Supplementary Information

Doping Effect the Structure and Properties of on **Eight-Electron Silver Nanoclusters**

Yu-Jie Zhong,^a Jian-Hong Liao,^a Tzu-Hao Chiu,^a Franck Gam,^b Samia Kahlal,^b Jean-Yves Saillard,*^b C. W. Liu*^a

^a Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan (Republic of China). E-mail: chenwei@mail.ndhu.edu.tw; http://faculty.ndhu.edu.tw/~cwl/index.htm

^b Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.

FIG. S1. The ${}^{31}P{}^{1}H$ NMR (CDCl₃) spectrum of **1**.

FIG. S5. The ¹H NMR (CDCl₃) spectrum of **2**.

FIG. S7. ESI-MS spectrum of **2**. The distribution of molecular ion peaks is corresponding to $[Cu_xAg_{21-x}{S_2P(O^iPr)_2}_{12}]^+$ (x = 0-6).

FIG. S8. ESI-MS spectrum of **3**. The distribution of molecular ion peaks is corresponding to $[Cu_xAuAg_{20-x}{S_2P(O^iPr)_2}_{12}]^+$ (x = 0-7).

FIG. S9. The absorption spectra of **2** in powder (ref line), crystal (blue line), and $[Ag_{21}{S_2P(O^iPr)_2}_{12}]^+$ (black line) in 2-MeTHF.

FIG. S10. The absorption spectrum of 1 (red line) and 2 (black line) in 2-MeTHF.

FIG. S11. The TD-DFT-simulated absorption spectra of a selection of positional isomers of **1a**' (see main text).

FIG. S12. The TD-DFT-simulated absorption spectra of a selection of positional isomers of **1b**' (see main text).

FIG. S13. The TD-DFT-simulated absorption spectra of a selection of positional isomers of **2'** (see main text).

FIG. S14. The TD-DFT-simulated absorption spectra of a selection of positional isomers of **3'** (see main text).

FIG. S15. Frontier Kohn-Sham MO diagram of the homometallic $[Ag_{21}(S_2PH_2)_{12}]^+$ model of C_3 symmetry. The MO localizations are given in % as $Ag_{13}(icosahedron)/Ag_8(caps)/ligands$.

M_{20} nanoclusters	UV-vis
	$(\lambda, nm; \varepsilon, M^{-1}cm^{-1})$
$\begin{bmatrix} \mathbf{A} \\ \mathbf{a} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{a} \end{bmatrix}$	354 (4400), 422 (7700),
$[Ag_{20}\{S_2P(OPf)_2\}_{12}]$	473 (3300)
$[Cu_xAg_{20-x}{S_2P(O^iPr)_2}_{12}]$ (1, powder)	354 (4000), 422 (6100),
	473 (2600)
$[Cu_{3}Ag_{17}\{S_{2}P(O^{i}Pr)_{2}\}_{12}]_{0.5}[Cu_{4}Ag_{16}\{S_{2}P(O^{i}Pr)_{2}\}_{12}]_{0.5}$	355 (4000), 422 (6100),
([1a] _{0.5} [1b] _{0.5} , crystal)	473 (2600)
M ₂₁ nanoclusters	
$[A = (S P(O^{i}P))] PE^{[b]}$	385 (4900), 428 (6900),
$[Ag_{21}{S_2P(OPr)_2}_{12}]PF_6$	480 (3000)
$[Cu_xAg_{21-x}{S_2P(O^iPr)_2}_{12}]PF_6$ (2 , powder)	382 (3900), 422 (5600),
	480 (2400)
$[Cu_4Ag_{17}{S_2P(O^iPr)_2}_{12}]PF_6$ (2, crystal)	382 (3900), 422 (5600),
	480 (2400)
$[A = O_{12} A_{13} = \{ (C P_{12} O_{13}^{\dagger} P_{13}) \} = [P P_{13} O_{13}^{\dagger} P_{13}] $	373 (4100), 413 (4700),
$[AuCu_{x}Ag_{20-x}{S_{2}P(OPT)_{2}}_{12}]PF_{6}(3)$	464 (2100)
^[a] Chem Eur I 22 9943-9947 (2016) ^[b] Angew	Chem Int Ed 54 3702-370

TABLE SI. UV-vis absorption data of M_{20} and M_{21} nanoclusters.

^[a] Chem. Eur. J. **22**, 9943-9947 (2016). ^[b] Angew. Chem. Int. Ed. **54**, 3702-3706 (2015).

Table BH. Beleeted erysta		
Compound	$\label{eq:cu_3Ag_{17}} \begin{split} & [Cu_3Ag_{17}\{S_2P(O^iPr)_2\}_{12}]_{0.5}\text{-}[\\ & Cu_4Ag_{16}\{S_2P(O^iPr)_2\}_{12}]_{0.5}\\ & [\textbf{1a}]_{0.5}[\textbf{1b}]_{0.5} \end{split}$	$[Cu_{4}Ag_{17} \{S_{2}P(O^{i}Pr)_{2}\}_{12}]$ PF ₆ (2)
CCDC Number	2073787	2057371
Chemical formula	$C_{144}H_{336}Ag_{33}Cu_7O_{48}P_{24}S_{48}$	$\begin{array}{c} C_{72}H_{168}Ag_{17}Cu_{4}F_{6}O_{24}P_{13}\\ S_{24} \end{array}$
Formula weight	9122.76	4792.05
Wavelength, Å	0.71073	0.71073
Crystal System	Monoclinic	Monoclinic
Space group	$P2_{1}/n$	<i>P</i> 2 ₁ /n
a, Å	16.7730(18)	16.8518(4)
b, Å	30.745(3)	30.8520(7)
c , Å	29.873(3)	30.5757(7)
α, deg.	90	90
β, deg.	94.371(2)	97.1300(7)
γ, deg.	90	90
V, Å ³	15360(3)	15773.7(6)
Z	4	4
Temperature, K	100(2)	150(2)
$\rho_{calcd}, g/cm^3$	1.972	2.018
μ , mm ⁻¹	3.023	3.088
θ_{max} , deg.	25.165	24.999
Completeness, %	99.3	99.9
Reflection collected /	80382 / 27352	93791 / 27744
unique	$[R_{\rm int} = 0.0698]$	$[R_{\rm int} = 0.0471]$
Restraints / parameters	432/141/	529/1516
^a $R1$, ^b $wR2$ [I > 2 σ (I)]	0.0668, 0.1310	0.0504, 0.1202
$^{a}R1$, $^{b}wR2$ (all data)	0.0907, 0.1413	0.0739, 0.1345
GOF	1.127	1.087
Largest diff. peak and hole, $e/Å^3$	1.780 and -1.623	2.419 and -0.982
^a R1 = $\Sigma \mid F_o \mid - \mid Fc$	$ /\Sigma F_o . b wR2 = \{\Sigma[w(F)]\}$	$v_o^2 - F_c^2)^2]/\Sigma[w(F_o^2)^2]\}^{1/2}.$

Table SII. Selected crystallographic data of $[1a]_{0.5}[1b]_{0.5}$ and 2.