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Abstract: 

Figurative drawing is a skill that takes time to learn, and evolves during different childhood phases 
that begin with scribbling and end with representational drawing. Between these phases, it is difficult 
to assess when and how children demonstrate intentions and representativeness in their drawings. 
The marks produced are increasingly goal-oriented and efficient as the child’s skills progress from 
scribbles to figurative drawings. Pre-figurative activities provide an opportunity to focus on drawing 
processes. We applied fourteen metrics to two different datasets (N=65 and N=345) to better 
understand the intentional and representational processes behind drawing, and combined these 
metrics using principal component analysis (PCA) in different biologically significant dimensions. 
Three dimensions were identified: efficiency based on spatial metrics, diversity with colour metrics, 
and temporal sequentiality. The metrics at play in each dimension are similar for both datasets, and 
PCA explains 77% of the variance in both datasets. These analyses differentiate scribbles by children 
from those drawn by adults. The three dimensions highlighted by this study provide a better 
understanding of the emergence of intentions and representativeness in drawings. We have already 
discussed the perspectives of such findings in Comparative Psychology and Evolutionary 
Anthropology. 
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1. Introduction 

Humans are the only species who naturally draw and paint objects. This behaviour takes time 
to develop over a series of childhood phases. Researchers agree that drawing evolves from scribbling 
in toddlers (Freeman, 1993; Kellogg, 1969) to representational drawing in older children.  In its initial 
phases, scribbling is often viewed purely as a motor pleasure that is not guided by visual planning, 
and is mainly determined by the mechanical functioning of the motor system of the arm, wrist and 
hand (Kellogg, 1969; Luquet, 1927). The youngest children show only transient interest in their own 
scribbles, and often readily move from one scribble to the next (Golomb, 2003; Thomas & Silk, 1990). 
With increasing perceptual motor coordination and a progressive acquisition of complex and 
effective drawing rules, the scribbles become complex patterns that are guided by visual attention 
and are determined by aesthetic considerations such as balance or symmetry (Golomb, 2003; Piaget 
& Inhelder, 2008; Willats, 2005). While a full-blown representational drawing (i.e. preplanned by the 
child and readable by an observer) first appears by the age of three to four years old (Freeman, 1993; 
Gardner, 1981; Golomb, 2003; Piaget & Inhelder, 2008), preliminary indications of drawing-related 
symbolic actions can be traced back to as early as the second or third year of life. This finding 
suggests that at this age, children have already become aware of the dual function of a drawing, i.e. a 
graphic signifier that signifies a referent and is also a real object in its own right (DeLoache, 1991). 
Concerning the development of early mark-making and pre-representational activities, different 
theories have been developed, some of which are very similar (Costall, 1995; S. Cox, 2005; Matthews, 
1984, 1999). The three following types of early pre-representations have been described in the 
literature, all of which were claimed to have appeared before children produce planned shapes: 
action representation, romancing, and guided elicitation (Adi-Japha et al., 1998; Matthews, 1984). 

In humans, action representations, also called gestural drawings, appear both in 
spontaneous drawing and in response to the request to draw an object (e.g. an airplane). Children 
may accompany scribbling with verbalizations or sounds such as roaring, which indicates that both 
their motions and the marks emerging from their drawing instrument simulate the motion of an 
object. We can then speculate whether children are really scribbling or if they are simply 
demonstrating an active rather than a figurative mode of representation (Matthews, 1984). The 
personal actions of children are therefore not random but are intentional and combined with marks 
and sounds to represent the moving, roaring object (M. V. Cox, 2013; Gardner & Wolf, 1987; D. Wolf, 
1988; D. Wolf & Perry, 1988). So the drawing has representativeness for the drawer (i.e. internal 
representativeness) even if this is not the case for an external observer (i.e. external 
representativeness, (Martinet et al., 2021). Romancing refers to instances where children name a 
scribble with an object but an observer has difficulty finding a graphic resemblance between the 
scribble and the object the child claims to have drawn. Naming takes place either spontaneously or 
when elicited by questioning from an adult, and can occur before or during the drawing, or after its 
completion. Action representations and romancing cannot be observed in children before they are 
two to three years old, or in children with certain psychopathologies. During these two stages, it is 
therefore difficult to establish if a drawing is goal-directed, with a meaning and an intentional 
representation. Evidence of intention is provided during during the third step, called guided 
elicitation, when the child shows no representational intention in his free drawings but produces 
figurative drawings when assisted. However, even if it is not always easy to demonstrate intentional 
pre-representational activities, we can predict without difficulty that the marks produced are 
increasingly goal-oriented and efficient as the child progresses from scribbles to figurative drawings. 



Rather than studying the finished drawings, we should focus on the presence of pre-representative 
activities on drawing processes (Costall, 1995; S. Cox, 2005; Martinet & Pelé, 2020; Matthews, 1999).  

Different methods have been used to answer this question of representativeness and goal 
directedness beyond drawing (Desmet et al., 2021; Urban, 2004). Publications describe topics ranging 
from the kinematic aspects of scribbling to the precursors of graphic representation, including 
authors who compare curved lines in drawings to mathematical laws. Children tended to attribute 
representational meanings (e.g. an airplane) to angular curves and nonrepresentational meanings 
(e.g. a line) to smooth curves that they had just finished drawing (Kellogg, 1969). However, these 
studies are not objective given that authors asked children a posteriori what their drawings 
represented. Moreover, this methodology cannot be applied to subjects (human or nonhuman 
primates) who are unable to explain their drawings. Thus, only one study to date has used 
methodology permitting the comparison of drawing abilities in humans and nonhuman primates or 
made it possible to understand the evolution of drawing in children and in other primates (Martinet 
et al., 2021). 

This paper describes the use of different mathematical metrics to objectively and 
quantitatively measure intention and representativeness in drawing. Recently developed techniques 
make it possible to  consider ethology as a physical science and apply quantitative measures in this 
discipline (Brown & De Bivort, 2018). Although simple drawing measures such as the number of 
colours can be used (Zeller, 2007), they provide few cues about the intention behind the drawing. 
We aim to go further by using mathematical measures to fulfil this goal. Metrics are already used to 
understand whether movements are optimal or evaluate the extent to which behavioural sequences 
are complex and predictable in animals, including humans. For instance, Martinet et al. (2021) and 
(Beltzung et al., 2021) used spatial and temporal fractal analyses, which had previously been applied 
to understand optimal movements and optimal behavioural sequences of animals searching for food 
(Bartumeus et al., 2002; Meyer et al., 2017, 2020; Reynolds, 2008), and found an increase in 
complexity and efficiency in humans compared to chimpanzees, but also an increase with age in 
humans. Other metrics such as entropy (Ebeling et al., 2002; Kershenbaum, 2014) or the Gini index 
(Debache et al., 2019; Planckaert et al., 2019) were also used to understand the distribution or 
complexity of different behaviours (e.g. activity, food exchange, vocalisation) from ants to humans. 
We used a total of fourteen metrics to enrich our understanding of the intentional and 
representational processes behind drawing. These metrics are detailed in Table 1 along with 
definitions and predictions. 

This paper seeks to combine all of these metrics in different dimensions using principal 
component analysis. PCA is used to extract and visualize important information contained in a 
multivariate data table by combining metrics to form a biologically significant dimension, as already 
shown for personality (Bousquet et al., 2015; M. Wolf & Weissing, 2012) or sociality (Viblanc et al., 
2016). Here, we expect metrics to be combined and form dimensions that correspond to 
representativeness (at least internal, meaning from the point of view of the drawer but not for the 
observer) and show evidence of anticipation or aestheticism in the drawing (Dissanayake, 2001; 
Matthews, 2003; Watanabe, 2012; D. Wolf & Perry, 1988). Temporal metrics and some spatial 
metrics based on fractal theory could indicate representativeness and anticipation, whilst the use of 
colours and space could indicate a sense of aestheticism. We used two datasets of drawings with 
different instructions in order to generalise results. We hypothesise that objective and quantitative 
patterns in drawings will provide cues about the intentions and representativeness of the drawer, 
even if the observer fails to perceive an object or entity in the drawing. 



Type Metric Definition Meaning ('it measures') or expectation ('we expect') References 
Sp

at
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l m
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μMLE   Spatial fractal metric, maximum estimate 
power coefficient of the drawing length 
distribution 

It measures drawing efficiency, from random trajectories to 
optimal trajectories indicating a representativeness 

(Edwards et al., 2007; 
Sueur, 2011; Sueur et 
al., 2011; G. 
Viswanathan et al., 
2008) 

Drawing 
distance 

Total distance of drawing, from the first 
point to the last, in pixels 

We expect long distance drawings to be more representative 
or contain more details than short distance drawings. 
However, it can also mean deterministic drawing, (i.e no 
intention to represent anything). 

(Handheld, 2020; 
Mitani & Nishida, 
1993; Papi et al., 
1995) 

Angle 
distribution 
metric 

PCA dimension based on the coefficients of 
the cubic survival function of angle 
distribution (from 0° to 180°) 

We expect homogeneous distributions of angles (low values 
of this metric) to indicate randomness (scribbles) whilst 
heterogeneous distributions should be linked to goal 
directedness (i.e. representativeness) 

(Bartumeus et al., 
2008; Benhamou, 
2004; Gurarie et al., 
2016; Potts et al., 
2018) 

Minimum 
convex 
polygon 

Minimum polygon covering all drawing 
points and giving the percentage of 
drawing cover on the screen 

We expect high covering to inform about representativeness 
but also the play /emotional interest in drawing 

(Gaston & Fuller, 
2009; Nilsen et al., 
2008) 

Te
m

po
ra

l m
et

ric
s 

Hurst index Temporal fractal metric, measure of the 
long-term process in temporal sequence 

It measures the temporal complexity of drawings sequences, 
from deterministic to complex 

(A. MacIntosh, 2014; 
A. J. J. MacIntosh et 
al., 2011) 

Temporal 
Gini index 

Measure of the inequality among values of 
temporal drawing sequences distributions 

We expect high Gini Index, meaning unequal distribution of 
sequences to give an idea about intention and anticipation 
in drawing 

(Debache et al., 2019; 
Planckaert et al., 
2019) 

Entropy 
index 

Measure of the temporal uncertainty of 
drawing 

It measures the stochasticity or predictability of the drawing 
state. We expect a high entropy index to be linked to more 
representative drawing, including anticipation 

(Ebeling et al., 2002; 
Kershenbaum, 2014; 
Leff, 2007) 

Drawing 
test time 

Total drawing time (including drawing time 
and non-drawing time) 

We expect a long duration to inform about thinking about 
drawing, i.e. intention and representativeness 

 



Number of 
sequences 

Number of drawing and non-drawing 
sequences during the test 

We expect a high number of sequences to give an idea about 
goal-oriented behaviours, meaning intention and 
representativeness 

 

Drawing 
speed 

Speed of drawing, which is the drawing 
distance in pixels divided by the time of 
drawing 

Speed is used as a measure of goal directedness or 
knowledge (i.e., in this context, mastering) 

(Byrne et al., 2009; 
Noser & Byrne, 2014; 
Sueur, 2011) 

Drawing 
time 
proportion 

Drawing time divided by test time We expect a high drawing time proportion to inform on 
thinking about drawing, i.e. intention and 
representativeness 

 

Co
lo

ur
 m

et
ric

s 

Mean 
colorimetric 
profile 

Mean distribution of intensity levels for the 
Red, Green, or Blue colours respectively 
and after removing the white (screen) 
colour on the parts covered by drawing 

It measures the mean spectrum of colours used, from dark 
to light. 

 

Standard 
deviation of 
the 
colorimetric 
profile 

Standard deviation of the distribution of 
intensity levels for the Red, Green, or Blue 
colours respectively, on the parts covered 
by drawing 

It measures the diversity of the spectrum of colours used. It 
is different from the number of colours as it takes also how 
much these colours are different. 

 

Number of 
colours 

Number of colours used from the ten 
proposed colours. 

We expect the number of used colours to give an idea about 
the aestheticism but also inform about the play interest in 
drawing. 

(Martinet et al., 2021) 

Table 1: Metrics used to understand drawing complexity with their definition and their meaning in the context of drawing. 

 



2. Material and Methods 
a. Dataset 

Dataset#1: We asked 13 adults (6 men, 7 women), aged from 21 to 29 years old, to draw five 
drawings. These adults were considered “naïve” insofar that they had never taken drawing lessons 
and did not draw as a hobby. These participants were students of the research institute where the 
authors worked. Each drawing corresponded to an instruction that was specifically designed to 
produce a range of drawings: 1.) draw something with scribbles; 2.) draw something with circles; 3.) 
draw something  with different angles; 4.) draw something with a starry sky; 5.) draw something with 
fan patterns (fan patterns are defined as straight lines with sharp angles due to repetitive actions of 
hand, usually from right to left). The reasons for the choice of these five instructions are detailed 
with the list of metrics in Section 2.c. Examples for each instruction are given in Figure 1. This dataset 
was collected in 2020 and is composed of 65 drawings. 

 

 

Figure 1: Examples of the five instructions we gave to participants for dataset#1. 1.) Make a drawing 
with scribbles; 2.) Make a drawing with circles; 3.) Make a drawing with different angles; 4.) Make a 
drawing with a starry sky; 5.) Make a drawing with fan patterns. 

 

Dataset#2: This dataset included children and adults. The group of 144 children aged from three to 
ten years old was split into 18-20 children per one-year age interval. Boys and girls were equally 
represented in these categories except in the youngest category, which was composed of 5 girls and 
15 boys. The adult group was composed of 41 adults (21 men, 20 women) aged 21 to 60 years old 
who were naive and expert drawers. The latter were art school students and professional illustrators. 
Participation was voluntary for adults and subject to parental consent for children.  

All participants were asked to draw in two different conditions: free drawing (draw what you want: 
the experimenter told the subject that they could draw whatever they wanted, with no further 
instructions) and self-portrait conditions (draw yourself: the experimenter instructed the subject to 
draw themselves). The dataset was collected in 2018 and 2019. Further information about this 
dataset (i.e. methodology, examples of drawings and video footage of hand movements) is given in 
Martinet et al. (2021). A total of 370 drawings were initially collected for this dataset; however, some 
data were lost during the recording processes. The final dataset therefore contains 344 drawings. It 
should be noted that three of the naive subjects are present in both #dataset1 and #dataset2. 



b. Experimental design 

Habituation phase: each participant was invited to try a touchscreen tablet (iPad Pro, 13-Inch, 
version 11.2.2, capacitive screen reacting to the conductive touch of human fingers), and draw on it 
with their fingers to understand how it worked and how to change the colour they used to draw. 
Drawing with fingers was preferred in order to involve very young children who had not yet mastered 
the use of a pencil. A panel consisting of ten different colours was displayed at the bottom of the 
screen, and the participant could select a colour for their drawing by clicking on it. When they clicked 
on a different colour in the panel, any subsequent drawing production was in that colour. Children 
were habituated to the touchscreens the day before the tests to avoid overstimulation. Adults were 
tested immediately after discovering the tablet. 

Testing phase: each child was individually tested during school time at school, located in their 
classroom (for the 3-year-olds) and in the staff room for the older children. The experimenter (LM or 
MP) stayed during the test but kept her distance during drawing to avoid influencing the children. 
Adults were tested individually in a room at the research institute (for naive participants) or at the art 
school (for expert drawers). Adult participants were left alone in the room. A camera recorded the 
hand movements of all participants while drawing, in case we needed to check for any problem 
during the session (interruption of the drawing, involuntary tracings, etc.). No time limit was applied.  

c. Data analysis 

For each drawing, the software developed for these studies (details and software available on 
demand), allowed us to record the spatial coordinates X and Y of every point of the lines drawn as 
well as their time coordinates [min; s; ms] and the colour used. This data collection allows us to 
calculate spatial, temporal and colour metrics per drawing (Table 1). Details of metrics, their 
calculation and the range of values for each instruction for dataset#1 can be found in the 
supplementary information section. The number of sequences is correlated to the number of lines in 
the drawing.  We retain the number of sequences as data, as temporal sequences can be analysed 
using the Hurst index and analysed in parallel with the duration of each sequence.  

For dataset#1, we expect different values according to the instruction: 

1.) The scribbles drawings are not expected to show sharp angles and straight lines, so we predict the 
observation of a small μMLE (see Table 1) and a small angle distribution metric, but also a large 
minimum convex polygon. The drawing session duration and the number of sequences should be low 
but the drawing speed high. Finally, scribbles should have few colours. 

2.) We expect that drawings with circles will not show sharp angles (but rather obtuse ones) or 
straight lines, so a small μMLE and a small angle distribution metric are predicted. We have no 
presupposition for the minimum convex polygon. Likewise, we cannot predict the drawing session 
duration or the number of sequences, whether in terms of speed or the number of colours used. 

3.) We expect drawings with different angles to have large angle distributions as well as large 
distributions of lines lengths, meaning an intermediate μMLE. We have no hypothesis for the 
minimum convex polygon. The number of sequences should be high, corresponding to the different 
angles/lines but we cannot predict the duration of the drawing session, the drawing speed or the 
number of colours used. 

4.) We expect drawings of a starry sky to contain different angles. We expect long distances between 
stars but short lines to draw stars, indicating a high μMLE. The minimum convex polygon, the number 



of sequences and the drawing session duration should all be high. The number of colours should be 
low and the colours should be light unless the participants drew a dark sky. 

5.) We expect drawings with fan patterns to have sharp angles and long lines. We have no prediction 
for the minimum convex polygon. Speed should be high given the findings of literature on fan 
patterns (Kellogg, 1969; Zeller, 2007). The number of sequences should be high in relation to the 
different angles/lines. However, we have no prediction for the duration of the drawing session or for 
the number of colours used. 

 

d. Statistical analysis 

As preliminary results, we analysed whether and how each metric differs between drawings for each 
instruction. This was achieved using ANOVA, or a Kruskal-Wallis test when ANOVA conditions could 
not be met (i.e., non-Gaussian distribution). Pairwise comparisons were realised when ANOVA or 
Kruskal-Wallis tests were significant (the “TukeyHSD” function of the R base package and the 
“kruskalmc” function of the “pgirmess” package (Giraudoux et al., 2018), respectively). Only 
differences with p <0.05 were reported. 

Analyses were carried out in three main steps using correlation analyses and principal component 
analyses: 1.) Analysis of dataset#1, 2.) analysis of dataset#2 following the same procedure as in step 
1, 3.) a final combined analysis of dataset#1 and #2 in order to generalise our results. 

First step on dataset#1: a correlation analysis was carried out with the R package 
“PerformanceAnalytics” (Carl et al., 2010; Peterson et al., 2018) on all metrics to identify those that 
were highly correlated. Following this correlation analysis, we removed the drawing duration 
proportion metric, which was highly correlated to the Gini index. Most of the variables were also 
influenced by the drawing test duration metric. We therefore decided to correct all the variables by 
carrying out a linear regression, using each metric as a response variable and the drawing test time 
as a factor. We took the residuals from this linear regression, which corresponds to any variance of 
each point that was not explained by the drawing test duration. A Principal Component Analysis 
(Budaev, 2010; Holland, 2008) with Varimax rotation was then carried out using the R package 
‘Psych’ (Revelle, 2011; Revelle & Revelle, 2015). Variables are automatically corrected to be 
comparable (mean and range). Three dimensions were set up. Varimax rotation is used to simplify 
the expression of a particular subspace in terms of just a few major items each. This means that the 
Varimax rotation applies the variables to each dimension in turn in order to maximise the explained 
variance. We examined the loadings of each variable on each dimension. The loadings are 
interpreted as the coefficients of the linear combination of the initial variables from which the 
principal components are constructed. The loadings are equal to the coordinates of the variables 
divided by the square root of the eigenvalue associated with the component. We removed variables 
for which loadings are inferior to 0.4, which indicates a weak contribution to each dimension and to 
the total explained variance. After this removal, we renewed PCA with Varimax rotation and analysed 
the results. 

Second step on dataset#2: We followed the procedure described for dataset#1. 

Third step on dataset#1 and dataset#2: We compared the variables contributing to each of the three 
dimensions for dataset#1 and dataset#2. We removed the variables that did not contribute to the 
same dimensions between dataset#1 and dataset#2 and performed a PCA with Varimax rotation on 
both datasets. These results were then compared to assess whether our procedure might be 



generalised to any dataset. PCA dimensions were compared via a Pearson correlation test. Finally, 
the same PCA procedure was used to combine both datasets and compare the scribbles made by 
adults following the instruction we gave (« draw something with scribbles ») and the “natural” 
scribbles of 3-year-old children. A Mann-Whitney test was performed to compare both categories in 
each dimension. 

All analyses were carried out using Rstudio 1.4.1103 (Allaire, 2012; Racine, 2012). 

 

Results 

Preliminary results on dataset#1: the details of tests and pairwise comparisons between instructions 
(dataset#1) for each metric are available in the supplementary material section. Three metrics 
showed similar values for the five instructions given to participants: angle distribution metrics, the 
mean colorimetric profile and the standard deviation of the colorimetric profile. The minimum 
convex polygon was lower in drawings composed of different angles than in fan pattern drawings. 
The number of colours was higher for the fan pattern instruction than in the different angles 
drawing. The scribble instruction results are different from all others in terms of drawing test time 
(i.e. lower), entropy (i.e. lower), number of sequences (i.e. lower), the Gini index (i.e. lower for all 
instructions except the starry sky) and the Hurst index (i.e. higher except in comparison to the fan 
pattern instruction). The starry sky instruction is linked to a longer drawing distance compared to all 
other instructions except fan patterns, whilst the different angles instruction is linked to a shorter 
drawing distance. The different angles instruction has a lower drawing time proportion and a higher 
Gini index than all other instructions except “draw circles”.  

First step on dataset#1: The results for the correlation analyses of metrics for the first dataset are 
shown in Figure 2. Drawing duration proportion is highly correlated (r=-1) with the Gini Index. We 
decided to remove drawing duration proportion as a variable. Moreover, as we could expect, ten of 
the 13 variables are correlated with drawing session duration. The latter is the most correlated with 
other variables. We then corrected all remaining variables according to the drawing duration. The 
correlation chart describing these corrected metrics is shown in Figure S15. This step was followed by 
a PCA with Varimax rotation. The total explained variance is 55.7% (Dimension 1 = 24.5%, Dimension 
2 = 17.2%, Dimension 3 = 14%). Three variables have a loading below 0.4 for all three dimensions 
(details in Table S1, supplementary material), namely the angles distribution metric, the drawing 
session duration and the standard deviation of the colorimetric profile. We therefore removed these 
three variables from the dataset and carried out another Varimax rotation PCA. The total explained 
variance of this new PCA is 69.8% (dimension 1 = 31.9%, dimension 2 = 20.7, dimension 3 = 17.2%). 
Each metric shows a higher loading value in one dimension, unlike the two others (Table 2). We can 
thus attribute each metric to one dimension as follows: Dimension 1 (μMLE, drawing speed, Gini 
metric, entropy metric, drawing distance), Dimension 2 (minimum convex polygon, mean 
colorimetric profile, number of colours), Dimension 3 (Hurst index, number of sequences). Examples 
of dataset#1 drawings scaled to the three dimensions are given in Figure S16a-c. 



 

Figure 2: correlation chart of the 14 metrics for dataset#1. The diagonal of the graph provides the 
distribution of each metric, whilst the bottom left and the top-right provide  the correlation figure 
and the correlation coefficient between two metrics, respectively. Statistical value is given with the 
correlation coefficient: * means p <0.05, ** means p <0.01,  and *** means p <0.001. 

  



 
 

Dataset#1 Dataset#2 
  Dim. 1 Dim. 2 Dim. 3 Dim. 1 Dim. 2 Dim. 3 
μMLE 0.608 -0.389 -0.303 -0.781 

 
-0.276 

min. conv. pol -0.374 0.783 0.134 0.666 0.404 -0.133 
Hurst index   0.214 -0.881 -0.138 

 
-0.911 

N° of sequences -0.131   0.79 
  

0.775 
Drawing speed -0.914   0.104 0.867 -0.111 0.245 
Gini index 0.784 0.19 0.211 -0.14 0.42 0.685 
Entropy index 0.659 0.363 0.212 

  
0.45 

Mean colours 
profile 

0.437 0.711 -0.191 -0.168 0.857 
 

Number of 
colours 

0.11 0.759 -0.144 0.181 0.607 
 

Drawing 
distance 

-0.754   0.223 0.708 -0.488 -0.296 

Table 2: Loadings of the metrics (after loadings selection) on the three Varimax rotation PCA 
dimensions of  dataset#1 and dataset2. Bold values indicate the dimension in which the metric is 
retained in each dataset. Grey highlights indicates similar results for both datasets.  Axes of 
Dimension 1 are inversed between Dataset#1 and Dataset#2, but results and correlations are similar. 

 

Second step on dataset#2: We followed the same steps as those described for dataset#1. Results for 
the correlation analyses of metrics of the second dataset are shown in Figure S17. The results of 
dataset#2 are comparable to those of dataset#1: the drawing duration proportion was highly 
correlated to the Gini index, and was therefore removed to correct other variables by the drawing 
duration. The correlation chart depicting these corrected metrics is shown in Figure S18. This step 
was followed by a Varimax rotation PCA. The total explained variance is 55.3% (dimension 1 = 18.7%, 
dimension 2 = 18.4%, dimension 3 = 18.2%). Like in dataset#1, the angle distribution and the drawing 
session duration have a loading below 0.4 for each dimension. However, the standard deviation of 
the colorimetric profile has a loading equal to 0.87 for dimension 1. We removed this variable to 
ensure a fit with the results of dataset#1; this does not change the variance explained (64.6% with 
versus 64.7% without) or the contributions of other metrics to the different dimensions. We carried 
out another Varimax rotation PCA. The total explained variance of this new PCA is 64.7% (dimension 
1 = 24.2%, dimension 2 = 23.5%, dimension 3 = 17.1%). Each metric shows a loading value higher in 
one dimension, unlike the two others (Table 2). We can thus attribute each metric to one dimension 
as follows: Dimension 1 (μMLE, drawing speed, drawing distance, minimum convex polygon), 
Dimension 2 (mean colorimetric profile, number of colours), Dimension 3 (Hurst index, number of 
sequences, Gini metric, Entropy metric).  

Third step on dataset#1 and dataset#2: Seven of the ten retained variables belong to the same 
dimension in the PCAs carried out for Dataset#1 and Dataset#2 (Table 2), and have quite similar 
loadings. However, three variables (minimum convex polygon, entropy index and Gini index) are not 
found in the same dimensions in the two datasets. When these three variables were removed from 
the PCA, we obtained similar results with comparable loadings per metric (Table 3) and 77.5% of the 
variance was explained for dataset#1 (dimension 1 = 31.9%, dimension 2 =23.2%, dimension 3 = 
22.4%) , whilst 77% of the variance was explained for dataset#2 (dimension 1 = 31%, dimension 2 = 



26.1%, dimension 3 = 19.9%). Reducing the selection of variables from ten to seven does not 
substantially change the classification of drawings, as the values of the three PCA dimensions are 
highly correlated between the first and the third step in dataset#1 (RC1: t = 18.942, df = 63, p 
<0.0001, r=0.92; RC2: t = 14.357, df = 63, p <0.0001, r=0.87; RC3: t = -15.764, df = 63, p <0.0001, 
r=0.89). When we combined both datasets, we obtained similar results to those obtained in separate 
analyses of dataset#1 and dataset#2, with 77.5% of the variance explained (dimension 1 = 30.2%, 
dimension 2 =25%, dimension 3 = 20.2%; Table 3).  Examples of dataset#1 drawings scaled on the 
three dimensions are given in Figure 3a-c. Finally, we compared the three dimensions between 
scribbles of dataset#1 (made by adults) and scribbles of dataset#2 (made by 3-year-old children only, 
as scribbles become rare from the age of four onwards). Mann-Whitney tests showed that 
Dimension 1 differs between dataset#1 and dataset#2 (w=29, p=0.0066) whilst there is no significant 
difference between the two sets for dimension 2 (w=107, p=0.122) and dimension 3 (w=105, 
p=0.152) (Figure 4). Moreover, Figure 4 shows that data are more dispersed for the three dimensions 
in adults’ scribbles compared to children ones. Mann-Whitney test for each metrics in each 
dimension are detailed in the supplementary material (Table S2). 

 

 

  Dataset#1 Dataset#2 Dataset#1 & #2 

  Dim. 1 Dim. 2 Dim. 3 Dim. 1 Dim. 2 Dim. 3 Dim. 1 Dim. 2 Dim. 3 
μMLE 0.812     0.814 -0.117 0.246 0.778 -0.14 0.252 
Hurst index   0.248 0.872 -0.143   0.902     0.905 
N° of sequences -0.188 0.112 -0.886     -0.898     -0.896 
Drawing speed -0.894 -0.133   -0.9   -0.216 -0.88   -0.136 
Mean colours profile 0.317 0.81   0.291 0.777   0.315 0.777   
N° of colours 0.909   -0.178 0.795   -0.141 0.824   
Drawing distance -0.793 -0.194   -0.746 -0.371 0.296 -0.775 -0.312 0.21 

Table 3: PCA loadings of the metrics similar to dataset#1 and dataset#2. Bold values indicate 
dimensions in which the metric is retained in each dataset.  



 

Figure 3a: Examples of Dataset#1 (third step) drawings according to Dimension 1 and Dimension 2,  
as provided by the PCA. Dimension 1 may represent representativeness in drawing whilst 
Dimension 2 may represent diversity in drawings. 

 

 

Figure 3b: Examples of Dataset#1 (third step) drawings according to Dimension 1 and Dimension 3, as 
provided by the PCA. Dimension 1 may represent representativeness in drawing whilst Dimension 3 
may represent periodicity in drawings. 

 

 



 

Figure 3c: Examples of Dataset#1 (third step) drawings according to Dimension 2 and Dimension 3, as 
provided by the PCA. Dimension 2 may represent diversity in drawing whilst Dimension 3 may 
represent periodicity in drawings. 

 

 

Figure 4: Examples of scribbles for dataset#1 (adults) and dataset#2 (3-year-old children) and boxplot 
of dimensions 1 to 3 for these two categories. 

 

 

 



Discussion 

We used several mathematical metrics to characterise drawings and assess whether they can 
give cues about representativeness and intention. Principal component analyses helped us to 
organise these metrics in three dimensions in a first dataset. The analyses on this first dataset were 
then confirmed with the analyses carried out on a second dataset, thus allowing us to generalise our 
method of characterising drawings and the subsequent results. This study is an important step in the 
analysis of drawings as it is the first time that such a high number of mathematical indices are used 
to analyse the cognitive processes behind creativity. This discussion seeks to understand which 
process corresponds to each dimension provided by the PCA. 

The choice of two datasets that each involve different drawing instructions proves to be the 
right protocol to obtain variations in each metric. The colours used to draw are influenced by the 
instructions we gave. The choice of these instructions was designed to produce a variety of shapes 
and lines influencing spatiotemporal metrics. However, variation in used colours is still high and two 
colour metrics (i.e. number of colours and mean colorimetric profile) partly explains variance in 
different dimensions. Nevertheless, the standard deviation of the colorimetric profile does not 
provide any information about the drawing, as the choice of colours variable is more a question of 
personal preference than characteristic of any representative process. Similarly, and contrary to what 
we expected, the angles distribution metric does not differ between the instructions of dataset#1 
and did not play any role in explaining variance in the PCAs of dataset#1 and dataset#2. This result 
might be due to the issuing of an unsuitable instruction, thus leading to false negatives. However, as 
we obtained similar results between dataset#1 and dataset#2, the explanation should be more in the 
drawing process itself where, whatever the objects, their representation produces similar angle 
distributions. The study of turning angles is often used when assessing the optimality of animal 
movements, but it is limited to differentiating random movements from goal-oriented and directed 
ones (Reynolds, 2008; Sueur, 2011; Sueur et al., 2011). The scale used to analyse angles in our study 
is possibly too limited to obtain significant results. After correcting all variables according to the 
drawing session duration, no difference is seen in the latter between instructions, nor did it play a 
role in explaining PCA variance in either of the datasets. This means that representativeness and 
aestheticism in drawing are not directly linked to drawing duration but more to all the other 
processes (e.g. the drawing traits length and the number of sequences depending on the number of 
objects) that influence the duration of drawing. In Dataset#1, scribbles were the only instruction 
leading solely to non-representative drawings, despite the fact that the definition of a scribble can be 
unclear. Other instructions mainly resulted in the drawing of objects or animals. It is difficult to 
assess whether it is the instruction itself or the process of drawing scribbles that leads to non-
representative drawings, but scribbles show the highest difference with other instructions for many 
metrics in dataset#1. Although it is possible to draw a figurative drawing using scribbles, no such 
cases were observed in our study. This is certainly because participants had toddler scribbles in mind 
when we gave the instruction. Observation of these differences shows that the process of drawing 
scribbles results in the rapid drawing of a small number of short sequences of relatively random lines.  

Closer evaluation of the principal components analyses shows that some metrics obtained a 
high loading but were not found in the same dimensions in dataset#1 and dataset#2. This was the 
case for the minimum convex polygon, which does not show substantial differences between the 
instructions of dataset#1. We would expect the minimum convex polygon to be a proxy of 
representativeness or aestheticism by filling the screen, but toddlers are reported to fill the paper 
sheet when drawing (Kellogg, 1969; Matthews, 1984; D. Wolf, 1988). Indeed, the minimum convex 
polygon was also shown to be high with scribbles or other non-representative drawings (see 



Figure 3), which indicates that this metric cannot be used to understand the cognitive processes 
underlying drawing. The Gini index and entropy index, both measured on temporal sequences of 
drawing, also belong to different dimensions in dataset#1 and dataset#2.  The Gini index is a 
measure of the inequality of temporal drawing sequences, whilst entropy is a measure of the 
temporal uncertainty of drawing. However, the duration of drawing sequences is linked to the 
lengths of the drawing lines for each object in the drawing. This can be seen in the different 
correlation charts, where temporal metrics are correlated to spatial ones. Given this uncertainty in 
the explanation of the dimensions of dataset#1 and dataset#2, we preferred to remove these two 
metrics. However, PCA results did not change after this removal and the explained variance was 
higher. The Gini index and entropy index are increasingly used in different studies, despite a 
continuing debate about their interpretability (Ben-Naim, 2012; Leff, 2007; Lerman & Yitzhaki, 1984). 
Future works are required to assess their potential role in the domain of drawing and other 
behaviours. Moreover, the Gini index is ineffective when calculated on binary sequences and does 
not provide any new information. Perhaps considering the cumulative sum of drawing and non-
drawing could lead to meaningful results. 

After the different steps of selection of variables, we reached similar results between 
dataset#1 and dataset#2 and explained almost 80% of variance. This result is important because it 
means that whatever the dataset and the given instructions, our method could be applied to analyse 
drawings. However, this method is only valuable if the dimensions of the PCA have a biological or 
psychological aspect. 

 Dimension 1 is composed of the drawing speed, the drawing distance and the μMLE (see 
Table 1 for definitions). In movement ecology, the drawing speed is a proxy of goal directedness, i.e. 
the intention of an animal to go to a specific place that it knows (Byrne et al., 2009; King & Sueur, 
2011; Noser & Byrne, 2014; Sueur, 2011). The higher the motivation to go to a place where resources 
can be found, the higher the speed. In our drawing context, speed can be a proxy of intentionality 
and of mastering, meaning that participants who are familiar with what they are drawing do it faster. 
We observed this tendency in dataset#2, where the mean drawing speed of experts was 0.73±0.37 
compared to 0.56±0.27 for naive participants. However, drawing speed is also high for scribbling 
toddlers or for someone who wants to fill the screen (or paper sheet) with one colour, and in both of 
these cases, drawing speed is linked to drawing distance. This is what we obtained in our results 
(Tables 2 & 3, Figure 3) with many participants colouring the starry sky blue or black. This adds detail 
without providing a better representativeness of the drawing. On the other hand, μMLE is negatively 
correlated to drawing speed and drawing distance, and is used in ecology to evaluate the efficiency 
of animal trajectories. In an environment with different food resources, an animal can move 
randomly or go directly to the resources area. In this case, movements are efficient and optimal and 
μMLE is high. We qualified these movements as a Lévy flight (or walk) (Reynolds, 2008; G. M. 
Viswanathan et al., 1999). In our drawing study, a high μMLE indicates an efficient drawing, i.e. it is 
representative, intentional and with few details (see Figure 3). It is easy to recognise what the drawer 
wanted to draw, but drawing distance is low and indicates few details. If we could link an ability to 
this Dimension 1, it would be efficiency. In this way, Dimension 1 can be named efficiency. Indeed, 
efficiency can be defined as an ability to avoid wasting materials, energy, efforts, money, time, etc. 
Efficiency is different from effectiveness, which is the capability of producing a desired result or the 
ability to produce desired output (Frøkjær et al., 2000; Marley, 2000). In our case effectiveness is 
representativeness, whilst efficiency is representativeness combined with few details (i.e. 
optimality). Efficiency might be illustrated in a sketch (Mihai & Hare, 2021; Xu et al., 2020) and by 
emoticons (Huang et al., 2008; Takahashi et al., 2017). Importantly, the scribbles made by adults 
showed higher values of Dimension 1 than scribbles by toddlers. This is particularly due to higher 



drawing speed in adults (Table S2). The number of sequences is also higher for adults’ scribbles, but 
the number of colours is lower. This may indicate that even if these drawings do not have an external 
representativeness, they may have an internal representativeness for adult participants.  

The second PCA dimension is composed of the number of used colours and the mean 
colorimetric profile. Adding and diversifying colours facilitates the differentiation of objects in a 
drawing. When there are few details in a drawing, one colour is enough to identity the object but 
when more details are present, the use of colours makes it easier to identify the different objects. 
This principle can be observed in Figure 3a, for instance, with the drawings of the crab (one colour) 
and the house (different colours to identify the flowers, the car, the butterfly, etc.). Colours facilitate 
the visual perception of objects and materials in our environment (Castelhano & Henderson, 2008; 
Witzel & Gegenfurtner, 2018). In our drawing datasets, this cognitive process is found to make 
drawings easier to interpret and increase their external representativeness. This second dimension 
can be named “diversity” to represent the diversity of colours in terms of number and panel. 

Finally, the third PCA dimension is composed of the Hurst index and the number of 
sequences, both of which are temporal metrics. The number of sequences is directly dependent on 
the number of lines drawn (whatever their length), i.e. the number of forms that are either objects or 
components of an object. The Hurst index is a proxy of the temporal complexity of a drawing. It 
indicates how far the timeline of a sequence can predict another sequence. For instance, two 
drawings can contain the same number of sequences, but one will be considered as deterministic 
(small values of dimension 3, not complex, for analyses of Dataset#1) if the duration of sequences is 
similar (because the drawn objects are all similar), whilst the other will be considered stochastic (high 
values of Dimension 3) and more complex if the sequences cannot be predicted because they 
followed an unpredictable pattern (which is the intention when representing different objects). Such 
examples can be seen for instance in Figures 3b and 3c (a drawing that resembles a rose window and 
the drawing with planets) for Dataset#1. Here, higher values in Dimension 3 seem to indicate higher 
anticipation and intention in drawing. Dimension 3 can be named “sequentiality”. When the 
complexity of the drawing increases to make something representative, the number of sequences 
and the stochasticity increase. 

Our study showed that we can identify three dimensions in drawing: efficiency, diversity and 
sequentiality. All three dimensions facilitate our understanding of drawing representativeness. This 
statement can be observed in Figure 3, where we can easily determine the intentions of participants, 
even if the drawing is abstract (i.e. there are no identifiable objects). The combination of these three 
dimensions allows us to judge the representativeness of a drawing even if it does not seem to 
represent anything for the observer. The perspectives of this study are therefore noteworthy: we can 
use this method to evaluate the intentions behind a drawing that has no meaning for us, as adults 
with no psychopathologies. In this respect, we identify three perspectives: 1) We can study the 
ontogeny of drawing in children and identify with precision the premises of the different steps 
observed during the drawing learning process (action representation, romancing and guided 
elicitation). 2) We can also extend the study to other species, particularly great apes, which are 
known to draw, and assess whether their drawing is motivated by internal representativeness 
(Martinet & Pelé, 2020). 3) Finally, the method can be extended to psychopathologies such as autism 
(Charman & Baron‐Cohen, 1993; Jolley et al., 2013) and even certain emotional disorders (Desmet et 
al., 2021; Nolazco-Flores et al., 2021), or simply be used to measure learning difficulties and creativity 
(Lee & Hobson, 2006; Urban, 2004). New technologies combined with new mathematical methods 
appear to be very useful and provide new possibilities to test mental states, intentions and emotions 
beyond these representations (Watanabe & Kuczaj, 2012). However, the meaning of each dimension 



has been assessed in visual terms only and is therefore not completely objective. New metrics could 
ultimately lead to the discover new cognitive dimensions and meanings, or reinforcing the 
discoveries of this study. Finally, the participants who have drawn for this study are all from France. 
To make these results universal, it could be useful to collect drawings from around the world. 
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Details about metrics, their calculation and a value range for each instruction in dataset#1 

1. μMLE 

μMLE is the maximum likelihood exponent that results from the analyses of the drawing-line length 
distribution. This analysis originates from the random walk or Lévy walk theory (Sueur, 2011; Sueur 
et al., 2011). The random walk analysis determines whether the distribution of drawing lines follows 
a power law or an exponential law. If the distribution follows an exponential law, we expect the 
drawing to be random, meaning that the individual who is drawing does not intend to represent any 
specific thing. In contrast, a power distribution should reflect a non-random and oriented behaviour, 
as found for the daily paths of animals in their natural environments (i.e. goal-oriented and efficient 
movements; Sueur, 2011; Sueur et al., 2011). Details about the use of this metric for drawing analysis 
are developed and detailed in (Martinet et al., 2021). 

As the coordinate scoring of the drawing was continuous (one point per frame), we focused on active 
changes (Byrne et al., 2009; Noser and Byrne, 2014): a selection of points was carried out for each 
drawing via a change-point test under R software (version 1.1.383; CPT, script available in Noser and 
Byrne, 2014). Two consecutive points (i and j) in the drawing determined a step or a vector of a 
length L (i, j). We then calculated the step lengths S on Excel with latitude x and longitude y (in 
pixels). Step lengths between 0 and 10 pixels were removed since they often corresponded to very 
short, inactive movements such as imprecise lines or finger sideslips, and caused inaccuracies. We 
then determined whether the step length frequency distribution of a drawing followed a power law 
(y = a*xμ) or an exponential law (y = a.e x*λ) using the Maximum Likelihood Method (Edwards et al., 
2007; Martinet et al., 2021). Log-likelihood of the exponential and power distributions for each 
drawing could then be compared using the Akaike Information Criterion (AIC). We retained the 
model retained (power or exponential) with the lowest AIC, with a minimum difference of 2 between 
the two AICs (Burnham and Anderson, 2004). All the drawings produced followed a power law. The 
Maximum Likelihood Estimate of the power law exponent μMLE was then used to draw conclusions 
on the efficiency of the representation for each drawing. This index is comprised of values between 1 
and 3. The higher the index, the more the line was considered to be directed, well planned and 
efficient (Bartumeus et al., 2005; Viswanathan et al., 1996). 



 

Figure S1: Boxplot of the μMLE according to instructions. Stars indicate significant difference 
between two instructions with p <0.05. ANOVA test gives a p= 0.0003. 

2. Drawing distance 

Drawing distance is the total distance of drawing in pixels, from the first point to the last. Two 
consecutive points (i and j) in the drawing determined a step or a vector of a length L (i, j). We then 
calculated the step lengths S on Excel with latitude x and longitude y (in pixels). We calculate the sum 
of all lengths S as the drawing distance. 

 

Figure S2: Boxplot of the drawing distance according to instructions. Stars indicate significant 
difference between two instructions with p <0.05. Kruskal-Wallis test gives a p-value <0.0001. 

3. Angle distribution metric 

Goal directedness in animals is assessed by individuals moving in straight lines with limited 
tortuosity, except when they arrive at a food resource site and start to forage. Drawing intentionality 
can be considered similar to animal food research efficiency (Martinet et al., 2021; Martinet and 
Pelé, 2020). Analyses of angle distributions (i.e. turning angles) between two trajectories or lengths 
can be considered as a reliable way to measure goal directedness and tortuosity (Bartumeus et al., 
2008; Hurford, 2009; Potts et al., 2018). A turning angle is the difference in direction for two 
successive vectors or steps. We followed the same methodology as described in 1. μMLE. As 
coordinate scoring of the drawing was continuous (one point per frame), we focused on active 



changes (Byrne et al., 2009; Noser and Byrne, 2014): a selection of points was carried out for each 
drawing via a change-point test under R software (version 1.1.383; CPT). Step lengths between 0 and 
10 pixels were removed as they often corresponded to very short, inactive movements such as 
imprecise lines or finger sideslips, and caused inaccuracies. Function ATAN2 in Excel was then used to 
calculate the angle (in radians) between two consecutive points and convert radians into degrees. 
We applied corrections to only retain angles between 0° and 180°, as movements are oriented. We 
then calculated the survival distribution of angles (i.e. going from 1 or 100% of points to 0) for each 
drawing. A cubic function was fitted to the distribution. Examples of drawings and the respective 
distributions are given in Figure S3. 

 

Figure S3: Analysis of angles distribution. The original drawing is transformed into vectors (i.e. 
trajectories) following the change-point test, and angles are calculated. The angle survival 
distribution is then fitted with a cubic function. 

The cubic function is y=-ax3+bx²-cx+d. The more the distribution looks like a straight line, the lower 
the values of a, b and c will be. The more the curve looks like a sigmoid or inversed power function, 
the higher the values of a, b and c will be. The three constants a, b and c are highly correlated and 
can be combined using a principal component analysis, where one dimension explained 82% of 
variance for dataset#1 (dimension 2 = 15%) and 90% of variance for dataset#2 (dimension 2 = 5%). 
We used the values of dimension 1 as values for the angle distribution metric for each drawing. 



 

Figure S4: Boxplot of the angle distribution metric according to each instruction. ANOVA testing 
provides a P value of 0.329 

4. Minimum convex polygon 

The minimum convex polygon draws the smallest polygon around points with all interior angles 
measuring less than 180 degrees. Minimum convex polygons are common estimators of home range 
(Nilsen et al., 2008) but represent the cover of drawing on the screen, between 0 (no drawing at all) 
to 100% (the drawing covered the entire screen). We used the scissors select tool in GIMP 2.10.22 
(Lecarme and Delvare, 2013; Peck, 2006) to select the minimum convex polygon of drawings. 

 

Figure S5: Boxplot of the minimum convex polygon according to instructions. Stars indicate 
significant difference between two instructions with p <0.05. ANOVA testing provides a P value of 
0.016. 

5. Hurst index 

Details about the calculation of this metric can be found in Beltzung et al. (2021). Fractality or long-
term processes can be measured by different methodological approaches, each of which has its own 
fractal statistical parameter. Here, the difficulty lies in the fact that numerous estimators have been 
defined for each parameter, yet the effectiveness of these very estimators is still debated in the 
literature (Stadnitski, 2012; Stadnytska et al., 2010). Studies often focus on one or a small number of 
estimators without a rigorous reason (such as comparing them). As a consequence, there is no simple 
and systematic way to estimate the long-memory process, which often results in errors or misleading 
conclusions in studies (Karagiannis et al., 2006). The most widespread way to assess and quantify 
long-memory processes in temporal sequences is the estimation of the Hurst exponent H. Indeed, a 
behavioural state is influenced by previous states following two different scenarios: persistence 



(H>0.5) when a positive correlation occurs, meaning that a long sequence is likely to be followed by a 
long sequence in the future, and anti-persistence (H <0.5) when a long sequence is likely to be 
followed by a short sequence, i.e. a negative correlation (Delignières et al., 2005). Here, we 
combined different methods using a PCA as explained in Beltzung et al. (2021).  

 

Figure S6: Boxplot of the Hurst index according to each instruction. Stars indicate significant 
difference between two instructions with p <0.05. ANOVA test gives a p <0.0001. 

6. Temporal Gini index 

The Gini index was calculated on the binary sequences (drawing / non-drawing) and describes the 
uniformity of the distribution. This index is a real number between 0 and 1, where a value of 0 
indicates perfect equality, and a value of 1 indicates maximal inequality. The interpretation of this 
index on behavioural sequences can be questioned, as well as the temporal sequence to consider. 
The Gini index was calculated by using the R package “DescTools” (Signorell et al., 2016). 

 

 

Figure S7: Boxplot of the Gini metric according to instructions. Stars indicate significant difference 
between two instructions with p <0.05. ANOVA test: p <0.0001. 

7. Entropy index 

The Shannon entropy index (Gray, 2011; Leff, 2007) has not been calculated for temporal binary 
sequences, but for the cumulative sum of drawing time at each second. This index characterises the 



quantity of information contained in a variable. The higher the quantity of information, the higher 
the uncertainty (the entropy). For a string of sequences with n distinct sequences, each sequence has 
a frequency of p. The entropy index was calculated by using the R package “DescTools” (Signorell et 
al., 2016). The entropy of Shannon H is calculated according to the formula: 

𝐻𝐻 = −�𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=&

𝑙𝑙𝑙𝑙𝑙𝑙2𝑝𝑝𝑖𝑖 

 

 

Figure S8: Boxplot of the entropy metric according to instructions. Stars indicate significant 
difference between two instructions with p <0.05. ANOVA test: p <0.0001. 

8. Drawing duration 

The duration of the drawing session is defined as the time from the first point on the touchscreen to 
the last, including the time spent drawing and time without drawing between these two points. 

 

 



Figure S9: Boxplot of the drawing duration according to instructions. Stars indicate significant 
difference between two instructions with p <0.05. ANOVA test: p <0.0001. 

9. Number of sequences 

Number of drawing and non-drawing sequences during the test. 

 

Figure S10: Boxplot of the number of sequences according to instructions. Stars indicate significant 
difference between two instructions with p <0.05. Kruskal-Wallis test: p <0.0001. 

10. Drawing speed 

Drawing distance divided by the drawing duration (i.e. duration of drawing only, not including 
duration of non-drawing during the test). 

 

Figure S11: Boxplot of the drawing speed according to instructions. Stars indicate significant 
difference between two instructions with p <0.05. ANOVA test: p <0.0001. 

11. Drawing time proportion 

Duration of drawing divided by the duration of drawing session. 



 

Figure S12: Boxplot of the drawing proportion according to instructions. Stars indicate significant 
difference between two instructions with p <0.05. ANOVA test: p <0.0001. 

12. Mean colorimetric profile 

Mean distribution of intensity levels for the Red, Green, or Blue colours respectively and after 
removal of the white (screen) colour on the parts covered by drawing (after selection with the 
minimum convex polygon). 

 

Figure S13: Boxplot of the mean colorimetric profile according to instructions. Stars indicate 
significant difference between two instructions with p <0.05. ANOVA test: p=0.319. 

13. Standard deviation of the colorimetric profile 

Standard deviation of the distribution of intensity levels for the Red, Green, or Blue colours 
respectively, on the parts covered by drawing (after selection with the minimum convex polygon). 



 

Figure S14: Boxplot of the standard deviation of the colorimetric profile according to instructions. 
Stars indicate significant difference between two instructions with p <0.05. ANOVA test: p=0.675. 

14. Number of colours 

Number of colours used from the ten proposed colours. The ten proposed colours are black, grey, 
red, blue, dark green, light green, sky blue, brown, orange and yellow. 

 

Figure S14: Boxplot of the number of colours according to instructions. Stars indicates significant 
difference between two instructions with p <0.05. Kruskal-Wallis test: p=0.04. 

  



Supplementary figures and tables referenced in the main text 

 

 

Figure S15: correlation chart of the 13 metrics for dataset#1 (first step, after removal of the drawing-
time proportion and correction according to the drawing test time). The diagonal of the graph 
provides the distribution of each metric, whilst the bottom left and the top-right provide the 
correlation figure and the correlation coefficient between two metrics, respectively. Statistical value 
is given with the correlation coefficient: * means p <0.05, ** means p <0.01, and *** means p 
<0.001. 



 

Figure S16a: Examples of Dataset#1 (first step) drawings according to Dimension 1 and Dimension 2, 
provided by the PCA. Dimension 1 may represent representativeness in drawing whilst Dimension 2 
may represent diversity in drawings. 

 

 

Figure S16b: Examples of Dataset#1 (first step) drawings according to Dimension 1 and Dimension 3, 
provided by the PCA. Dimension 1 may represent representativeness in drawing whilst Dimension 3 
may represent periodicity in drawings. 

 



 

Figure S16c: Examples of Dataset#1 (first step) drawings according to Dimension 2 Dimension 3, 
provided by the PCA. Dimension 2 may represent diversity in drawing whilst Dimension 3 may 
represent periodicity in drawings. 



 

Figure S17: Correlation chart of the 14 metrics for dataset#2 (second step). The diagonal of the graph 
provides the distribution of each metric, whilst the bottom left and the top-right provide the 
correlation figure and the correlation coefficient between two metrics, respectively. Statistical value 
is given with the correlation coefficient: * means p <0.05, ** means p <0.01, and *** means p 
<0.001. 

 



 

Figure S18: Correlation chart of the 13 metrics for dataset#2 (second step, after removal of the 
drawing-time proportion and correction according to the drawing test time). The diagonal of the 
graph provides the distribution of each metric, whilst the bottom left and the top-right provide the 
correlation figure and the correlation coefficient between two metrics, respectively. Statistical value 
is given with the correlation coefficient: * means p <0.05, ** means p <0.01, and *** means p 
<0.001. 

 

 

  



Table S1: Loading of the 13 metrics on the three Varimax rotation PCA dimensions (before selection 
of variables with loading superior to 0.4) of Dataset#1 

 
Dim1 Dim2 Dim3 

μMLE  0.639 -0.373 0.314 
Angle distribution 
metric 

  0.347   

Min. conv. pol. -0.451 0.725 -0.159 
Hurst index -0.14 0.195 0.849 
Drawing test time       
Number of sequences -0.115 

 
-0.755 

Drawing speed -0.911 
 

-0.12 
Gini index 0.762 0.301 -0.213 
Entropy index 0.624 0.375 -0.235 
Mean colour profile 0.365 0.758 0.254 
Std. dev. colour profile 0.221 0.296 0.398 
Number of colours 0.716 

 

Drawing distance -0.746 
 

-0.228 
 

Table S2: Mann-Whitney test for each metric of each dimension between the scribbles of toddlers 
and those drawn by adults. p-values<0.05 are in bold print. 

Dimension Metrics W p-value Mean for 
toddlers 

Mean for 
adults 

1 μMLE  101 0.225 -0.07±0.14 -0.12±0.09 
drawing distance 47 0.097 30239±72983 26505±14882 
drawing speed 29 0.007 0.31±0.73 1.04±0.68 

2 Mean colour 
Profil 

93 0.473 0.01±0.09 -0.05±0.16 

Number of 
colours 

118 0.03 2.79±2.68 0.09±1. 

3 Hurst 84 0.769 1.29±1.03 0.71±2.0 
Number of 
sequences 

11 <0.0001 -52.12±33.0 5.39±18.3 
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