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Abstract :   
 
Climate change is already known to cause irreversible impacts on ecosystems that are difficult to 
accurately predict due to the multiple scales at which it will interact. Predictions at the community level 
are mainly focused on the future distribution of marine species biomass using ecological niche modelling, 
which requires extensive efforts concerning the effects that trophic interactions could have on the realized 
species dynamics. In this study, a set of species distribution models predictions were used to force the 

spatially‐explicit trophic model Ecospace in order to evaluate the potentials impacts that two 2,100 climate 
scenarios, RCP2.6 and RCP8.5, could have on a highly exploited ecosystem, the Bay of Seine (France). 
Simulations demonstrated that both scenarios would influence the community of the Bay of Seine 
ecosystem: as expected, more intense changes were predicted with the extreme scenario RCP8.5 than 
with the RCP2.6 scenario. Under both scenarios, a majority of species underwent a decrease of biomass, 
although some increased. However, in both cases the stability of the majority of species dynamics was 
lowered, the sustainability of the fishery. Differences between niche modelling predictions and those 
obtained through the forcing in Ecospace highlighted the paramount importance of considering trophic 
interactions in climate change simulations. These results illustrate the requirement of multiplying novel 
approaches for efficiently forecasting potential impacts of climate change. 
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1. Introduction 

Climate change is now recognized as a threat to the future constitution of marine ecosystems. In 

the long term its multiple effects are expected to negatively influence biodiversity and ecosystem 

structure (García Molinos et al., 2016; Wernberg et al., 2016; Poloczanska et al., 2016). Through 

ocean warming, ocean acidification and oxygen depletion, its consequences are known to 

influence a multitude of ecosystem services, including fishing provisioning and economic stability 

(Barange et al., 2014; Weatherdon et al., 2016; Pecl et al., 2017). Therefore, climate change is 

now increasingly considered in scientific publications concerning marine ecosystems (Haunschild 

et al., 2016). 

Different scenarios exist at the global scale, for example Representative Concentration Pathways 

(RCP; Moss et al., 2008; Meinshausen et al., 2011) ranging from a drastic reduction in greenhouse 

gas emissions resulting in limited change in  marine systems (i.e. RCP2.6), to business-as-usual 

emissions resulting in a strong changes in marine systems, such as an increase of several degrees 

of the average water temperature (i.e. RCP8.5). 

The impact of climate change is expected to act at different hierarchical levels of biological 

organization: organism, population, community and whole ecosystem (Ainsworth et al., 2011; Le 

Quesne and Pinnegar, 2012; Koenigstein et al., 2016). It is difficult to predict what the 

consequences of all these will be together, considering the few empirical evidences there has been, 

and the fact that the initial structure of each ecosystem will influence the aftermath.  

Although a few empirical observations of climate change currently exist, ecological models at 

these different hierarchical levels can be used to more competently forecast the multiple 

consequences of climate change on marine ecosystems under different scenarios (Hollowed et al., 

2009; Stock et al., 2011; Koenigstein et al., 2016). At the species level, climate change effects are 

often evaluated as predicted distributional shifts, which in turn are estimated as changes in climatic 
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suitability as predicted by ecological niche models, also known as species distribution models 

(sensu Hutchinson, 1957; e.g. Cheung et al., 2008, 2009; Hattab et al., 2014). These models 

(hereafter called SDMs) are assume that species will follow the best abiotic ecological niche for 

themselves, as estimated by abiotic variables such as temperature, salinity or oxygen availability. 

However, species distributions, especially for higher trophic levels, are also shaped by biotic 

interactions such as predator or prey distribution (Guisan and Thuiller, 2005; Wisz et al., 2013, 

Araújo and Rozenfeld, 2014). Thus, SDMs neglect the interplay between climate change and 

trophic relationships or represent them with simplistic assumptions such as allometric 

relationships (e.g. Hattab et al., 2016), which in turn can result in a trophic cascade for ecosystem 

functioning (e.g. Johnson et al., 2011; Luczak et al., 2011; Dalpadado et al., 2012). Contrariwise, 

models that include trophic relationships in a climate change context rarely consider the 

spatialization of the individuals, and if they do, it is with a limited amount of species (e.g. Bulman 

et al., 2006; Field et al., 2006; Cornwall and Eddy, 2015; Chaalali et al., 2016). Therefore, 

integrating both spatially-explicit climate change predictions on species distributions with trophic 

relationships represents a major step forward to assess the potential impacts of climate change on 

entire ecosystems. 

In this study, we aim at implementing such an integrated assessment by combining local-scale 

SDMs of fish with a trophic model for a case study in the French Bay of Seine, which is considered 

to be one of the most anthropized ecosystems in the world with high marine exploitation (Halpern 

et al., 2008; Carpentier et al., 2009; Dauvin, 2012). Specifically, we use SDMs to predict future 

potential fish distributions in 2100 under different climate change scenarios (i.e. RCP2.6 and 

RCP8.5). These predictions are then used as forcing for a trophodynamic model, Ecospace 

(Walters et al., 1999; Christensen et al., 2014), in order to investigate the interplay between 

climate change impacts on species distributions and changes in the trophic food web. 



3 
 

Subsequently, we explore the consequences of the predicted changes in ecosystem functioning for 

human resource exploitation. Finally, we evaluate the usefulness of such an integrative framework 

for the forecasting of climate change consequences on marine ecosystems.  

 

2. Material and methods 

2.1. Bay of Seine  

The Bay of Seine is a shallow coastal area situated in the Eastern English Channel along the 

French coast and delimited between 49° 25’ N and 50° 3’ N latitudes, and 1° 3’ W and 0° 2’ E 

longitudes. It forms an approximate quadrilateral area of 5000 km2, with a mean depth of about 

30m. It is an area of high human exploitation, including different fisheries such as netters targeting 

sole (Solea solea) and cod (Gadus morhua), beam trawlers targeting sole, bottom otter trawlers 

targeting cephalopods, cod or whiting (Merlangius merlangus), pelagic trawlers targeting 

european pilchard (Sardina pilchardus), black seabream (Spondyliosoma cantharus) or european 

seabass (Dicentrarchus labrax), and finally dredgers catching king scallop (Pecten maximus), one 

of the most valued fisheries for French and English fishers in the Eastern English Channel. Among 

the other species harvested, sole and cod are among the most targeted species. In addition to 

fisheries, the Bay of Seine is also subjected to multiple anthropogenic perturbations such as 

pollution, transports, sediment dredging and deposition (Dauvin, 2015) as well as offshore 

windfarm (OWF) projects (Raoux et al., 2017; 2019). Temperature-induced changes were 

observed though the distribution of benthic invertebrates during the last decades (Gaudin et al., 

2018), while projections indicated a reduction of suitable habitat in the area for some of them, 

even leading to local disappearances (Rombouts et al., 2011). 

 

2.2. Ecospace model of the Bay of Seine 
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All simulations were based on the model developed by Halouani et al. (2020). This model was 

originally intended to evaluate the potential spillover effect of an OWF in the Bay of Seine 

ecosystem. To address this question, simulations were conducted through “what if scenarios” 

evaluation to assess the effectiveness of an exclusion zone inside and bordering the OWF. These 

scenarios were simulated using a spatio-temporally dynamic Ecospace model, which inherited all 

the key elements of Ecopath and Ecosim of Bay of Seine (Halouani et al., 2020). 

The original Ecopath model comprised 40 trophic groups including plankton, fish, invertebrates, 

marine mammals and birds (a full description of the model can be found in Halouani et al., 2020; 

Figures S1-4, Tables S1-7). In addition, two other non-living compartments were included: 

discards and detritus, as well as six different fishing fleets (nets targeting demersals and 

crustaceans, pelagic and bottom trawls targeting small pelagics, bottom trawls targeting demersals 

and cephalopods, pelagic trawls targeting demersals, dredge and other fishing gears). 

The Ecopath model is based on the two following mass-balance equations (Christensen and Pauly, 

1992): 

Production = Predation mortality + Catches + Net migration + Biomass accumulation + Other 

mortality  (1) 

And for each compartment: 

Consumption = Production + Respiration + Unassimilated food  (2) 

The Ecosim model was calibrated over 16 years from 2000 to 2015 (Halouani et al., 2020). 

In Ecosim, the dynamics of the different species are obtained by resolving differential equations 

modelling the biomass evolution of the different trophic groups using the foraging arena theory. 

The biomass Bi of a trophic group i evolve using the following formula (Walters et al., 1997): 

𝑑𝐵𝑖

𝑑𝑡
= 𝑔𝑖 ∑ 𝑄𝑗𝑖 − ∑ 𝑄𝑖𝑗𝑗𝑗 + 𝐼𝑖 − (𝑀0𝑖 + 𝐹𝑖 + 𝑒𝑖)𝐵𝑖  (3) 
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Where gi is the net growth efficiency, Qji is the consumption rate of the group i, Qij the cumulated 

predation undergone by i, Ii the immigration rate, M0i the non-predation natural mortality, Fi the 

fishing mortality and ei the emigration rate. 

Ecospace is the spatio-temporal dynamic module of EwE software (Walters et al., 1999). In 

Ecospace, the same Ecopath and Ecosim differential equations are used in each of the spatial grid 

cells of the model. In addition, Ecospace has the ability to distribute the biomass of the trophic 

groups among each grid cell following the interest they have for adjacent cells. This Ecospace 

feature requires adding a base dispersal rate to the groups. Fisheries are driven by a gravity model, 

where the fishing effort allocated in each cell is proportional to the sum over groups of biomass x 

catchability x price of target groups, taking into account the accessibility of areas for fishing 

activities and the distance between port and fishing ground. 

In the original Ecospace model, the Bay of Seine was divided in a grid of 70 rows and 101 

columns, each cell being a square of 0.015° x 0.015°. The spatial distributions of the trophic 

groups were driven by sediment type for benthos and depth for the others. 

Two major changes were made to the original model presented in Halouani et al. (2020). First, 

we modified the base dispersal rates according to literature to stabilize the long-term Ecospace 

simulations, according to the environment and speed of species/groups obtained in fishbase 

(detailed in Table S8). Second, we modified the vulnerability for the predator group ‘Fish poor 

cod’ on all its prey because its calibrated value was 786.1 (unitless), which is far above the other 

high trophic levels groups’ vulnerabilities, which was creating extreme fluctuations of biomass in 

the simulations. Thus, we set it to 2, the original vulnerability value. We compared the change it 

induced for the fit to time series with the initial fit and it was negligible (sum of squares of 125.605 

compared to the previous value of 125.731, starting from an initial value of 5537.832 for default 
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vulnerabilities), indicating its low importance for the global fit to the time series and thus the 

lower confidence for its initial value. 

Prebalancing analysis (PREBAL; Link, 2010; Darwall et al., 2010; Lassalle et al., 2014, Bentley 

et al., 2018) were done and didn’t demonstrate any major impediment (Table S11, Figures S5-7). 

 

2.3. Species distribution models and climate scenarios 

Based on the same approach described by Ben Rais Lasram et al. (2020), maps of suitability index 

were created for 28 of the groups modeled in Ecospace. This was achieved through the coupling 

of climate projections, derived from three general circulation models, and habitat modelling, with 

a hierarchical approach where bioclimatic envelop modelling was acting as a first filter and the 

habitat as a second one, with species occurrences obtained from 5 global biogeographic databases. 

Maps were modeled for a total of 44 species (Table 1). To decide which species distribution could 

be determined by ecological niche models, a criterion of 300 occurrences on the Atlantic coast 

and 100 occurrences in the English Channel had to be met. Lower trophic level groups, as well as 

birds and marine mammals were excluded from the approach as they cannot be modelled like fish 

and invertebrates in respect of their adaptation to new conditions. Pelagic and benthopelagic 

species were modelled using only bioclimatic envelope models while benthic and demersal 

species were modelled using bioclimatic envelope models filtered by habitat models (Table 1).  

The baseline scenario we used was based on the current species distributions, while we developed 

Representative Concentration Pathways (RCPs) scenarios to project potential future species 

distributions. While other RCP scenarios (RCP4.5 and RCP6) exist, only RCP2.6 and RCP8.5 

were tested because they represent the two extremes of the possible changes in future 

anthropogenic greenhouse gas emissions and should provide the thresholds of plausible ecosystem 

evolution. 
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The habitat modelling concerned 30 species among the 44 modeled ones: benthic invertebrates 

and fish, as well as demersal fish known to be highly influenced by habitat type. Five habitat 

parameters were used to predict the suitability index of the species: bathymetry, slope, northness, 

eastness and seafloor type (i.e. coarse sediment, fine mud, fine sand, mud, muddy sand, rock, sand, 

sandy mud, sediment). We refer readers to Ben Rais Lasram et al. (2020) for full methodological 

details. 

 

2.4. Forcing species spatial distributions in Ecospace 

We used the species spatial distributions obtained from niche modelling as two different levers in 

Ecospace simulations: i) as a proxy of the relative change in biomass and ii) as a representation 

of the new habitat capacities (i.e. the individual responses of functional groups to environmental 

conditions; Christensen et al., 2014) for the different trophic groups. 

The model selection procedure used by Ben Rais Lasram et al. (2020) allowed us to model 

distributions with at least two techniques for most species, with a few exceptions (i.e. climate 

model for Pecten maximus, Sagartia troglodytes, Owenia fusiformis and Dicentrarchus labrax; 

Habitat model for Sagartia troglodytes and Raja clavata). Furthermore, some species didn’t have 

any retained habitat model (Callionymus lyra, Chelidonichthys lucerna, Dicentrarchus labrax, 

Glycymeris glycymeris, Mullus surmuletus, Scyliorhinus canicula, Solea solea, Spondyliosoma 

cantharus). Thus, when different selected models gave different predictions, it was necessary to 

consider this variability, and not only limit the choice to an average value. For each species, one 

random choice was made among the different predicted suitability index predictions for the 

climate model and habitat model, for where it exists. A total of 25 simulations were executed to 

consider the variability in the niche models predictions: this number was restricted due to i) the 

excess amount of time necessary to load time series and maps before running the scenarios, and 
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run the scenarios, and to ii) the space available to store the outputs. Before each of the 25 

simulations, the new suitability indices were implemented for all concerned species. 

We divided the 44 modelled species into 28 trophic groups of the EwE model (Table 1). Trophic 

groups in EwE could be composed by several species, and we used a weighted mean to create a 

trophic group map, Map, of suitability index per Ecospace grid cell for the different species, s: 

𝑀𝑎𝑝𝑡𝑟𝑜𝑝ℎ𝑖𝑐 𝑔𝑟𝑜𝑢𝑝 =
∑ (𝑀𝑎𝑝𝑠×𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑠)𝑠

∑ 𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑠𝑠
        (4) 

Where the biomass is the simulation value obtained from SDMs in the scenario.  

In the baseline scenario, the value was obtained from the Ecopath model. When we simulated a 

climate change scenario, the biomass was obtained by computing the change in the global 

suitability index created by the new scenario on the climate filter. This new suitability index could 

in theory become 0 in the entire Bay of Seine for some scenarios. Following Chaalali et al. (2016), 

the change between the sum of suitability index, SuitInd, in an RCP scenario, scenario, and in the 

current situation scenario, current, was considered as a change in biomass. We did this for each 

area, area, and species, s, constituting Maps:  

𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑠,𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = 𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑠,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 × 
∑ 𝑆𝑢𝑖𝑡𝐼𝑛𝑑𝑠,𝑎𝑟𝑒𝑎,𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑎𝑟𝑒𝑎

∑ 𝑆𝑢𝑖𝑡𝐼𝑛𝑑𝑠,𝑎𝑟𝑒𝑎,𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑎𝑟𝑒𝑎
      (5) 

The new biomass of the species was subsequently computed using its initial Ecopath biomass as 

base value. The new biomass of the trophic group was then obtained by summing the biomasses 

of the species composing it. For the species that we did not have niche models for, we assumed 

that they followed the same distribution as the rest of the group. To mimic the increase or decrease 

of the trophic group biomasses in Ecospace, we finally used this predicted biomass to force only 

the first year of time series in each simulation, letting the unconstrained biomasses evolve through 

the following years. The forcing of biomasses in Ecospace using Ecosim time series were done 

using the EwE version 6.6.15215.0. 
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In addition to biomass changes, we computed new habitat capacities for each trophic group 

concerned. In Ecospace the initial spatial distributions of trophic groups and vulnerable prey 

densities are driven by the habitat capacities, while search rates and potentially vulnerabilities are 

corrected according to their values (Christensen et al., 2014). Habitat capacities are thus the 

strongest driver for trophic group distributions, along with trophic interactions. 

The habitat capacity maps were changed according to the new parameters derived from each of 

the suitability index predictions. For each species represented by environmental preference maps, 

we chose to not drive them by other environmental or habitat parameters from the original model 

because all the main abiotic parameters are gathered within each environmental preference map, 

and thus weight the quality of the habitat for that species. 

The simplified methodology of forcing species distributions in Ecospace is presented in the Figure 

1. 

Considering that the increase or decrease of trophic groups biomasses are predicted without 

trophic interactions in the niche models, and that the moving processes would be somehow 

progressive, a period of ‘spin-up’ had to be included in our simulation to consider the fact that 

some species could not reach or could exceed their abundance predictions with the trophic 

dynamics. After 25 years of spin-up, the evolution of the ecosystem was recorded for the next 50 

years, the period that we speculate can reflect the state of the ecosystem under a particular climate 

scenario, to consider the large fluctuations of biomass that the trophic groups undergo. 

 

2.5. Evaluation of climate scenarios with multiple indicators 

To evaluate the impact of climate change on the Bay of Seine ecosystem, different indicators were 

observed at different levels. In order to observe only the impact, 𝛾, of a climate scenario, RCP, on 
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the chosen indicators, Indic, and not their raw values, δ, relative impacts compared to the current 

climate scenario, current, were computed: 

𝛾𝐼𝑛𝑑𝑖𝑐𝑅𝐶𝑃
=  

𝛿𝐼𝑛𝑑𝑖𝑐𝑅𝐶𝑃
−𝛿𝐼𝑛𝑑𝑖𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝛿𝐼𝑛𝑑𝑖𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡

  (6) 

On the trophic group scale, the average biomass, the standard deviation of the biomass and the 

fishing mortality per trophic group were evaluated. At the community scale, mean values of Mean 

Trophic Level (MTL; Pauly et al., 1998), High Trophic level Indicator (HTI), representing the 

proportion of biomass of predators with a trophic level higher or equal to 4 (Bourdaud et al., 

2016), and total biomass were assessed. Finally, at fleet scale, the average volume, standard 

deviation of volume, average income per volume, and standard deviation of income per volume 

yielded were computed (the selling prices of the different groups are detailed in Table S9).  

We hypothesized that the average biomass recorded during the last 50 years of simulations should 

be different from the initial value estimated from niche modelling, due to the effect of trophic 

interactions occurring in Ecospace. Comparisons of initial biomasses and simulated average 

biomasses were thus made to quantify the trophic interactions effect. This was accomplished by 

plotting relative initial and average biomasses on two axes: the first one on the x axis representing 

the value of the initial biomass, I (for Initial), of a trophic group with a climate scenario, RCP, 

relative to its initial value with the current situation, current: (Ii,RCP - Ii,current) / Ii,current, and the 

second one on the y axis representing the value of the average biomass A (for Average) of a trophic 

group with a climate scenario relatively to its initial value with the current situation: (Ai,RCP - 

Ii,current) / Ii,current. 

This choice was oriented partly to avoid the overweighting of average biomasses compared to 

very low initial values, and to permit classifying the different groups into six discrete categories 

using ‘+’ and ‘-‘ symbols, ‘--' being negative and lower than ‘-’, itself lower than the positive 
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values ‘+’ and the maximum value ‘++’, in comparison to the initial biomass in the ‘current’ 

scenario (Table 2). 

 

3. Results 

Climate change predicted impacts were observed on two major levels, the biological component 

and the human exploitation component. Comparisons of the two RCP scenarios in this study, in 

terms of influence on these two major levels, are represented simultaneously, except where 

specified otherwise. 

 

3.1. Biological impacts of the RCP scenarios 

With the RCP2.6 conditions, 16 of the 40 trophic groups in EwE were predicted to suffer from a 

significant average biomass loss compared to the current climate scenario, while 12 were predicted 

to have a significant biomass increase, leaving 12 groups with minimal biomass changes (Figure 

2). When simulating RCP8.5 conditions, the forecasted impact was more negative overall, with 

20 groups having a significant biomass decrease, while 13 groups increased in biomass, leaving 

only 7 groups with minimal biomass changes. It is noteworthy that for the majority of trophic 

groups, the relative biomass with the RCP8.5 scenario represents an accentuated trend of the 

RCP2.6 evolution, either being negative or positive to the group. 

When observing the forecasted variations around the average biomass with standard deviation 

values, only 5 and 6 different groups had significant reduced biomass variability in the RCP2.6 

and RCP8.5 scenarios respectively, while 17 and 30 groups had a significant variability increase, 

leaving 18 and 4 groups within each scenario respectively with a comparable variability (Figure 

3). Despite that more groups were predicted to have a significant biomass increase with the 

RCP8.5 scenario, the trends in biomass change compared to the current situation scenario were 
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similar to the average biomass trends observed from the RCP2.6 scenario. However, groups such 

as fish benthos feeders, sprat, poor cod and pouting showed a ten-fold variability increase between 

the current and RCP8.5 scenario. 

All three community indicators demonstrated differences between scenarios. Stronger trends were 

observed in the RCP8.5 scenario than the RCP2.6 scenario. A decrease of the MTL was predicted 

in both RCP scenarios, however the predicted decrease of MTL was greater in the RCP8.5 

scenario than in the RCP2.6 scenario: the highest decline of MTL predicted in RCP2.6 was around 

-2%, while predicted MTL decrease fell below this value in RCP8.5, especially in the Northwest 

with almost a -6% reduction (Figure 4a). In both RCP scenarios, a HTI decline was forecasted 

mostly in Northwest and Southeast, with predicted HTI decline around -25% in these areas in 

RCP2.6, and below -75% in these two areas in RCP8.5 (Figure 4b). Few changes in total biomass 

were predicted in RCP2.6 (mostly less than 5% increase), but biomass increased up to 15-20%, 

mostly in the Northern part of the Bay of Seine (Figure 4c). The indicators gathered here 

determined a global change in the Bay of Seine ecosystem towards a low trophic level-dominated 

situation following increasing warming conditions. 

 

3.2. Fisheries impacts of the RCP scenarios  

In the RCP2.6 scenario, three of the models predicted that fisheries would catch more in terms of 

income, two remained stable and dredge caught substantially less scallops (Table 3). In the 

RCP8.5 scenario, only the dredge was predicted to catch less than with the current climate in terms 

of income, while all other fleets caught more in most of the simulations, with rare losses for nets 

targeting demersals and crustaceans and pelagic trawls targeting demersals in some simulations. 

Additionally, fleets in RCP8.5 were predicted to catch more than in RCP2.6, except for nets 

targeting demersals and crustaceans. 



13 
 

The forecasting of income per volume was on average below the 5% change for five of the six 

fisheries modeled in the RCP2.6 scenario in comparison to the current situation, with only the 

bottom trawls targeting demersals and cephalopods slightly above 5% (Table 3). While in the 

RCP8.5 scenario, the latter was increased above 5% with 16% on average, while the ‘other fishing 

gears’ group also had an increase above the 5% threshold. The value is stable for dredge because 

they target only king scallop. 

The income standard deviations on each simulation, representing the interannual variability of 

income for fishers, were predicted to increase on average between 50% and 100% for three of the 

fisheries modeled in the RCP2.6 scenarios, while it was decreased by 10% and 34% for Pelagic 

and bottom trawls targeting small pelagics and dredge respectively (Table 3). However, the 

variability among simulations was extremely high, and some income standard deviations were 

smaller in comparison to the baseline scenario in several simulations. In the RCP8.5 scenario, the 

forecasted fluctuations increased between 300% and 1000% for all the fisheries except dredge for 

which it was reduced by 79%, but the variability among simulations was smaller relatively to 

RCP2.6, and trends, positive or negative, were always uniform.  

The predictions of income per volume yielded standard deviations, representing the interannual 

variability of income per volume yielded for fishers, were stable with the RCP2.6 and RCP8.5 

scenarios for the Pelagic and bottom trawls targeting small pelagics (Table 3). In both scenarios, 

the stability of income per volume increased by 24% for the Pelagic trawls targeting demersals. 

For the three other fisheries, trends were different across the scenarios, with a high variability 

among simulations, but for the most part restrained on average between -25% and +25%. 

In the RCP2.6 scenarios, the fishing mortality was predicted to be reduce for only 3 species, king 

scallop (-50%), plaice (-8%) and cod (-35%) (Figure 5), while it was predicted to increase up to 

30% for nine groups, and >30% from the current situation for the nine remaining groups. In the 
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RCP8.5 scenario, only king scallop and cod fishing mortalities were reduced (-89% and -85% 

respectively), while fishing mortality was predicted to increase between 50% and 100% for five 

groups, and by >100% from the current situation for the fourteen remaining groups. 

 

3.3. Added-value of trophic interactions 

In the two forecasted scenarios, patterns of biomass comparison with initial values and final values 

were globally similarly proportionated across classes (Figure 6; Table S10). Observing only the 

direction of changes, RCP8.5 induced fewer deteriorating consequences, with more groups than 

RCP2.6 having I--A- and I+A- evolutions and more in I--A- and I-A+. No group in both scenarios 

had an A++A+ evolution, and only one group had an I+A++ evolution (i.e. poor cod in RCP2.6). 

However initial biomasses values for RCP8.5 were clearly predicted to be lower than in RCP2.6, 

where more groups reached a total decrease between 50% and 100% of their initial value in the 

current situation (Figure 6). Additionally, only one group in the RCP2.6 scenario had an average 

increase above 50% of the initial value for the current situation (i.e. bivalves filter feeders), while 

five groups in the RCP8.5 scenario had this increase (i.e. benthic invertebrates deposit feeders, 

bivalves filter feeders, fish benthos feeders, sprat and poor cod). Noticeably no error bar was 

represented on the x axis of the Figure 6 for readability, although some groups had large initial 

values fluctuations, which had consequences on the y axis results. 

 

4. Discussion 

4.1. Predicted impacts of climate change on the Bay of Seine 

Our results demonstrated clear impacts of climate change in both scenarios (i.e. RCP2.6 and 

RCP8.5), however, there were noticeably stronger trends in the case of RCP8.5 evolution. At the 

biological level, these results emphasize the fact that effects of climate change are not uniform 
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across trophic groups, e.g., with some stocks collapsing, such as plaice, gurnard and cod, others 

concurrently remaining stable compared to the current situation, such as flounder or planktivorous 

fish, and some even expanding on average in the RCP8.5 scenario, such as bivalves filter feeders, 

sprat or poor cod. These results are in line with Fulton (2011), arguing that there will be ‘winners 

and losers’ with climate change. This holds true for both large and small scale changes, and is 

ecosystem-specific. The Bay of Seine is part of the North Atlantic, an area subject to strong shifts 

under climate change (Burrows et al., 2019). The predicted biomass distribution created among 

both scenarios is evolving towards an ecosystem dominated by low trophic level species, probably 

favored by the decrease of predation pressure, one of the processes implied in the trophic 

amplification (Lotze et al., 2019). This evolution is comparable to the concept of ‘fishing down 

the marine food web’ resulting from high fishing pressure oriented on high trophic levels (Pauly 

et al., 1998; Gascuel, 2005). The Bay of Seine ecosystem reacts to climate change as one under 

high fishing pressure resulting in a modification of its structure. 

In addition to the average value of stocks biomasses, our results also focused on the variability of 

the group biomasses, and showed that they had markedly increased, especially in the RCP8.5 

scenario, illustrated by periodically alternating phases of high abundances with others of relatively 

low abundances. This raise of variability was predicted for the groups with an increased average 

biomass, but also for some undergoing a decline, like mackerel, benthopelagic cephalopods, or 

pilchard. One of the reasons that can be attributed for this rise is the predicted decline of almost 

all top fish and cephalopods trophic levels (i.e. fish piscivorous, whiting, cod, sharks, rays, seabass 

and benthopelagics cephalopods, see Figure 2). Indeed, top predators are known to favor the 

stability of ecosystems by maintaining low prey densities and fluctuations (Bax, 1998; Hollowed 

et al., 2000; Mangel and Levin, 2005; Wilmers et al., 2007; Kirby et al., 2009). At the local 

Eastern English Channel scale, several studies already emphasized the important control of cod 
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and whiting, here depleted, on the lower trophic levels using different modelling approaches 

(Girardin et al., 2016; Travers-Trolet et al., 2020). Gadoids, especially, are known to be negatively 

affected by warming (Free et al., 2019), thus, such an event is predictable. Ecological Networks 

Analysis (ENA; Ulanowicz, 1986; Saint-Béat et al., 2015; Lau et al., 2017) could not be 

represented at the time of the Ecospace simulation in this study, but it could bring a new vision of 

the functional and structural properties of the ecosystem beyond classical community indicators 

(Safi et al., 2019), and will be explored in a forthcoming article (Araignous et al., in prep.). 

These forecasts must be interpreted in terms of trends of evolution, as several phenomena could 

not be included in these simulations. This was part of the reason why the results were 

demonstrated in terms of relative impact and not absolute values. The initial parameterization 

lacked the effect of the different RCP scenarios on several compartments of the ecosystem, 

especially for the lower trophic levels (e.g. phytoplankton and zooplankton) and apex predators 

(i.e. birds and marine mammals), which could have non-negligible bottom-up and top-down 

effects respectively, in addition to their identity as climate and ecosystem sentinels (Hazen et al., 

2019). The former were not represented in this study due to the lack of available predicting models 

when the development of the methodology was realized, although some do exist and have been 

used for predictions in other studies that showed that they could have impacts on the whole trophic 

cascade (e.g. Brown et al., 2010; Araújo and Bundy, 2012; Guo et al., 2019). Concerning apex 

predators, their homoeothermic metabolism, high mobility and dependence on prey availability 

make their distribution difficult to predict (Crick, 2004; Simmonds and Isaac, 2007). However, a 

broad scale of trophic levels was represented in our simulations and permitted observation of 

several mechanisms involved in the ecosystem’s possible evolutions. Additionally, Ecospace 

modelling is mainly based on a fitted Ecosim model (plus some extra parameters, e.g. base 

dispersal rate or the maps), itself being based on an Ecopath model representing an equilibrium 
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state of an ecosystem during a precise period. Unfortunately, this representation does not consider 

the species that are not in the area but could arrive due to changing conditions, and can potentially 

deteriorate ecosystems (Occhipinti-Ambrogi, 2007). Empirical evidences demonstrated large 

movements of indigenous and non-indigenous species in the area: an abrupt northward shift of 

small pelagics from the Eastern English Channel to the North Sea occurred in the middle of the 

1990’s, partly due to climate conditions (McLean et al., 2018), while for the first time 

Mediterranean species were recently recorded in the Eastern English Channel (Mahé et al., 2012; 

2014), and a tropical species was recorded in the North Sea (Cresson et al., 2017). In general, 

stocks with smaller body size and faster life history characteristics will better adapt to warming 

(Perry et al., 2005; Free et al., 2019; Moullec et al., 2019). One approach to assess this, similar to 

the work done with Ecosim on invasive species by Langseth et al. (2012), can be used, but this 

would require new parameterization for such species and several assumptions concerning their 

foraging relationships with other trophic groups already present in the area, a main modelling 

challenge for future scenarios of global change (Corrales et al., 2020).  

Effects of climate change were also predicted on fisheries, focusing on income and income per 

yielded volume obtained by fishers in the two RCP scenarios. Our results indicated surprisingly 

that most of the fisheries would see their average earned value increase, and even doubled for 

bottom trawlers targeting demersals and cephalopods in the RCP8.5 scenario, confirming 

assumptions that some fisheries could be advantaged by indirect effects of climate change (e.g. 

Ainsworth et al., 2011). This is in contradiction with global fisheries projections, which are 

expected to decrease (Lam et al., 2016). However, conclusions about these results must be 

dampened for different reasons. First, our simulations are based on a constant price hypothesis, 

while fish price is actually known to evolve according to different parameters including offer and 

other species’ prices (Loannides and Whitmarsh, 1987). It is thus probable that a high availability 
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of certain stock would induce a decrease in their income per kg, hindering such fungibility (i.e. 

replacing one entity by another of equal utility) for fishers. Secondly, the income per volume 

demonstrated in our results, contrary to expectations, showed that fishers for the majority do not 

fish more volume to earn the estimated income, and even have a positive income per volume index 

increase between 5% and 25% on average for bottom trawls targeting demersals and cephalopods. 

However, a major impediment is the stability of the revenue fishers can earn, which, according to 

our results, is predicted to be extremely low, at least in RCP8.5, and in a main part of RCP2.6 

simulations, despite being highly unpredictable. Fishers’ revenue stability is known to be one of 

the most important drivers for fishing activity, above potential high revenue for most fisheries 

(Holland, 2008; de Vos et al., 2016). Indeed, it is obvious that without permanent acceptable 

revenue, fishers are not able to pay the common variable and fixed costs, including the payment 

of crew’s salary or vessel maintenance. Moreover, our observed results considered no limiting 

quotas, although quota limits would have consequences on the ability of fishers to target some 

commercial species, especially in a landing obligation context (European Commission, 2013; 

Borges, 2015), and thus decline fishers’ profit. Future studies should associate fisheries 

management target scenarios with climate ones (Gaines et al., 2018; Barange, 2019), as done by 

Bauer et al. (2019) who, using Ecospace, highlighted simulations the importance of different 

management strategies on biodiversity and catch value. These models could also test different 

scenarios of quota allocations which should evolve with changes of fish distributions (Baudron et 

al., 2020). 

When observing the results per fishery, it is noticeable that dredgers, only targeting king scallop, 

are the only fleet to observe a clear decline of profit, while their target species is expanding. This 

result must be examined carefully because it arises from an eastward shift in the distribution of 

king scallop, creating an invulnerable portion of the stock due to the inaccessibility of dredgers in 
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that eastward region. Indeed, dredgers activity is restricted to a certain area in the original model, 

corresponding to the preferential habitat area for king scallop, but this changed throughout 

scenarios. Hence the fishing mortality of king scallop, along with cod are the only two to decrease 

in the RCP scenarios compared to the current situation. Likewise, king scallop exploitation is 

highly restricted and controlled (Carpentier et al., 2009). However, the different small-scale 

restrictions could not be clearly represented in the current Ecospace model. Thus, our predictions 

concerning scallop must be tempered for this reason. 

Concerning cod, the most probable explanation is that the decreased stock abundance makes it an 

uninteresting target for fishers who prefer focusing their effort on other more abundant stocks. 

This re-focus of effort is keeping the fishing mortality high on the other groups, which, in part, 

prevents them from expanding: this is one of the main parameters inducing changes between niche 

modelling predicted abundances with trophic and fisheries interactions. Such fishers’ reaction 

against cod is plausible, as more diversified fisheries are an insurance of better resilience to 

perturbations such as climate change (Lagarde et al., 2017; Yletyinen et al., 2018). 

 

4.2. Added-value of trophic interactions on climate forecasting 

One of the major improvements of this study is to provide an extension from the ‘Fundamental 

niche’ to the ‘realized niche’ prediction of ecosystem biomass distributions, an important feature 

of species distributions (Lany et al., 2018). Hinging on the framework proposed by Chaalali et al. 

(2016), this study extended the analysis using EwE trophodynamic equations to bring new 

insights. According to our results, the effects of trophic interactions in the Bay of Seine seem to 

be balanced, with more positive than negative effects, coinciding with the conclusions of Bates et 

al. (2017). However, this trend can be divided in two parts having a completely different 

evolution: the groups with a niche modelling and those without. The groups without niche 
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modelling were not constrained in their initial values, thus their average biomass only changed 

through the trophic interactions, which differed within scenarios. Here, this comparison 

emphasized a decline for birds and marine mammals, presumably due to the decline of their prey. 

For the groups that had a different initial abundance with niche modelling, the results are more 

oriented towards positive effects. If a few species undergo a decline, most of the groups increase 

in comparison to their initial value from niche modelling, with some even outweighing the average 

value observed in the current situation scenario. In the RCP8.5 scenario, most groups start with a 

lower biomass than in the RCP2.6 scenario, and are more capable of increasing, with the help of 

the vulnerability settings implemented in EwE (Christensen et al., 2008). In this context, the 

vulnerability parameter value given to poor cod was arbitrarily set to default (2) and a better way 

to estimate it could be a future improvement, for example through longer time series or manual 

fitting from Ecospace outputs. 

Some results regarding the ability of some groups to increase in abundance while having a low 

initial biomass value associated with adverse environmental conditions were surprising. It must 

be considered that one of the limitations of our methods was the inability to vary the vital rates of 

trophic groups which can prevent them from developing: such was evoked by Serpetti et al. (2017) 

and Bentley et al. (2017) for Ecosim, even without fisheries or beneficial trophic conditions. Such 

environmental conditions can be directly detrimental for survival, especially in early life stages 

(e.g. Baumann et al., 2012; Frommel et al., 2012; Boch et al., 2018; Sguotti et al., 2019). It can 

also indirectly induce a decrease of predation potential, as seen in sharks by Pistevos et al. (2015), 

as well as influence the size of individuals in a population (Queirós et al., 2018; Catalán et al., 

2019), a fundamental parameter of fish trophic interactions (Scharf et al., 2000; Shin and Cury, 

2001). Finally, ocean acidification and oxygen depletion, which could have impacts on a variety 

of species (Breitburg et al., 2018; Olsen et al., 2018), are also not represented in our models. 
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Some groups under the RCP8.5 scenario reached high abundance levels, particularly sprat and 

poor cod, which are species not caught by fishers. Such observations highlight the important 

consideration that the evolution of species under climate change situation won’t only be 

influenced by environmental change and trophic interactions, but also by fishing operations. The 

production surplus for sprat and poor cod is not taken by fisheries, while other species undergo a 

high fishing mortality due to unrestricted effort and target change. This major role of fisheries in 

climate change effect has already been highlighted by several authors (e.g. Planque et al., 2010; 

Sumaila and Tai., 2019; Woodworth-Jefcoats et al., 2019). 

 

4.3. Towards reliable predictions of climate scenarios 

The uncertainties regarding the evolution of ecosystems with climate change are numerous 

(Bryndum-Buchholz et al., 2019; Lotze et al., 2018). In this study, the model forecasts were 

evaluated using 25 simulations, in order to obtain an overview of the uncertainty of the results 

according to the niche models used, with uncertainty being a tremendous feature of climate 

projections (Payne et al., 2016). The results demonstrated limited uncertainty in our results, 

highlighting converging trends in the RCP2.6 and RCP8.5 scenarios compared to the current 

situation scenario and between themselves.  

However, areas of uncertainty in the model are still present, beginning with the quality of input 

parameters used in the model, which could be further explored (Christensen and Walters, 2004; 

Lassalle et al., 2014). In Ecospace, fisheries are driven by a gravity model, giving fishers the 

requirement to fish according to their feasibility in proportion to the ‘money in the sea’. In reality, 

the drivers involved in fishers’ behavior are numerous (van Putten et al., 2012; Girardin et al., 

2017). In our simulations, the fishing mortalities undergone by commercial species were 

calculated on a fixed effort for fisheries, without management pressures. Though, it is obvious 
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that the targeting of commercial species will be reduced due to reduced quota availability, which 

reflects the decline of Spawning Stock Biomass. This is especially noticeable for classical target 

species such as sole, cod or whiting whose conservative productivity will be focused on. Future 

simulations should consider fisheries management and its interaction with fish availability to 

simulate more realistic biomass evolutions.  

Fish availability for fishing is dependent both on the fish and the fishers’ ability to distribute freely 

in the area: the impacts of these cumulative effects has to be explored (Fu et al., 2019; Hodgson 

et al., 2019). In the Bay of Seine, multiple activities apart from fishing currently occur and will 

occur in the forthcoming years, including OWF (Raoux et al. 2017; 2019), dumping of dredged 

material (Pezy et al., 2017), aggregate extraction and all other types of maritime traffic other than 

fishing (Marchal et al., 2014a; 2014b). Their impact on fish and fisheries in the Eastern English 

Channel has been partially observed or simulated (Marchal et al., 2014a, 2014b; Girardin et al., 

2015; Tidd et al., 2015), and future forecasts that are already in progress will involve the 

integration of these multiple activities to observe synergetic or antagonistic potential effects 

(Noguès et al., in prep.). 

Our simulations considered the state of the ecosystem in 2100 to derive ecological or fisheries 

indicators. However, it is important to remember that events occurring in the ecosystem with 

different climate trajectories will be influenced by their timing, meaning that some species’ 

environmental preferences will make them move faster than others. That is why we must keep in 

mind that running all the species together with niche modelling forcing is likely to differ from 

running an evolving environment with a 2000-2100 time series. Some of latest improvements of 

Ecospace (Steenbeek, 2012; Steenbeek et al., 2013), not used in this study, have the potential to 

lead such simulations, and this approach should be further analyzed in the forthcoming years. 
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5. Conclusion 

In this study, niche models with multiple climate scenarios were used as forcing parameters for a 

spatially-explicit trophic Ecospace model developed in order to observe the impact of different 

climate change trends on the French Bay of Seine. The simulations predicted that both the RCP2.6 

and RCP8.5 scenarios will have repercussions for the Bay of Seine ecosystem and the fisheries 

exploiting them, with stronger divergences for the RCP8.5 scenario. In general, the stronger the 

radiation is, the stronger the instability of the ecosystem could be. In addition, we emphasized that 

some species would increase partly due to trophic reorganizing (see Figure 6, Table S10), and that 

fishing pressure is a major parameter of the evolution of species abundance under different climate 

change scenarios. By forcing niche models in a trophic interactions model, the importance of the 

latter was highlighted in a way to support plausible predictions. At the broader scale of climate 

change forecasting, models like Atlantis (Fulton et al., 2007) can offer a larger spectrum of scales 

and a multimodel, multiple scale approach must be promoted (Peck et al., 2016; Bryndum-

Buchholz et al., 2019): this is the only way to identify key parameters shaping the potential future 

of marine ecosystems.  
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Figures and tables legends 

Figure 1: Flow diagram of the methodology used in the study to force species distributions in 

Ecospace. SDMs: species distribution models, noted m from 1 to 9 for each of the predictive 

responses (see Ben Rais Lasram et al., 2020). s: species, from 1 to k, the total number of species 

available through SDMs. 

Figure 2: Relative average biomass changes in the RCP2.6 and RCP8.5 scenarios in comparison 

to the current situation scenario. 

Figure 3: Relative biomass standard deviation changes in the RCP2.6 and RCP8.5 scenarios in 

comparison to the current situation scenario. 

Figure 4: Average relative A) Mean Trophic Level (MTL), B) High Trophic level Indicator (HTI) 

and C) Total Biomass (TB) changes in the RCP2.6 (left) and RCP8.5 (right) scenarios in 

comparison to the current situation scenario. 

Figure 5: Relative fishing mortality changes in the RCP2.6 and RCP8.5 scenarios in comparison 

to the current situation scenario. 

Figure 6: Comparison, for each trophic group, of the final relative average biomasses (A) and the 

initial relative biomass (I) compared to the initial values with the baseline situation scenario in the 

scenarios RCP2.6 (top) and RCP8.5 (bottom). 

 

Table 1: Species with climate model per trophic groups in the Ecopath model, and the presence 

of a habitat model. * indicates species with no retained habitat model. See Ben Rais Lasram et al. 

(2020) for further details concerning model selection. 

Table 2: Categories, codes and global impact for trophic groups in the assessment of the effect of 

trophic interactions on biomasses in climate scenarios. “+” indicates an increase compared to the 

initial biomass value, “-” a decrease, while with similar Average biomass for a RCP scenario 
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(ARCP) and Initial biomass for the same RCP scenario (IRCP), the signs “++” or “--” indicate the 

highest or lowest value, respectively.  

Table 3: Average number of groups in each of the biomass evolution classes compared to the 

initial values in the current situation scenario. ± values represent the standard deviations of the 

number of groups for each indicator among replicates.  
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Figures 

 

Figure 1: Flow diagram of the methodology used in the study to force species distributions in 

Ecospace. SDMs: species distribution models, noted m from 1 to 9 for each of the predictive 

responses (see Ben Rais Lasram et al., 2020). s: species, from 1 to k, the total number of species 

available through SDMs. 

 



47 
 

 

Figure 2: Relative average biomass changes in the RCP2.6 and RCP8.5 scenarios in comparison 

to the current situation scenario. 

 

 

Figure 3: Relative biomass standard deviation changes in the RCP2.6 and RCP8.5 scenarios in 

comparison to the current situation scenario. 



48 
 

 



49 
 

Figure 4: Average relative A) Mean Trophic Level (MTL), B) High Trophic level Indicator (HTI) 

and C) Total Biomass (TB) changes in the RCP2.6 (left) and RCP8.5 (right) scenarios in 

comparison to the current situation scenario. 

 

 

Figure 5: Relative fishing mortality changes in the RCP2.6 and RCP8.5 scenarios in comparison 

to the current situation scenario. 
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Figure 6: Comparison, for each trophic group, of the final relative average biomasses (A) and the 

initial relative biomass (I) compared to the initial values with the baseline situation scenario in the 

scenarios RCP2.6 (top) and RCP8.5 (bottom).  
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Tables 

Table 1: Species with climate model per trophic groups in the Ecopath model, and the presence 

of a habitat model. * indicates species with no retained habitat model. See Ben Rais Lasram et al. 

(2020) for further details concerning model selection. 

Ecopath trophic group Latin name 
Habitat 

model 

Bivalves filter feeders Aequipecten opercularis X  
Ensis directus X  

Glycymeris glycymeris X*  
Lanice conchilega X 

Benthic invertebrates deposit feeders (Subsurface) Echinocardium cordatum X 

Benthic invertebrates deposit feeders (Surface) Ophiothrix fragilis X  
Pectinaria koreni X 

King scallop Pecten maximus X 

Benthic invertebrates filter feeders Psammechinus miliaris X 

Benthic invertebrates predators Asterias rubens X  
Buccinum undatum X  
Owenia fusiformis X  

Sagartia troglodytes X 

Benthic cephalopods Sepia officinalis X 

Benthopelagic cephalopods Alloteuthis subulata 
 

 
Loligo vulgaris 

 

Dab Limanda limanda X 

Flounder Platichthys flesus X 

Plaice Pleuronectes platessa X 

Sole Solea solea X* 

Sea bream Spondyliosoma cantharus X* 

Fish benthos feeders Callionymus lyra X*  
Mullus surmuletus X*  
Labrus bergylta X  

Zeus faber 
 

Fish planktivorous Clupea harengus 
 

 
Engraulis encrasicolus 

 

Fish piscivorous Pollachius pollachius 
 

Sprat Sprattus sprattus 
 

Pilchard Sardina pilchardus 
 

Poor cod Trisopterus minutus 
 

Pouting Trisopterus luscus 
 

Gurnard Chelidonichthys lucerna X*  
Chelidonichthys lastoviza X 

Horse mackerel Trachurus trachurus 
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Whiting Merlangius merlangus 
 

Cod Gadus morhua 
 

Sharks Mustelus mustelus X  
Scyliorhinus canicula X*  
Scyliorhinus stellaris X 

Rays Raja clavata X  
Raja montagui X 

Seabass Dicentrarchus labrax X* 

Mackerel Scomber scombrus 
 

 

Table 2: Categories, codes and global impact for trophic groups in the assessment of the effect of 

trophic interactions on biomasses in climate scenarios. “+” indicates an increase compared to the 

initial biomass value, “-” a decrease, while with similar Average biomass for a RCP scenario 

(ARCP) and Initial biomass for the same RCP scenario (IRCP), the signs “++” or “--” indicate the 

highest or lowest value, respectively.  

Category Code Impact 

ARCP < IRCP < Icurrent I-A-- Negative 

IRCP < ARCP < Icurrent I--A- Positive 

IRCP < Icurrent < ARCP I-A+ Positive 

Icurrent ≤ IRCP < ARCP I+A++ Positive 

Icurrent < ARCP < IRCP I++A+ Negative 

ARCP < Icurrent ≤ IRCP I+A- Negative 

  

Table 3: Average number of groups in each of the biomass evolution classes compared to the 

initial values in the current situation scenario. ± values represent the standard deviations of the 

number of groups for each indicator among replicates. 

Fishery RCP 

Nets 

targeting 

demersals 

and 

crustaceans 

Pelagic 

and 

bottom 

trawls 

targeting 

small 

pelagics 

Bottom 

trawls 

targeting 

demersals 

and 

cephalopods 

Pelagic 

trawls 

targeting 

demersals 

Other 

fishing 

gears 

Dredge 

Relative 

average 
RCP2.6 24 ± 9 4 ± 6 25 ± 7 1 ± 7 14 ± 3 -53 ± 14 
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income 

(%) 
RCP8.5 7 ± 13 49 ± 18 97 ± 19 42 ± 44 27 ± 6 -92 ± 2 

Relative 

average 

income 

per 

volume 

(%) 

RCP2.6 5 ± 3 < 1 ± < 1 7 ± 2 -2 ± 1 5 ± 1 0 ± 0 

RCP8.5 -1 ± 11 > -1 ± < 1 16 ± 9 -3 ± 3 8 ± 2 0 ± 0 

Relative 

income 

standard 

deviation 

(%) 

RCP2.6 58 ± 114 -10 ± 15 86 ± 119 38 ± 51 98 ± 164 -34 ± 25 

RCP8.5 373 ± 124 396 ± 163 957 ± 195 614 ± 134 633 ± 141 -79 ± 4 

Relative 

income 

per 

volume 

standard 

deviation 

(%) 

RCP2.6 -7 ± 15 < 1 ± < 1 -11 ± 26 -24 ± 5 -4 ± 17 0 ± 0 

RCP8.5 3 ± 10 > -1 ± < 1 16 ± 9 -24 ± 3 14 ± 2 0 ± 0 

 


