u)
}

,

and
ℭoSS =

{

(u, x, y) ∈ nx(ℝ,U0 ×X0 × Y0) such that (9a–b) hold
}

.

In terms of Theorem 1, the set of all (U0 × X0 × Y0) admissible solutions of (9) can be embedded into the solution set of an
LPV-SS representation and (24a) gives a direct selection of the scheduling variables under the factorization w.r.t. {�i}�i=1.
Proof. Consider a (U0 × X0 × Y0) admissible solution (u, x, y) of (9) and invoke the definitions (11). Let � = [ z⊤ v⊤ ]⊤ and
� =

[

[

y
u

]

, d
dt

[

y
u

]

,… , d
nx−1

dtnx−1
[

y
u

]

]

. Notice that � = R� and � = R−1� . Introduce P and P−1 which are nx-times block diagonal
matrices of T and T−1, respectively. Notice that PP−1PR� = PR� and hence P(R� − P−1PR�) = 0. From the definition of the
selection matrices it follows that

ri ◦ R
−1(R�) = ri ◦ R−1(P−1PR�) = ri ◦ R−1 ◦ T−1(PR�).

Define p̃ = [ y⊤ u⊤ ]⊤. Notice that
PR� = P� =

[

(Tp̃)⊤ … dnx−1

dtnx−1
(Tp̃)⊤

]⊤
=
[

p⊤ … dnx−1

dtnx−1
p⊤
]⊤
.

Hence,
ri(�) = ri ◦ R−1 ◦ T−1(PR�) =

{

�i−1 ⋄ p, i ∈ Inx1 ;
�0 ⋄ p, i = nx + 1.

From the discussion above and using d
dt
zi = zi+1 for i = Inx−11 it follows that

dnx
dtnx

znx = Γnx

([

y
u

]

,… , d
nx−1

dtnx−1

[

y
u

])

=
nx
∑

i=1
ri(�)zi + rnx+1(�)u =

nx−1
∑

i=0
(�i ⋄ p)zi+1 + (�0 ⋄ p)u. (25)

Hence, (u, z, y, p) is a solution of the LPV-SS representation (8) defined in the statement of the theorem. Moreover, since Ψ is a
(U0 ×X0 × Y0) observability function and (25) holds, x = Ψ(z, u,… , d

nx−1

dtnx−1
u).

In order to make Theorem 1 applicable, we need an algorithm to compute the factorization of the function Γnx◦ R on V =
Y nx
0 × Unx0 with respect to {�i ∶ V → ℝ}�i=1. Let N and D be such polynomials that Γnx◦ R can be written as (22). Then,

Algorithm 1, which takes N and D and {�i}�i=1 as parameters, returns a factorization ({ri}mi=1, s) of Γnx◦ R with respect to the
first m = nx + 1 variables, i.e., {zi = di

dti
y}nxi=1 and u.Theorem 1 indicates that it is possible to embed NL systems into LPV-SS representations in a systematic way. Furthermore, it

characterizes an LPV embedding in terms of a multi-path linearization which resembles feedback linearization of NL systems.
However, in feedback linearization, a virtual input signal is introduced so that the transformed system becomes LTI. In contrast, in
the proposed LPV approach, a set of virtual variables, denoted by p, are constructed which result in a varying linear relationship.
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Algorithm 1 Factorization
Require: N(X1,… , Xn+�), D(X1,… , Xn+�), {�i}�i=1, m ≤ n
S ← N .
for k← m ∶ 1 do

represent S as∑(i1,…,in+� )∈I
i1,…,in+�X

i1
1 ⋯Xin+�

n+� for a finite index set I ⊆ ℕn+� .
Mk ←

∑

(i1,…,in+� )∈I,ik≥1
i1,…,in+�

Xi1
1 ⋯X

in+�
n+�

Xk
.

S ← S −MkXk.
end for
ri(�)←

Mi(�,�1(�),…,�� (�))
D(�,�1(�),…,�� (�))

, s(�)← S(�,�1(�),…,�� (�))
D(�,�1(�),…,�� (�))

, � ∈ V .
return ({ri}mi=1, s).

Thus, the obtained LPV-SS representation is useful to develop controllers that can shape the closed-loop behavior unrestricted
or have better robustness than with an LTI target behavior. Furthermore, p is selected to be state-independent (in contrast with
the common NL to LPV conversion techniques) meaning that in practice, the LPV controller designed for this model can be
directly applied in a real-world system. Furthermore, the dimension of p is reduced by considering the essential support of
{ri}

nx+1
i=1 . On the other hand, Theorem 1 guarantees the embedding and hence the validity of the LPV representation only for

those state trajectories x of the NL systemwhich remain inX0 and for those inputs uwhich remain inU0. Hence, when designing
controllers using the LPV-SS form, one must ensure that u(t) ∈ U0 and x remains in X0. For the latter, it is enough to ensure
that the state z of the LPV-SS model remains in Y nx

0 . Otherwise, the LPV-SS representation of the NL system is no longer valid.

3.3 Choice of the scheduling variable
Although Theorem 1 gives a straightforward formulation of the LPV-SS representation of (9) with a unique choice of p, one
may consider projections of this variable to simplify the resulting dependency structure of (9) as follows:

• Full dynamic dependency: (24a) results in a possible dynamic dependence of (4) on p = T
[

y u
]⊤ with ℙ = T(Y0×U0) ⊆

ℝm, m ≤ ny + nu, characterized by rational combinations of the chosen {�i}�i=1. Although such a choice is tempting from
the theoretical and even identification point of view, as it minimizes the conservativeness of the embedding, it results in
models which are difficult for control design. Current techniques are only able to handle rational static dependence on p.

• Rational dependence: Using the “minimal” scheduling choice characterized by Theorem 1, it is possible to introduce a
so-called scheduling map �:

p = � ⋄ (y, u) =
[

T
[

y u
]⊤ �1(T

[

y u
]⊤ ,… , d

nx−1

dtnx−1
T
[

y u
]⊤) … ��(T

[

y u
]⊤ ,… , d

nx−1

dtnx−1
T
[

y u
]⊤)

]⊤
. (26)

Hence, by increasing dim(p) to m+ �, where m is the number of rows in T, the dynamic nature of the dependence can be
hidden into � and the p-dependence of (4) is reduced to be static rational. This is desirable for control and identification
as � can be applied on the measured values of (u, y) to compute p. Note that increasing the dimensions of p leads to more
conservatism as �pBo

SS grows with every hidden relation in �.
• Affine dependence: The previous procedure can also be applied to hide even the polynomial dependence resulting from

the above mentioned procedure by constructing a map p = � ⋄ (y, u) which, by substituting it to (24b), results in an
affine dependence of (4) on p. While this is tempting to simplify control synthesis based on such an embedding, it also
maximizes the conservativeness of �pBo

SS.
Note that computation of the analytic map Γnx requires inversion of functions, and hence in general, it is not guaranteed that it
has a closed form. While theoretically this does not hinder the application of Theorem 1, it makes the calculation of the LPV
model described in Theorem 1 far from trivial. In principle, what is required for Theorem 1 is not an analytic expression for Γnx ,but an expression for the factorization of Γnx . The latter might be computable even if there is no analytic expression for Γnx .In conclusion, Theorem 1 reveals that LPV embedding of an NL system is affected by a trade-off between conservativeness
and the simplicity of dependence of the resulting representation on p. In this respect, it is interesting to observe that the choice
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of basis functions {�i}�i=1 does not influence the validity of the transformation nor the controllability or observability of the
resulting model as long as there is no remainder term, i.e., s = 0. However, when {�i}�i=1 are absorbed into �, their choice has
a significant impact on the conservativeness of the embedding. As in system identification, the choice of � is invisible for the
estimation procedure and it can seriously affect the outcome of the estimation (persistency of excitation, correlation with noise,
etc.), while in control, robustness of the control law can be analyzed against variations of the LPV-SS representation, but not
against variations in �. Additionally, in LPV-MPC, hidden relations in �, especially dependence on u, can seriously compromise
the meaningfulness of the resulting optimization problem; hence, in principle, control design and LPV model development, in
terms of the choice of � should be seen as a joint process, see23,32.

3.4 Handling the remainder term
Theorem 1 deals with the case when s = 0, i.e., Γnx can be factorized without a remainder. Suppose that the conditions of
Theorem 1 hold, but s ≠ 0. In this case, we can still represent the solutions of (9) by solutions of an LPV system (similarly to
Theorem 1), but the resulting representation will not be linear due to the extra p-dependent affine term  ∶= s ◦ R−1 ◦ T−1.
This term is undesirable both in LPV control synthesis and identification as the whole LPV framework builds upon the assumed
linearity of the system description. As this phenomenon is not uncommon in applied LPV control, we collected here the possible
strategies to deal with affine terms:

• Virtual input: An input-disturbance signal d ≡ 1 is introduced to incorporate the affine term into the B matrix:

B̃ ⋄ p =

⎡

⎢

⎢

⎢

⎢

⎣

0 0
⋮ ⋮
0 0

(�0 ⋄ p) ( ⋄ p)

⎤

⎥

⎥

⎥

⎥

⎦

with new input:
[

u
d

]

.

Then, considering d as a time-varying disturbance with an 2 norm bound of 1, optimal control synthesis or MPC
control can be conveniently applied. Although this strategy changes the IO partition of the system and it increases the
conservativeness of the embedding, it leads to a complete representation of the original NL behavior.

• Ignored in the LPV “representation” of the system behavior and during control synthesis one of the following choices are
applied

– The designed controller is augmented with a feedforward path to compensate for  during control implementation,
see33,34.

– Input disturbance rejection is considered as a control objective.
• Enforced factorization:  is rewritten as ̃

u
u or ̃

zj
zj and added to �0 or �j , respectively. The associated u or zj should never

approach close to the origin during operation, otherwise loss of stability might occur, see22,6 for more details.

3.5 Scheduling with signal derivatives
Using the the proposed model conversion method, p can potentially contain nx − 1 time derivatives of (y, u). To implement an
LPV controller  designed with the resulting model, derivatives of u correspond to derivatives of the output of , which can
be obtained by an extended state realization of . Regarding derivatives of y, the following options are available:

• Direct measurement: In many mechatronic applications, the underlying IO relations are 2nd-order in nature and often
velocity and acceleration measurements are available (just think about IMUs in ground and aerial vehicles or flowmeters,
rotameters and a huge array of various designs of gyroscopes and accelerometers).

• Numerical differentiation and filtering methods, designed to mitigate the effect of noise and approximation error on the
derivatives (see e.g.,35,36,37,38,39,40), can be used to calculate the derivatives of y.

• Observer design: The model of the plant dynamics can be transformed to an observability form where the state variables
directly correspond to the derivatives of y up to the relative degree of the system and the rest of the state variables can
be used to compute higher derivatives of y when the derivatives of u are known. This means that derivatives of y can
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be estimated by an observer or a Kalman filter as any other state variables. Commonly derivatives of y naturally appear
among the state variables of first-principles based plant models, like position, velocity, acceleration in motion equations
of mechanical systems.

When identification of the resulting LPV model is considered, in continuous time, computation of time-derivatives of (y, u) in
either frequency domain or the time-domain, in prediction or simulation are required by most identification methods (subspace
methods, prediction-error minimization, instrumental variables, etc.). Therefore, handling derivatives of (y, u) is a natural step
in many cases, only the means of obtaining them differs.
Compared to the proposed conversion method, alternative conversion methods to LPV form often choose state-variables of

the NL model in an ad-hoc manner to be part of p. With such a choice, p is often not measurable and the LPV controller  has
to be used together with an observer for estimating p. However,  was designed with the assumption that p is known. Hence,
by introducing an observer for estimating p, the stability and performance guarantees of the LPV controller are lost. Of course,
one can argue that delay and performance loss can also be introduced with numerical differentiation or filtering methods in
case derivatives of y are not directly measurable. In that case, we run into the same problem with the proposed methodology.
In fact, the same choice occurs in feedback linearization when one can choose between using derivatives of y or the states x or
the original system to calculate the linearizing feedback. The proposed methodology in this paper aims at providing systematic
options beyond using only x in the scheduling map.

3.6 Computation of Γnx
For the sake of completeness, the construction procedure of Γnx , which is used in Theorem 1 and relies on known NL system
theory concepts, is presented next.
Definition 6 (Relative degree12). The NL-SS system representation (9) is said to have relative degree nr at a point x0 ∈ X if
there exists an open subset x0 ∈ Xr ⊆ X such that

(i) LgLifℎ(x) = 0, ∀x ∈ Xr , i < nr − 1,
(ii) LgLnr−1f ℎ(x0) ≠ 0,

where Lifℎ(⋅) stands for the ith Lie-derivative of ℎ w.r.t. f .
Note that not every NL system represented in the form of (9) has a relative degree nr at all. Neither is it true that the same nr

qualifies for all x0 ∈ X. We refer to12 for more in depth discussion on this topic. In the sequel, it is assumed that x0 is chosen
such that the relative degree of (9) is well-defined at this point. Next, we consider the construction of Γnx in a neighborhood of
x0 in two cases: when nr of (9) at x0 equals nx and when nr < nx.

3.6.1 Case of nr = nx
Consider a solution (u, x, y) of (9), such that for all t ∈ ℝ, x(t) ∈ Xr (see Definition 6). In this case,

z1 = y = ℎ(x) = Φ0(x), (27a)
⋮

znx =
dnx−1

dtnx−1
y = Lnx−1f ℎ(x) = Φnx−1(x), (27b)

while
dnx
dtnx

y = Lnxf ℎ(x) + LgL
nx−1
f ℎ(x)u = Φnx(x, u), (27c)

i.e., only the nthx derivative of y depends on u. This gives
z = Φ(x) =

[

ℎ(x) Lfℎ(x) … Lnx−1f ℎ(x)
]⊤
, (28)

hence the local inverse of Φ provides the observability function Ψ in Definition 3 to construct Γnx . Recall12, Lemma 4.1.1, p. 140 that
if the relative degree nr of (9) is nx at x0, then the gradients ∇ℎ(x0),… ,∇Lnx−1f ℎ(x0) are linearly independent. Hence, in this
case, the Jacobian of Φ(x0) is invertible based on the inverse function theorem41:
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Lemma 1 (Inversion ofΦ). There exist open setsX0 ⊆ Xr and Y0 ⊆ ℝ, such that x0 ∈ X0,Φ(X0) = Y nx
0 andΦ|X0

∶ X0 → Y nx
0 ,

the restriction of Φ to X0, is an analytic diffeomorphism, i.e., the analytic inverse Φ† of Φ|X0
exists.

By a slight abuse of notation, we will identifyΦ in the sequel with its restriction toX0, i.e., we will view it as a diffeomorphism
Φ|X0

∶ X0 → Y nx
0 . Let U0 be an arbitrary open subset of U. We can define the observability map Ψ ∶ (Y0 × U0)nx → X0,

satisfying Definition 3, by
Ψ
([

�1
�1

]

,…
[

�nx
�nx

])

= Φ†
(

�1,… , �nx
)

, (29)
for all �1,… , �nx ∈ Y0 and �1,… , �nx ∈ U0. Note that, in this case, Ψ does not depend on {�i}nxi=1. Hence, by the construction
in Theorem 1, Γnx results in

Γnx

([

�1
�1

]

,… ,
[

�nx
�nx

])

= Lnxf ℎ(Φ
†(�1,… , �nx)) + LgL

nx−1
f ℎ(Φ†(�1,… , �nx))�1. (30)

3.6.2 Case of nr < nx
Computing z1 = y,… , znr =

dnr −1

dtnr −1
y follows as in (27), but
znr+1 =

dnr
dtnr

y = Lnrf ℎ(x) + LgL
nr−1
f ℎ(x)u = Φnr (x, u). (31)

Continuing the construction of the map gives that
znr+2 =

d
dt
znr+1 = L

nr+1
f ℎ(x) + LgL

nr
f ℎ(x)u + LfLgL

nr−1
f ℎ(x)u + L2gL

nr−1
f ℎ(x)u2 + LgL

nr−1
f ℎ(x) d

dt
u = Φnr+1(x, u,

d
dt
u). (32)

Repeating this operation recursively results in
d
dt
znr+l = Φnr+l−1(x, u,… , d

l−1

dtl−1
u), (33)

for 1 ≤ l ≤ ns + 1 with ns = nx − nr − 1. Compared to the previous case, these maps now depend on u,… dns
dtns
u. Hence,

z = Φ(x, u,… , d
ns

dtns
u) =

[

Φ0(x) … Φnr−1(x) Φnr (x, u) … Φnx−1(x, u,… , d
ns

dtns
u)
]⊤
, (34)

and the local inverse of Φ provides Ψ in Definition 3 to construct Γnx . We can now state the following lemma presenting the
conditions for local invertibility of Φ.
Lemma 2 (Φ inversion under nr < nx). Assume full rank of ∇Φ(x0, u0,… u0), where ∇Φ is the Jacobian of Φ w.r.t. x. There
exist open sets x0 ∈ X0 ⊆ Xr , u0 ∈ U0 ⊆ ℝ, Y0 ⊆ ℝ, and an analytic function Φ† ∶ Y nx

0 × Uns+10 → X0, such that for all
� ∈ Y nx

0 , � ∈ Uns+10 and x ∈ X0:
� = Φ(x, �) ⇐⇒ x = Φ†(�, �).

Lemma 2 follows from the implicit function theorem41 applied to � − Φ(x, �). Using Φ†, we can define the function Ψ ∶
(Y0×U0)nx → X0 similarly as in (29) which satisfies Definition 3 by construction. Then, we can proceed with the construction of
Γnx as in Definition 1, except that Γnx will not depend on the last nr components of Unx and hence it can be defined on Y nx

0 ×U
ns+1
0instead of Y nx

0 × Unx0 .The price to pay for a system with relative degree less than its order is that the resulting LPV model through p depends on
u and its derivatives up to order ns. On the other hand, all scheduling signals are directly computable form measured variables
without requiring the original states of the system.

4 CONVERSION TO THE FULL OBSERVABILITY FORM

One of the shortcomings of the conversion procedure of Section 3 is that in case of relative degree nr < nx, the conversion results
in an LPV model “depending” on { dl

dtl
u}nsl=0. This dynamic dependence on u can be undesirable as it increases the complexity

of the resulting model. One can say that this is the price to be paid for trying to use only �0 to express the relations involving
u. One way to overcome this is to assume that a part of the state is available for measurement. In that case, parts of x become
components of p and they are used to replace the derivatives of u in the dependency structure.
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To gain some intuition, consider (9) with a well-defined relative degree nr < nx at a point x = x0 and the transformation map
Φ from (28). If (u, x, y) is a solution of (9) such that for all t ∈ ℝ, x(t) ∈ Xr , then, even in case of nr < nx, it is possible to use
z(t) = Φ(x(t)) as the state of the LPV model, constructed as

z =
[

y ⋯ dnr −1

dtnr −1
y Lnrf ℎ(x) ⋯ Lnx−1f ℎ(x)

]

. (35)
Notice that

d
dt
znr+l = L

nr+l
f ℎ(x)

⏟⏞⏞⏟⏞⏞⏟
znr +l−1

+LgL
nr+l−1
f ℎ(x)u, (36)

for 1 ≤ l ≤ ns +1. In terms of Lemma 1, there exist open sets x0 ∈ X0 ⊆ Xr , Y0 ⊆ ℝ, such that Φ|X0
∶ X0 → Y nx

0 is an analytic
diffeomorphism with analytic inverse Φ†. Hence, for x(t) ∈ X0, ∀t ∈ ℝ and each l, we can write the u-related terms in (36) as

LgL
nr+l−1
f ℎ(x)u = LgL

nr+l−1
f ℎ(Φ†(z))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�ns+1−l

u. (37)

This implies that the last state equation reads as
d
dt
znx = L

nx
f ℎ(Φ

†(z))
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Γnx (z)

+LgL
nx−1
f ℎ(Φ†(z))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�0(z)

u. (38)

Intuitively, we want to factorize Γnx(z), i.e., write it as Γnx(z) =
∑nx−1
i=0 �i(z)zi+1. As a result, we obtain Equations (5a–b)

where {�i}nx−1i=0 and {�i}nsi=0 are dependent on z. Using that z satisfies (35), which is dependent on { d
l

dtl
y}nr−1l=0 and x, we arrive at

an LPV model by taking6 p as a linear projection of [ y⊤ x⊤ ]⊤.
Now, we present the above procedure more formally. Define the maps Γnx ∶ Y nx

0 → ℝ and {�̃i ∶ Y nx
0 → ℝ}nx−1i=0 as

Γnx(� ) = L
nx
f ℎ(Φ

†(� )), (39a)

�̃i(� ) =

{

LgL
nx−i−1
f ℎ(Φ†(� )) i ≤ ns;

0 otherwise; (39b)

for all � ∈ Y nx
0 . Assume that there exists a set of analytic functions {�i}�i=1 on Y nx

0 such that the map Γnx in (39a) is rational
with respect to {�i}�i=1. Let ({ri}nxi=1, s) be the factorization of Γnx with respect to the first nx variables. Define the functions
{�̃i ∶ Y

nx
0 → ℝ}nx−1i=0 as �̃i = ri+1. Define Ψ ∶ Y nr

0 ×X0 → Y nx
0 as follows

Ψ(�, x) =
[

�⊤ Lnrf ℎ(x) ⋯ Lnx−1f ℎ(x)
]⊤
, (40)

for all � ∈ Y nr
0 , x ∈ X0. Notice that � = Ψ(�, x), if (�, x) ∈ V = Y nr

0 ×X0. Define now �̂i ∶ V → ℝ and �̂i ∶ V → ℝ by
�̂i(�, x) = �̃i(Ψ(�, x)), �̂i(�, x) = �̃i(Ψ(�, x))

for all � ∈ Y nr
0 , x ∈ X0. Let T1 ∈ ℝ such that for any x ∈ X0, T1 is the selection matrix of the essential support of the functions

{� → �̂i(�, x), � → �̂i(�, x)}
nx−1
i=0 under Y0 (essential support w.r.t. the the variables {�i}nri=1). Similarly, let T2 ∈ ℝm2×nx with

m2 ≤ nx be the selection matrix of the essential support of the functions {�̂i, �̂i}nx−1i=0 under X0 w.r.t. x. If T1 is zero, then let
T = [ 0 T2 ] and P = [ 0m2×nr T2 ]; otherwise, let T = diag(1,T2) and P = diag(Inr×nr ,T2). Using the notation and assumptions
above, we can now state the following theorem.
Theorem 2 (LPV embedding, full observability form). Under the conditions of Theorem 1, if s = 0, i.e., factorization of Γnx is
possible without a remainder, then the LPV-SS representation (8) with coefficient functions {�i ∶= �̂i◦P−1, �i ∶= �̂i◦P−1}nx−1i=0and with

p = T[ y⊤ x⊤ ]⊤ (41)
and ℙ = T(Y0 ×X0) satisfies (24c) where

�pBo
SS =

{

(u, x, y) ∈ nx(ℝ,U0 ×X0 × Y0) ∣ ∃p ∈ nr (ℝ,ℙ),∃z ∈ nx(ℝ,Y
nx
0 ) s.t. (5a–b) hold, while x = Φ†(z)

}

. (42)

6In theory, it is possible to consider p = x. However, this choice results in a scheduling region as large as X and the resulting LPV model will be overly conservative.
Hence, it is a better strategy to include y into p since the derivatives of y and x are closely related. We would then hope that in the final LPV model, most of the state
components disappear from p.
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Proof. The proof of Theorem 2 follows the same line of reasoning as Theorem 1 and hence it is skipped. Note that the
construction of Φ implies that {�i ⋄ p, �i ⋄ p}nx−1i=0 will not depend on the derivative of x.
In contrast with the procedure in Section 3, p here does not include u; however, part of it depends on the availability of the

original states of the NL system.

5 NUMERICAL EXAMPLES

First, two academic examples are presented to illustrate the properties of the conversion procedures discussed in the previous
sections. In the first one, the relative degree is equal to the order of the system while in the second one, it is less. These examples
are followed by the examples of a magnetic levitation system and an unbalanced disc system. In the latter two examples, an NL
model derived from first principle laws is converted into an LPV-SS representation. In the last example, we also show empirical
validation of the model conversion both in terms of comparing responses of the real system with its LPV model and also how
an LPV controller designed based on the converted model performs.

5.1 Conversion under full relative degree
Consider a SISO NL system model (9) with nx = 3 and

f (x) =
⎡

⎢

⎢

⎣

0
x1 + x23
x2 + x2x3

⎤

⎥

⎥

⎦

, g(x) =
⎡

⎢

⎢

⎣

x22 + x
2
3 + 1
0
0

⎤

⎥

⎥

⎦

, ℎ(x) = x3.

As commonly done in practice, one could pick x3 and x2 as scheduling variables for LPV conversion to the form of (5); however,
that would require accurate measurements or estimates of these state variables if an LPV controller was to be designed and
implemented based on such a converted model. Another problem would be the validity of this LPV conversion in terms of the
represented solutions of the original NL model: it would not be clear under which condition the obtained LPV model is a valid
representation of the NL model. So, let us see what the proposed method in this paper results in. For this system, we have

Lgℎ(x) = 0, LgLfℎ(x) = 0,
LgL

2
fℎ(x) = (x

2
2 + x

2
3 + 1)(x3 + 1),

which gives that the relative degree is nr = 3 = nx at each x0 not belonging to the hyperplane X†
0 = {x ∈ ℝ3 ∣ (x22 + x

2
3 +

1)(x3 + 1) = 0}. Select x0 =
[

0 0 0
]⊤ and Xr to be any open subset of ℝ3 ⧵X†

0. For the sake of simplicity, take Xr = (−1, 1)3.
Computing (28) gives z = Φ(x) where

Φ(x) =
[

x3 x2 + x2x3 (x3 + 1)(x22 + x
2
3 + x1)

]⊤ .

The Jacobian of Φ is non-singular on Xr , in fact Φ is an analytic diffeomorphism on Xr and its inverse is given by
Φ†(�) =

[ (�3−(�1+1)3(�22+�21 (�1+1)2))
(�1+1)

�2
�1+1

�1
]⊤
.

Let Y0 = (−1, 1), which is an open subset of ℝ and satisfies Y 30 ⊆ Φ(Xr) and set X0 = Φ†(Y 30 ). Let U0 be an arbitrary open
subset of ℝ containing 0. The resulting Γnx function, see (30), is given by

Γnx(� ) =
�2(2�1+3�3+3�1�3+6�21+6�

3
1−2�

2
2+2�

4
1 )+(�1+1)(�1(�1+1)2+�22)�1

(�1+1)2
,

where � = [

�1 �1… �3 �3
]. Factorization of this rational function is implemented by applying Algorithm 1 resulting in
r1(� ) = 0, r2(� ) = −

−2�1+6�21−6�
3
1−2�

2
2+2�

4
1

(�1+1)2
,

r3(� ) =
3�2
�1+1

, r4(� ) = (�1 + 1)(�1 +
�22

(�1+1)2
),
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with s = 0. Hence,

R−1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, T =
[

1 0
]

, T−1 =
[

1
0

]

,

Then, {�i = ri+1 ◦ R−1 ◦ T−1}2i=0, and �0 = r4 ◦ R−1 ◦ T−1 are defined on Y 20 and with the resulting p = y = T
[

y u
]⊤:

�0 ⋄ p = 0, �1 ⋄ p = −
−2p+6p2−6p3+2p4−2ṗ2

(p+1)2
,

�2 ⋄ p =
3ṗ
p+1
, �0 ⋄ p = (p + 1)(p +

ṗ2

(p+1)2
).

The scheduling region isℙ = T(Y0×U0) = Y0 = (−1, 1). The selection of the scheduling signal p = y, leads to the converted LPV
model (8) which achieves embedding of the NL behavior into the solution set of the LPV-SS representation according to Theorem
1. It is worth to mention that for this system with p = y, the converted matrices have only first order dynamic dependence
(dependence on p and ṗ only). As a further simplification, in line with Section 3.3, one can introduce p = � ⋄ y = [

y ẏ
]⊤ which

results in rational static dependency of �0, �1, �2, �0 by increasing the dimension of p, while taking p = [

r2 ⋄ y r3 ⋄ y r4 ⋄ y
]⊤

results in an affine, but conservative embedding with �1 = p1, �2 = p2, �0 = p3.

5.2 Conversion under low relative degree
To demonstrate the properties of the procedures presented in Section 3 and 4, (9) is considered with nx = 3 and

f (x) =
⎡

⎢

⎢

⎣

x2 − 2x2x3 + x23
x3

sin(x1)

⎤

⎥

⎥

⎦

, g(x) =
⎡

⎢

⎢

⎣

4x2x3
−2x3
0

⎤

⎥

⎥

⎦

, ℎ(x) = x3.

The system has a relative degree nr = 2 < nx at each x0 not belonging to the hyper-surface X†
0 = {x ∈ ℝ3 ∣ cos(x1)x2x3 = 0}.

Select x0 =
[

0 0 0
]⊤ and let Xr = (0,

�
2
) × (−1, 1) × (−0.5, 0.5). It is clear that Xr is an open subset of ℝ3 ⧵X†

0 containing 0.First consider the approach discussed in Section 4 to convert the NL representation to the full observability canonical form (8).
According to (28)

z = Φ(x) =
[

x3 sin(x1) cos(x1)(x23 − 2x2x3 + x2)
]⊤ .

The Jacobian of Φ is non-singular on Xr ; in fact, Φ is an analytic diffeomorphism on Xr and the inverse map is

Φ†(� ) =

[

sin−1(�2)
−�3+�21

√

1−�22

(2�1−1)
√

1−�22
�1

]⊤

.

Let Y 30 ⊆ Φ(Xr) be an open set and X0 = Φ†(Y 30 ). The resulting Γnx(� ) via (39a) is given by

Γnx(� ) =
−2�2�3−�2�23+2�

3
2 �3+2�1�2�

2
3+(4�31−4�21+�1+2�1�2−2�21 �2)

√

(1−�22 )
3

(2�1−1)(�22−1)
, (43)

while for all � ∈ Y 30 ,

�̃0(� ) =
−2�1

(

2�2�23−2�
2
1 �2�3

√

1−�22 (4�
2
1−4�1+1)

√

(1−�22 )
3
)

(2�1−1)(�22−1)

�̃1(� ) =
−4�1

(

�3−�21
√

1−�22

)

2�1−1
, �̃2(� ) = 0.
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Finally, the factorization step is performed for the function Γnx(� ) via Algorithm 1 as Γnx is rational in the considered sense with
�1(� ) =

√

1 − �22 , which yields the following functions

r1(� ) = �̃0(� ) =
(4�21−4�1+1)

√

1−�22
(2�1−1)(�22−1)

,

r2(� ) = �̃1(� ) =
(−2�1−2�21 )

√

(1−�2)3

(2�1−1)(�22−1)
,

r3(� ) = �̃2(� ) =
(−2�2−�2+2�32+2�1�2�3)

(2�1−1)(�22−1)
,

with s = 0. According to (40), computing � = Ψ(�, x) gives that �1 = �1, �2 = �2, �3 =
√

1 − �22(�
2
1 − 2x2�1 + x2) for all

(�, x) ∈ V = Y 20 ×X0. This results in

T1 = 1, T2 =
[

0 1 0
]

, T =
[

1 0 0 0
0 0 1 0

]

, P =
⎡

⎢

⎢

⎣

1 0 0 0 0
0 1 0 0 0
0 0 0 1 0

⎤

⎥

⎥

⎦

.

yielding p = [

y x2
]⊤ = T

[

y x⊤
]⊤ with ℙ = T(Y0 ×X0). The resulting coefficients are

�0 ⋄ p =
2ṗ1
√

1−ṗ21(p
2
1−2p2p1+p2)

2+(4p21−4p1+2ṗ1+1−2p1ṗ1)
√

(1−(ṗ1)2)3

(2p1−1)(ṗ21−1)
, (44a)

�1 ⋄ p =
(4p21−4p1+1)

√

1−ṗ21
(2p1−1)(ṗ21−1)

, (44b)

�2 ⋄ p =
(−2ṗ1−ṗ1+2ṗ31+2p1ṗ1

√

1−ṗ21(p
2
1−2p2p1+p2))

(2p1−1)(ṗ21−1)
, (44c)

�0 ⋄ p =
−4(ṗ1(p31−2p2p1+p2)p2p1)−2p1

√

1−ṗ21(1−2p2)

(2p1−1)(ṗ21−1)
, (44d)

�1 ⋄ p =
4p2p1

√

1−ṗ21
2p1−1

, (44e)
�2 ⋄ p = 0. (44f)

where p ∈ C∞(ℝ,ℙ).
Consider the conversion procedure introduced in Section 3. The map Φ is determined by

Φ(x, u) =
[

x3 sin(x1) cos(x1)(x23 − 2x2x3 + x2 + 4x2x3u)
]⊤ .

Notice that
∇Φ|x=0,u=0 =

⎡

⎢

⎢

⎣

0 0 1
1 0 0
0 1 0

⎤

⎥

⎥

⎦

,

is full row rank, hence, by Lemma 2, there exist compact open sets 0 ∈ X0 ⊆ Xr = (0, �
2
) × (−1, 1) × (−0.5, 0.5), Y0 ⊆ ℝ,

0 ∈ U0 ⊆ ℝ, and an analytic mapΦ† ∶ Y 30 ×U0 → X0, such that � = Φ(x, �) ⇐⇒ x = Φ†(�, �) for all � ∈ U0, � ∈ Y 30 , x ∈ X0.
In this case,

Φ†(�, �) =

[

sin−1(�2)
−�3+�21

√

1−�22

(2�1−4�1�−1)
√

1−�22
�1

]⊤

.

According to Corollary 1, Γnx with � =
[

�1 �1… �3 �3
] is given by:

Γnx(� ) =
�2�23−2�1�2�

2
3−2�2�3(�

2
2−1)+4�1�1�2�

2
3+4�1�2�3(�

2
2−1)+4�2�1�3(�

2
2−1)

(�22−1)(4�1�1−2�1+1)

+
(4�21−4�

3
1−�1+16�

2
1�

2
1−48�

2
1�

3
1+32�

3
1�

3
1+2�1�1−2�1�2−16�1�

2
1+24�1�

3
1+4�2�

3
1+2�

2
1�2−4�1�

2
1�2)

√

(1−�22 )
3

(�22−1)(4�1�1−2�1+1)
. (45)
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Then, the factorization step is performed for Γnx with respect to the first 4 variables. Γnx is rational in the considered sense
with �1(� ) =

√

1 − �22 , hence the resulting factorization is ({ri}4i=1, s = 0), where

r1(� ) =
(−4�1−4�21+4�2�

2
1 )
√

(1−�22 )
3

(�22−1)(4�1�1−2�1+1)
, (46a)

r2(� ) =
(−2�1+2�21 )

√

(1−�22 )
3

(�22−1)(4�1�1−2�1+1)
, (46b)

r3(� ) =
(4�2�1−2�2)(�22−1)−2�2�3−2�1�2�3

(�22−1)(4�1�1−2�1+1)
, (46c)

r4(� ) =
4�1�2�23+4�1�3(�

2
2−1)+

√

(1−�22 )
3(−4�21�2+24�

3
1−16�

2
1+2�1+32�

2
1�

3
1−48�1�

2
1−16�1�

2
1 )

(�22−1)(4�1�1−2�1+1)
, (46d)

which holds for all � ∈ (Y0 × U0)3and

T = T−1 = I, R−1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

due to the full joint essential support of {ri ◦ R−1}nxi=1. The system is embedded into the LPV-SS form (8), as described in
Theorem 1, with ℙ = Y0 × U0 and {�i}3i=0, �0 satisfying

�0 ⋄ p =
(−4p1−4p21+4ṗ2p

2
1)
√

(1−ṗ21)
3

(ṗ21−1)(4p2p1−2p1+1)
, (47a)

�1 ⋄ p =
(−2p1+2p21)

√

(1−ṗ21)
3

(ṗ21−1)(4p2p1−2p1+1)
, (47b)

�2 ⋄ p =
(4ṗ2p1−2ṗ1)(ṗ21−1)−2ṗ1p̈1−2p1ṗ1p̈1

(ṗ21−1)(4p2p1−2p1+1)
, (47c)

�0 ⋄ p =
4p1ṗ1p̈21+4p1p̈1(ṗ

2
1−1)+

√

(1−ṗ21)
3(−4p21ṗ1+24p

3
1−16p

2
1+2p1+32p

2
2p
3
1−48p2p

2
1−16p2p

2
1)

(ṗ21−1)(4p2p1−2p1+1)
, (47d)

for all p ∈ C∞(ℝ,ℙ). Note that the resulting LPV-SS model has 2nd-order dynamic dependency on p1 = y and only static
dependency on p2 = u. Furthermore, ℙ can be chosen to be any open subset of {(y, u) ∈ ℝ ×ℝ ∣ (y2 − 1)(4uy − 2y + 1) ≠ 0}.

5.3 Magnetic levitation system
To show how the proposed methodology performs in practical applications, consider a magnetic levitation system, discussed
in42, which consists of an iron ball, an electromagnet and a photo diode based position sensor. The iron ball is levitated by the
attractive force of the electromagnet, which is controlled by an applied voltage (input signal). The model of the system can be
represented in the form of (9) with

f (x) =

⎡

⎢

⎢

⎢

⎣

x2
G − Qx23

2M(�+x1)2
x3(2�+x1)(Qx2−R(�+x1)2)
(�+x1)((L+Q)(2�+x1)+Q)

⎤

⎥

⎥

⎥

⎦

, g(x) =

⎡

⎢

⎢

⎢

⎣

0
0

(�+x1)(2�+x1)
(L+Q)(2�+x1)+Q

⎤

⎥

⎥

⎥

⎦

,

and ℎ(x) = x1 corresponding to nx = 3 together with the parameter values given in Table 1. The control objective for this
system is to keep the distance x1 (the output signal) of the ball from the magnet close to some level �min ≤ � ≤ �max, where
�min > 0 corresponds to the minimal distance of the ball from the magnet, while �max corresponds to the maximum allowed
height of levitation. The system has a relative degree nr = 3 = nx at each x0 not belonging to the hyperplane X†

0 = {x ∈ ℝ ∣
�+x1 = 0}. Note that this is physically always satisfied as x1 must be positive otherwise the ball reaches the magnet plate. Take
Xr = (�min, �max)3 and select x0 =

[

� 0 2�
√

2GM
Q

]⊤. Then, (28) is of the form

Φ(x) =
[

x1 x2 G −
Qx23

2M(�+x1)2

]⊤
.
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TABLE 1 Physical parameters of the magnetic levitation system.

L [H] R [Ohm] M [kg] G [m/s2] � [m] Q [Hm]

2.05 27.03 0.357 9.807 0.0078 0.0044

The Jacobian of Φ is non-singular on Xr :

∇Φ|x=x0 =

⎡

⎢

⎢

⎢

⎣

1 0 0
0 1 0
G
�
0 −

√

GQ
2M�2

⎤

⎥

⎥

⎥

⎦

.

Hence, there exist open sets x0 ∈ X0 ⊆ Xr , Y0 ⊆ ℝ, such that Φ(X0) = Y 30 and the restriction of Φ to X0 is an analytic
diffeomorphism. The inverse map Φ† ∶ Y 30 → X0 is

Φ†(�) =
[

�1 �2 (� + �1)
√

2M(G−�3)
Q

]⊤
,

for all � ∈ Y 30 . The resulting function Γnx with � =
[

�1 �1… �3 �3
], see (30), is

Γnx(� ) =
2(G−�3)

(

R(�+�1)2(2�+�1)+�2(Q+L(2�+�1))
)

(�+�1)(L(2�+�1)+Q(1+2�+�1))
− (2�+�1)

√

2Q(G−�3)
√

M(Q+(2�+�1)(L+Q))
�1. (48)

Then Γnx is rational in the considered sense with �1(� ) =
√

G − �3 and Algorithm 1 yields the factorization ({ri}4i=1, s):
r1(� ) =

2GR�21+8GR��1+10GR�
2

(�+�1)(L(2�+�1)+Q(1+2�+�1))
,

r2(� ) = −
2GQ+4GL�+2GL�1

(�+�1)(L(2�+�1)+Q(1+2�+�1))

r3(� ) =
−2Q�2−2R�31−4R�

3−2L�1�2−8R��21−10R�
2�1−4L��2

(�+�1)(L(2�+�1)+Q(1+2�+�1))
,

r4(� ) = −
(2�+z1)

√

2Q(G−�3)
√

M(Q+(2�+�1)(L+Q))
,

with a non-factorizable term given by
s(� ) = 4GR�3

(�+�1)(L(2�+�1)+Q(1+2�+�1))
.

Therefore, the LPV representation (8) for the system can be obtained, where p = y with 2nd order dynamic dependence
(dependence on { di

dti
y}2i=0) and the non-factorizable term can be handled by seeing it as a virtual input, see Section 3.5.

5.4 Unbalanced disc system
As an additional example, we demonstrate empirically the applicability of the proposed method. Consider the unbalanced disc
system depicted in Figure 3. The dynamic behavior of this system can be well described using the following motion equations
where the fast electrical subsystem is neglected

�̇(t) = !(t), (49a)
!̇(t) = Mgl

J
sin(�(t)) − 1

�
!(t) + Km

�
u(t), (49b)

where � is the angular position of the mass, ! is the angular velocity of the mass and u is the applied voltage on the motor. Note
that � is measurable via an encoder and it corresponds to the output of the plant. The physical parameters of (49a) have been
estimated based on measurement data collected with a sampling time of ts = 0.01sec and are given in Table 2. By comparing
the simulated response of the nonlinear model (using ode8 in MATLAB with fixed step-size ts) and the real system for a voltage
signal profile that was not used in the estimation data set, we can observe from Figure 4 that (49a) with the estimated parameters
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successfully captures the physical dynamics with a best fit rate (BFR)7 of 98.0%. Further details of the parameter estimation
and the involved measurement signals can be found in43.
By reformulating (49a) in terms of a SISO NL state-space model (9) with x = [

� !
]⊤ and

f (x) =

[

x2
Mgl
J
sin(x1) −

1
�
x2

]

, g(x) =

[

0
Km

�

]

, ℎ(x) = x1,

we can apply the procedures presented in Section 3 to obtain an LPV model of the system.
In this case, Lgℎ(x) = 0 and LgLfℎ(x) = Km

�
which gives that the relative degree is nr = 2 = nx on ℝ2. Select x0 =

[

0 0
]⊤

and, for the sake of simplicity,Xr = (−�, �)2. Computing (28) gives z = Φ(x) = [

x1 x2
]⊤, which is an analytic diffeomorphism

with Φ†(�) = [

�1 �2
]⊤. Let Y0 = (−�, �), which satisfies Y 20 = Φ(Xr) and set X0 = Φ†(Y 20 ) = Xr . Let U0 be an arbitrary open

subset of ℝ containing 0. The resulting Γnx function, see (30), is given by
Γnx(� ) =

Mgl
J

sin(�1) −
1
�
�2 +

Km

�
�1,

where � = [

�1 �1 �2 �2
]. This function is polynomial with �1(� ) = sin�1

�1
= sinc(�1), and applying Algorithm 1 results in

r1(� ) =
Mgl
J
sinc(�1), r2(� ) = −

1
�
, r3(� ) =

Km

�
,

with s = 0. Hence, choosing p = sinc(y):
�0 ⋄ p =

Mgl
J
p, �1 ⋄ p = −

1
�
, �0 ⋄ p =

Km

�
.

The scheduling region isℙ = �(Y0) = Y0 = (−0.22, 1). The selection of the scheduling signal p = sinc(y), leads to the converted
LPV model (8) with affine static dependency that achieves embedding of the NL behavior into the solution set of the LPV-SS
representation according to Theorem 1. To summarize, the NL system (49a) is embedded in the LPV representation

[

�̇(t)
!̇(t)

]

⏟⏟⏟
ẋ(t)

=

[

0 1
Mgl
J
p(t) − 1

�

]

[

�(t)
!(t)

]

⏟⏟⏟
x(t)

+

[

0
Km

�

]

u(t), (51a)

y(t) =
[

1 0
]

x(t), (51b)
where p(t) = sinc(�(t))withℙ = (−0.22, 1). By comparing the response8 of (51a), displayed in Figure 4, with the measurements
and the simulated response of the NL model, it is apparent that the LPVmodel response is identical to the NL model simulation.
A remaining question to be answered is that the resulting LPV model can be used to obtain a high-performance controller

of the unbalanced disc system. For this purpose, a two degree of freedom control structure with mixed-sensitivity shaping is
considered, depicted in Figure 5, where di is an input disturbance, do an output disturbance and r is the reference trajectory
which act as disturbances to the resulting generalized plant. Furthermore, {ei}2i=1 in terms of tracking error and control input
are the performance channels. The weighting filters are chosen as

Ws(s) =
0.5012s + 2.005
s + 0.02005

, Wu(s) =
s + 40
s + 4000

,

Wdi = 0.5, Wdo =
[

0.1 0
0 0.1

]

.
(52)

Synthesis of an LPV controller by minimizing the 2 gain of the disturbance to performance transfer in the shaped generalized
plant has been solved using polytopic synthesis based on44. The resulting controller achieves an 2 bound of 0.56, i.e., it
successfully realizes the weighting filters encoded performance objectives. Testing the tracking capabilities of the LPV controller
with the NL model (49a) in simulation using a reference signal is displayed in Figure 6. The controller provides a smooth
reference tracking of the NL closed-loop system with a BFR of 81.7%. The controller was also implemented on the real system

7BFR is an error measure used to compare data samples y(k) (N data points) w.r.t. an approximation ŷ(k), e.g., y is the measurement data and ŷ is the response of the
NL/LPV model. The BFR is computed as

BFR(y, ŷ) ∶= max

(

1 −
∑N
k=1(y(k) − ŷ(k))

2

∑N
k=1(y(k) − mean(y))2

, 0

)

. (50)

8As the NL model is unstable, the simulated response of (51a) is based on p computed from the output of the NL simulation model.



20 Hossam S. Abbas ET AL

FIGURE 3 Unbalanced disc system: DC motor connected to a disc with added weight. The overall system functions as a
rotational pendulum.

TABLE 2 Identified parameters of the unbalanced disc system.

g [m/s2] J [kg⋅m2] Km [rad/Vs2] l [m] M [kg] � [1/s]

9.8 2.4 ⋅ 10−4 11 0.041 0.076 0.40

(a) Input signal u (b) Output responses measurement, nonlinear model, LPV model

FIGURE 4 Empirical validation of the identified nonlinear model and the converted LPV model.

and the measured closed-loop response is displayed in Figure 6. The achieved tracking performance9 in terms of BRF is 82.0%.
This proves that the proposed LPV modeling method can be successfully applied to design an LPV controller for a nonlinear
system with desired stability and performance guarantees.

5.5 Distillation column system
As a final example, we show how higher order derivatives of measured output signals involved in the scheduling map can be
handled in the implementation of LPV controllers designed based on our LPV model conversion method. Consider the NL first
principles-based model of a 4-stage binary distillation column as described in details in45. Distillation columns are commonly
used in the chemical industry for component separation of liquid mixtures based on the differences in the volatility (i.e., boiling
point) of the components. The output of the system considered here is the mole fraction of the most volatile component of the

9The performance increase w.r.t. to the simulation is due to the inaccuracy of the identified NL model and in other applications such inaccuracies can result in
performance decrease as with any other model based approach.
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FIGURE 5 Two degree of freedom control structure with mixed-sensitivity shaping for controller synthesis with the LPVmodel
of the unbalanced disc system.

(a) Input signal u (b) Output signal y

(c) Scheduling varaible p (d) Zoomed-in response of y

FIGURE 6 Closed-loop response with the LPV controller: experiment, simulation, reference.

distillate product and the input is the inflow rate of the liquid to be separated. The model is represented by (9) with

f (x) = 1
M

⎡
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⎢

⎣
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⎢
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⎣
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0

⎤

⎥

⎥

⎥

⎥

⎦

, ℎ(x) = x4. (53)

corresponding to nx = 4 and �(xi) defined as
�(xi) =

�xi
(� − 1)xi + 1

, i = 1, 2, 3, 4,

where each xi stands for the mole fraction of the most volatile component (light component) in the liquid phase on tray i. The
values of the physical/chemical parameters in (53) are given in Table 3 with � = 1.2. The system has a relative degree nr = 2 < nx
for all x ∈ X4. Therefore, the LPV conversion can be performed by the method introduced in Section 3. Note that the method of
Section 4 is infeasible in a realistic application of a distillation column, as the states represent concentration levels of the liquid
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phase on each tray which are impossible to be accurately measured online. Hence, the procedure of Section 3 is applied. The
map Φ of the form (34), its inverse Φ† and the sets X0,U0,Y0 have been computed according to Lemma 2, and used to compute
Γnx . The latter is used to transform the original NL model to the LPV model in the form (8) by factorizing the term Γnx using
Algorithm 1. The resulting scheduling dependence is a 3rd-order dynamic dependence on p = [

y u
]⊤. The exact forms of the

resulting Γnx and the factorized coefficients are not given here due to the lack of space.
Next, we validate the applicability of LPV control based on the obtained equivalent LPV representation when noisy output

measurements are considered. To provide a realistic control scenario that respects the involved constraints of the system, we
apply an LPV model predictive control (MPC)46 method. MPC algorithms compute an optimal control input at each discrete
time instant k by solving an optimization problem based on a prediction model of the process and a cost function characterizing
the performance goal (e.g., reference tracking). For this purpose, an accurate model of the process is crucial for the success of
such a control methodology. The main advantage of the LPV formulation of the MPC problem is that in general it offers convex
optimization based solution by trading off performance due to conservatism of the prediction model.
Based on the derived LPV representation of (53), we can use directly the converted state in the MPC problem, which is

composed of the output of the system and its derivatives up to 3rd-order. However, the challenge here is that we need the
derivatives of the output (up to order 3), which can be obtained by numerical differentiation and hence the measurement noise
can be significantly amplified, affecting the overall performance of the closed-loop system. We also use this converted state
and the input together with its derivatives up to order 2 to compute the scheduling variable p, which is used to update the
parameter-dependent system matrices of the prediction model at every sampling time. The exact implementation is explained
later.
The optimization problem of the MPC considered here is formulated as follows

min
Δu(0|k),Δu(1|k),⋯,Δu(N|k)

N
∑

i=0
(r(i|k) − y(i|k))⊤Q(r(i|k) − y(i|k)) + Δu⊤(i|k)RΔu(i|k) (54a)

s.t. Δumin ≤ Δu(i|k) ≤ Δumax, (54b)
umin ≤ u(i|k) ≤ umax, (54c)
ymin ≤ y(i|k) ≤ ymax, (54d)

i = 0, 1,⋯ , N , where the argument i|k indicates prediction step i at instant k, r is the reference trajectory, Δu represents the
rate of change of u,N is the prediction horizon andQ ≥ 0,R > 0 are tuning matrices. The decision variable of the optimization
problem (54) is Δu, and hence, we can achieve offset-free control. In order to realize such an MPC scheme, we discretized the
obtained continuous-time LPV model using the Euler’s forward method, considered Δu as the rate of change of the reflux, and
as an output y the purity of the top product was used. For constraints, we considered [Δumin, Δumax] = [−436.25, +436.25],
[umin, umax] = [1175, 9900] kmol/min, and [ymin, ymax] = [0.85, 0.99] for Δu, u, y, respectively. The prediction horizon of the
MPC has been taken as N = 15, and we consider the weights of the output and the input in the MPC cost function, which is
quadratic, asQ = 107 andR = 10−5, respectively. TheMPC online optimization problem (54) is cast as a quadratic programming
problem.
The performance of the closed-loop system with the LPV MPC has been evaluated with −3% change in the set point of y, at

the sampling instant k = 334 followed by +1.5% change in the set point at k = 668 as shown in Fig. 7. At the same time, we
have applied three changes of the feed flow rate F as input disturbances: a −20% decrease at k = 167, again a −20% decrease at
k = 501 and a +40% increase at k = 835. Such scenario of operation is similar to what was discussed in47. For comparison, we
carried out the simulation for two cases, with noisy and noise-free output. In case of the noisy output, a signal-to-noise ratio of
29.5 dB has been considered with additive white Gaussian measurement noise. To reduce the noise effects in the numerically
differentiated signals, which include d

dt
y, d2

dt2
y and d3

dt3
y, we used moving average filters of order 10, 2 and 2, respectively. The

orders were chosen to find a suitable trade-off between noise filtering, truncation of the frequency content and introduced phase
lag. The output derivatives are recursively filtered and used to construct the model represented state variables at every sample.
They are used also together with the input and its derivatives d

dt
u and d2

dt2
u to compute p and hence to update the LPV model

matrices during the MPC implementation.
Based on the above discussed discrete-time implementation of the MPC controller, the closed-loop system has been simulated

with the plant dynamics taken as the continuous-time NLmodel in (53) with synchronized ZOH actuation and sampling. Figures
7a-d show the closed-loop performance with and without output measurement noise. Generally, the effect of the noise increases
the fluctuation of the applied u and slightly y; however, the tracking capability is still comparable to the case of noise-free y.
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TABLE 3 Physical parameters of the distillation column system.

M [kmol] zF [mole frac.] F [kmol/min] qF V [kmol/min]

30 0.65 215 1.0 1800

In both cases, the desired set points of the output are reached within less than 50 samples with almost no overshoot and no
steady-state error. The disturbance effects are successfully rejected in both cases by the MPC design. The filtered derivatives
of the output y, which are used as scheduling signals for updating the distillation column prediction model during the MPC
implementation, are shown in Fig. 8a-c.

Finally, to measure numerically the effects of the noise on the control performance, the mean square tracking errors with
and without measurement noise were calculated to be 1.47 × 10−5 and 1.40 × 10−5, respectively. The quadratic cost of the
MPC optimization can be seen as a performance measure, for which the average cost with and without measurement noise was
2.37 × 103 and 1.934 × 103, respectively. It is larger for the noisy case by a factor of 1.22, which indicates that the loss of
performance was not significant due to the measurement noise. Finally, we repeated the simulation with lower values of signal-
to-noise ratio (SNR) but with the same tuning parameters Q,R,N and filters as above and with the same seed settings for the
noise generator. For an SNR of 23.5 dB, the mean square tracking error and the average cost were 1.63 × 10−5 and 3.42 × 103,
respectively, which still indicate reasonable performance; however, below that value of SNR, it was necessary to tune Q,R,N ,
to avoid infeasibility of the MPC optimization problem.
In summary, this example demonstrates that reasonable closed-loop performance can be achieved with the proposed

method using high-order output derivatives with noisy measurements in the scheduling map without the need of direct state
measurements or nonlinear observers designed for the process.

6 CONCLUSIONS AND FUTUREWORKS

In this paper, a systematic and automated approach has been introduced to synthesize LPV state-space representations of non-
linear systems via the idea of multi-path feedback linearization. The main advantage of the proposed approach is its ability
to synthesize the model with minimal scheduling dependency where the scheduling map is based on only measurable input-
output signals of the original system. This ensures implementability and minimized conservativeness of the LPV embedding.
However, as demonstrated by the procedure, this often results in dynamic dependency over these signals. To avoid dynamic
dependency especially over input variables, a modified version of the approach is presented that substitutes those dependencies
with dependency relation on only part of the state variables of the original nonlinear representation.
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