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Abstract

We investigate the growth of Widmanstätten structures in metallic alloys with phase field calculations. We show that elastic energy
anisotropy associated with shear dominated transformations is alone sufficient to give rise to plate or needle like precipitates with
constant lengthening rates at constant supersaturations. We show that Ivantsov analytical solutions still provide good estimates
of the diffusion flux around tips even when elasticity is accounted for. A careful analysis demonstrates that, for shear dominated
transformations, (i) the lengthening direction lies in the habit plane determined by one of the minima of the elastic kernel; (ii) the
tip shape and size are equilibrium features, driven by elastic forces, rather than dynamically determined as usually assumed; (iii)
the tip size of acicular precipitates can be rationalized by the value of the elastic kernel in the lengthening direction.

Keywords: phase transformation, phase field, elasticity, Widmanstätten

1. Introduction

Since they have been discovered at the beginning of the 19th

century in meteoritic Fe-Ni [1, 2, 3, 4], Widmanstätten struc-
tures have been observed in many metallic alloys, such as Fe-C
[5], Al-Ag [6], Ag-Cd [7], Cu-Zn [8, 9] and Ti alloys [10, 11],
among others. These microstructures, ensuing from diffusion-
controlled phase transformations, display acicular morpholo-
gies (plates or needles), often growing from grain boundaries of
the parent phase in colonies of precipitates with parallel habit
planes. They are observed at intermediate temperatures or after
coolings at moderate rates. In isothermal conditions, the pre-
cipitates lengthen at constant rate.

Understanding the formation of these microstructures has
long been relying on either the prediction of the lenghtening
kinetics or the description of the interface structure. Along the
first line, all works start with the analysis of the diffusion prob-
lem around self-similar acicular shapes growing at constant ve-
locity, following the pioneer works of [12, 13, 14, 15, 16]. How-
ever, the resulting models have faced two major issues. First,
the diffusion problem is not closed and must be supplied with
a selection criterion to obtain unique tip velocity and radius.
Second, discrepancies were noted between the predictions and
the few available measurements in different alloys, e.g. [17].
Starting in the 60s, Aaronson and co-workers were convinced
that the above descriptions were not sufficient because they do
not account for the interface structure that should play an ac-
tive role in the growth process, explaining both its kinetics and
the resulting morphology. Using TEM observations and bicrys-
tallography, they identified interfacial ledges as the main vec-
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tor of interface propagation. Based on these works, compet-
ing models were proposed that assume that the propagation is
controlled by the diffusion of solute species at the ledge risers
[18, 19, 20]. Unfortunately, these models did not improve the
agreement with the experiments, e.g. [21]. The discussion be-
tween these two routes did not end on some real conclusion, but
rather on a standstill. In fact, it can be noted that all these works
have neglected the role of elastic energy associated with the lat-
tices mismatch, although regularly mentioned as the source of
discrepancies, and sometimes partially accounted for [22, 23].
Using the capabilities of phase field models coupled with elas-
ticity and plasticity [24, 25, 26, 27, 28, 29], Cottura et al.
[30] have shown recently that the general features of Wid-
manstätten structures can be recovered by simply accounting
for the anisotropic elastic energy produced by the change in
crystal structure. Indeed, they have shown that there is a di-
rection of constant lengthening rate provided that the elastic
energy displays a particular dependency with respect to the in-
terface orientation (see also [31] for a discussion on its relation
to the invariant line), that seems to be a feature common to the
different alloys where Widmanstätten structures are observed.
However, although they have clearly shown that the eigenstrain
carries all the necessary information for understanding the di-
rection of growth, the selection mechanism of the tip size has
remained puzzling. This is the issue that we address numeri-
cally in the present work.

After a brief explanation of the phase field model that we
have used, a careful characterization of the steady plate length-
ening in different conditions will be carried out so as to be crit-
ically compared to analytical solutions and available measure-
ments. Using this analysis, a selection criterion for the tip size
and velocity will be proposed.
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2. Phase-field model

The model used in the present work is the same as in [30].
It relies on a phase-field parameter ϕ(x, t) that distinguishes the
matrix (ϕ = 0), the precipitate (ϕ = 1) and the interface (0 <
ϕ < 1). The microstructure is also described by concentration
c(x, t) and displacement u(x, t) fields.

The mesoscopic free energy F̃ of the system is split into three
contributions.

F̃ = Wd3F = Wd3
∫

V
dV

[
fch(ϕ, c) + fint(ϕ) + fel(u, ϕ)

]
(1)

where W and d are respectively the energy density and space
scales and where all quantities in the integral (and so F) are
non-dimensional.
The chemical contribution accounts for the free energy approx-
imated in each phase by a parabola with respect to c, then inter-
polated within the interface,

fch(c, ϕ) =
Kc

2
[
c − h(ϕ)

]2 (2)

where h(ϕ) = 3ϕ2 − 2ϕ3 and where it is assumed, without loss
of generality, that the equilibrium concentrations are 0 in the
matrix and 1 in the precipitate. For simplicity, we have also
considered that the curvature Kc of the free energies with re-
spect to concentration are the same for both phases.
The interface contribution reads:

fint(ϕ) = ϕ2(1 − ϕ)2 +
λ

2
|∇ϕ|2 (3)

with ∇ the non-dimensional gradient operator, scaled by d.
The elastic contribution reads:

fel(u, ϕ) =
1
2
εe

i j(u, ϕ) : Ci jkl : εkl
e(u, ϕ) (4)

where C is the fourth order tensor of elastic constants scaled
by W, supposed to be homogeneous for simplicity. In the
small strain framework, the elastic strain is given by εe

i j =

εi j − ε
∗
i j(ϕ) = 1

2
(
∇iu j + ∇ jui

)
− ε∗i j(ϕ). Considering the matrix

as the reference, the eigenstrain writes ε∗i j = h(ϕ) εT
i j where εT

i j
characterizes the change of crystal structure in the precipitate
with respect to the matrix.

To ensure that the free energy functional decreases with time,
relaxation dynamics are assumed for both c(x, t) and ϕ(x, t).
The time evolutions of these fields read:

∂ϕ

∂t
= −L

δF
δϕ

(5)

∂c
∂t

=
1

Kc
∇2 δF

δc
(6)

where the time scale is defined as τ = d2/D with D the inter-
diffusion coefficient, and where the phase field mobility L is a
positive constant.

Because the relaxation of displacements u(x, t) is much faster
than diffusion, static mechanical equilibrium is considered:

∇ j ·
δF
δεi j

= 0 (7)

All equations are expressed in Fourier space to transform space
differential operators into algebraic operations. Time is dis-
cretized using a semi-implicit first order Euler scheme. Consid-
ering for simplicity homogeneous elastic constants Ci jkl, Eq. (7)
can be solved very efficiently using the Fourier transform of the
normalized Green function for displacements whose inverse is
given by Ω−1

i j (n) = Cikl j nknl where n = k/k is a unit vector of
reciprocal space. Moreover, we can take advantage of Fourier
space to express the elastic energy as:

E =
1
2
−

∫
d3k

(2π)3 B(n) |θ(k)|2 (8)

where the −
∫

is the Cauchy principal value of the integral, and
where θ

(
ϕ(x, t)

)
describes the microstructure (θ

(
ϕ(x, t)=0

)
= 0

and θ
(
ϕ(x, t)=1

)
= 1).

B(n) = ε∗i jCi jklε
∗
kl − niσ

∗
i jΩ jk(n)σ∗klnl (9)

is the elastic kernel, with σ∗i j = Ci jklε
∗
kl. The analysis of our

results will strongly rely on the anisotropy of the elastic energy
density that can be visualized simply with polar plots of this
kernel.

The interface energy σint and width δ are related to the en-
ergy density W and length scale d by σint = Wd

√
λ/(3

√
2) and

δ = 2d
√

2λ, where λ is the non-dimensional gradient coeffi-
cient. We have selected λ = 1.92. This choice ensures that
the interface width δ is large enough with respect to the dis-
cretization length d used for the numerical implementation of
the gradient operator and Fourier transforms. With the present
choice, the interfaces are resolved with 5 to 6 nodes. Moreover,
we have selected Kc = 0.77.
Typical values for the interface energy and width can be ob-
tained by selecting appropriate values for the energy density
scale W and length scale d. For example, d = 0.8 nm and
W = 7.65 × 108 J m−3, interface energy is σint =200 mJ m−1

and interface width is δ = 3.2 nm. Then, apart from section 4,
the elastic tensor is assumed isotropic with Lamé coefficients
λ0 = 200GPa and µ0 = 50GPa. Finally, to ensure that the
overall dynamics is controlled by diffusion, the phase field mo-
bility L must be sufficiently larger than one. We have selected
L = 6.49.

3. Growth dynamics of 2D plates and 3D needles

2D calculations have been performed considering 5120×512
grids. Initially, circular nuclei with radius 20d are inserted at
the center of the boxes, and the matrix is supersaturated with
concentrations c∞ in the range [0.1; 0.35]. According to Cottura
et al. [30], the simplest eigenstrain giving rise to Widmanstätten
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structures writes, in the frame of the computation box ([001]
being perpendicular to the 2D section of interest):

ε∗2D = ε0

0 0 0
0 −1 0
0 0 0

 (10)

with ε0 the amplitude of the eigenstrain, ranging from 1% to
5%. Indeed, this eigenstrain has been shown to generate an
elastic energy highly anisotropic with respect to the interface
orientation: the 2D polar plot of the corresponding elastic ker-
nel B(n) displays two opposite maxima along [010] (noted e3)
and two opposite minima along [100] (noted e1) corresponding
to the habit plane normals (Fig. 1a) such as to make a figure
eight. The analytical expression of B(n) is given in Appendix
A.

3D calculations have been performed considering 128×128×
512 grids. Spherical nuclei with radius 20d are inserted at the
center of the boxes and initial concentrations in the matrix are
set so that the supersaturations range from 0.2 to 0.35. As
shown by Cottura et al. [30], the following eigenstrain in the
frame of the computation box:

ε∗3D = ε0

 0 −1 0
−1 0 0
0 0 0

 (11)

is typical of real systems displaying Widmanstätten structures
(e.g. steels, Ti alloys or brass). The 3D polar plot correspond-
ing elastic kernel is shown in Fig. 1b. It features two pairs of
minima along direction [100], noted e1, and direction [010],
noted e2, and one pair of maxima along direction [001], noted
e3: as for the 2D case, the minima are associated with possi-
ble habit planes. In the simple case of ε∗3D given in (11), the
minima and maximum directions are mutually orthogonal. It
is worth noting that the (ei,3, e3) sections of the 3D polar plot
are similar to the 2D polar plot of ε∗2D, such that a cylindrical
nucleus with axis along either e1 or e2 would give plates similar
to the 2D calculations. However, considering quadratic calcu-
lation boxes with equivalent sides along e1 and e2 together with
an isotropic nucleus and periodic boundary conditions will give
rise to Widmanstätten needles rather than plates.

In 2D, the nuclei grow rapidly as plates with the longest di-
rection along e3 (Fig. 2). In 3D, due to the particular boundary
conditions, the spherical nuclei grow rapidly as needles with
the longest direction also along e3 (Fig. 3). In both cases, the
lengthening rate is constant (after a short transient stage) at a
given supersaturation and can easily be obtained by a linear fit
of length vs time.

In 2D, we have measured the radius of curvature of the tips
following the protocol described in [30]. In 3D, we have fol-
lowed [32] as illustrated in Fig. 3. In both cases, the measure-
ment uncertainty is lower than a grid spacing d. The overall 3D
shape of the tip (corresponding to ϕ = 0.5) is shown together
with sections perpendicular to the lengthening direction e3. The
projections of these sections in the (e1, e2) plane are plotted in
4. The needles display planar sides oriented normal to e1 and

(a)
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(b)

e
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e
2

e
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Figure 1: Polar plots of the elastic kernel with eigenstrain given by (a) ε∗2D and
(b) ε∗3D.

e2 and an axisymmetric tip along e3. The area of the precipitate
section (defined by ϕ > 0.5) is plotted in Fig. 4 as a function of
the distance from the very tip: the slope α of the linear fit gives
the radius of curvature

√
α/π of the corresponding paraboloid

of revolution.

The lengthening velocity V and tip radius R are used to com-
pute the Péclet number P = RV/(2D). P is plotted in Fig. 5
(full symbols) with respect to the tip supersaturation defined as
Ω = c∞ − ci where ci is the interfacial concentration on the
matrix side at the tip. This concentration is obtained by extrap-
olating the concentration profile in the matrix (where φ < 0.05)
close to the diffuse interface along the lengthening axis up to
φ = 0.5.
We have also plotted the predictions of Ivantsov model [12] for
the growth of plates and needle in infinite supersaturated ma-
trix. For a parabolic plate (2D), P is implicitly related to the
supersaturation as:

Ω = Iv2D(P) =
√
πP exp(P) erfc

(√
P
)

(12)

For a paraboloidal needle (3D), the implicit relation reads:

Ω = Iv3D(P) = P exp(P) E1(P) (13)
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Figure 2: Level set ϕ = 0.5 during growth (last recorded time) for ε0 = 4% and Ω = 0.15.
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Figure 3: Needle tip given by level set ϕ = 0.5 (Ω = 0.30 and ε0 = 3% at
t = 9 s). Intersections by transverse planes plotted at z ∈ [1; 19].

where E1 is the exponential integral. It must be stressed that
theses analytical solutions assume local equilibrium at the in-
terface without any influence of curvature or elasticity, i.e. in-
terfacial concentrations are provided by the phase diagram.

Overall, the phase field calculations (full symbols) are close
to Ivantsov solutions (continuous lines). For 2D plates, all
phase field outcomes (red symbols) are slightly above the
Ivantsov red curve, whatever the supersaturations and eigen-
strain amplitudes. For a given eigenstrain, the scaling of P with
Ω is close to Ivantsov scaling (P ∝ Ω2.5 in the range of super-
saturations investigated, slightly above the scaling P ∝ Ω2 cor-
responding to the lowest order expansion of Iv2D when P→ 0).
For 3D needles, the phase field outcomes (black symbols) are
slightly more scattered with respect to the Ivantsov black curve
than in 2D, with values above Ivantsov for 4 and 5% eigen-
strains, and below for 3% eigenstrain. In this last case, the
scaling of P with Ω seems to be larger than Ivantsov. These
differences may have several origins.

(i) First, the periodic boundary conditions are likely to influ-
ence the tip velocity. Indeed, although the 2D periodic
box has been selected by successively increasing its di-
mensions until converging to the same results, this pro-
cess has not been fully possible in 3D due to the associ-
ated computational costs (in terms of CPU and memory).
Still, the ratios between the diffusion lengths D/V to the
lateral sizes of the boxes are only of the order of unity for
the smallest supersaturations in both 2D and 3D (see sup-
plemental material). Consequently, this may not be the
main reason for explaining the differences with Ivantsov

0 10 20 30
z

0

200

400

600

800

S

49 64 79
x

49

64

79

y

Figure 4: Transverse section area S of the needle vs. the distance z from the
tip, determined from the projections of ϕ = 0.5 onto (e1, e2) plane (inset).

solutions.

(ii) Second, the shapes are not strictly parabolic or
paraboloidal. This is pronounced for 3D with flat sides not
far from the tip (Fig. 3). For 2D, we have quantitatively
compared the tip shapes with parabolae, as illustrated in
Fig. 6: the tips are sharper than parabolae with equivalent
tip curvatures (blue circle), with stronger deviations (i.e.
earlier along the long axis) from the parabolae for larger
eigenstrain amplitudes. It must be emphasized that the
shapes do not depend on the growth condition, i.e. super-
saturation c∞, as illustrated in Fig. 6: this is an important
outcome of our calculations that will be elaborated further
in §4.

(iii) Finally, the interface is not a concentration level set, as
clearly shown in Fig. 7. This observation has been over-
looked in [30] where only concentration level sets far
from the tips were plotted. Although it is difficult to
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Figure 5: Péclet number P vs tip supersaturation Ω: plates (2D) in red and
needles (3D) in black. Ivantsov solutions are plotted with lines, phase field
calculations with solid symbols, and experimental data with empty symbols
(see also Tab. 1).

prove that local equilibrium holds at the interface, it can
be shown that Gibbs-Thomson together with elasticity
should play the major role to set the interfacial concen-
trations (see supplemental material).

To conclude this comparison, the predicted deviations from
Ivantsov solutions can be considered as moderate in view of
the significant eigenstrain investigated. Additional calcula-
tions performed with more complex eigenstrains (see §4) pre-
dict a similar proximity to Ivantsov solutions, provided that the
lengthening direction be associated with the maximum of elas-
tic energy, as discussed in [33]. This explains why simplified
models based on Ivantsov solutions are very often successful
when the tip radius is tuned (e.g. [11, 34]).

The validity of Ivantsov solutions for describing Wid-
manstätten growth has often been questioned due to the dis-
agreements observed with some experiments. Hence, we have
compared our results with respect to available experiments to
see whether a better agreement is found. For that purpose, we
have first collected the measurements available in the literature.
Then, we have selected those where all necessary parameters
can really be obtained, in particular where tip radii are provided
(Tab 1). The three resulting sets of values are plotted with open
symbols in Fig. 5: ferrite (bcc) plates in austenite (fcc) in Fe-
C [35] with pentagons; α (fcc) needles grown from β (bcc) in
Cu-Zn [8, 9] with diamonds; and γ (hcp, also noted as δ or ζ in
different phase diagrams) plates growth from α (fcc) in Al-Ag
[6] with triangles. We have intentionally discarded some mea-
surements previously compared to Ivantsov [21]: (i) those con-
cerning alloyed steels [34, 36] because the analysis should ac-

count for the diffusion of all species and possibly for the differ-
ent conditions at the interface (local equilibrium vs. paraequi-
librium); (ii) those related to the dissolution of Widmanstätten
microstructure in Al-15%Ag alloy [37] because dissolution is
not simply reverse growth. Unfortunately, we had also to dis-
card a number of interesting investigations where the tip radius
have been obtained indirectly from the measured kinetics using
some modified Ivantsov solution [15] and the maximum growth
criterion (e.g. [7]).

It seems that the experimental data are not in better agree-
ment with our calculations than with Ivantsov solution, even
if they concern different ranges of supersaturations. It can be
noted that accounting arbitrarily for only 20% of uncertainty
of Péclet number and supersaturation moderates the disagree-
ments (Fig. 5). We believe that this uncertainty can be much
higher owing to the difficulty to retrieve dynamical 3D features
from 2D observations (most often post-mortem), as well as to
estimate accurately supersaturations and diffusivities. In that
respect, a few comments on the data in Tab. 1 are worth to be
done.
In [35], velocities and radii have been obtained from hundred
of measurements with an accuracy of about 5 nm so that they
can be considered as quite reliable (although Fig. 2 and Tab. III
related to the measurements are not consistent in this article).
The supersaturations have been estimated using the Fe-C phase
diagram provided in [35], accounting for the Gibbs-Thomson
effect. It must be stressed that this correction improves signif-
icantly the agreement with Ivantsov. Moreover, in view of the
large supersaturations in the investigated Fe-C alloys, interac-
tions between neighboring plates could be a reason why the data
are below the Ivantsov curve. Finally, as already suggested in
[35], carbon diffusivity is averaged over the concentration range
in austenite. For that purpose, we have used a more recent esti-
mate by [39].
For the needles in Cu-Zn brass, the values provided in [8] at
400 °C and in [9] at 520 °C have been obtained from 20 mea-
surements following a distribution surprisingly flat (Tab. I in
[8]). Moreover, the radii of the thinnest needles could not be
measured and they have been attributed the resolution limit of
50 nm. It is not clear whether the supersaturations have been
corrected to account for the curvature. Finally, the assessment
of the interdiffusion coefficient entering P from the tracer dif-
fusion determined by [40] depends on the thermodynamic de-
scription of Cu-Zn β phase. We have used the thermodynamic
factor proposed in [8] although no detail is given on how it has
been obtained.
For Al-15%Ag, the tip velocities have been determined from
in situ observations using hot stage transmission electron mi-
croscopy. Although not mentioned, it is likely that the number
of measurements is not large due to the difficulty to perform
such experiments. The radius of curvature could not be mea-
sured directly and it has been assumed to be equal to the mea-
sured plate thickness. In case where the tips are very sharp,
such an assumption can overestimate the radii by one order of
magnitude. Moreover, besides the uncertainty associated with
the determination of the supersaturation and diffusivity already
noted for the other alloys, it must be stressed that the plates fea-
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Alloy Ref. Temperature Supersaturation Growth velocity Tip radius Diffusivity Symbol
(°C) (nm s−1) (nm) (×10−14m2 s−1) in Fig. 5

Al – 15 wt.%Ag [6] 400 0.034 6.50 to 7.35 20 1.08 [38] 4

425 0.018 1.41 to 2.62 20 2.27 [38] 4

Cu – 44.1 at.%Zn [8] 400 0.2 160 130 to 250 1.8 3
Cu – 41.1 at.%Zn [8] 400 0.6 4.7 × 103 < 50 1.8 3

[9] 520 0.5 30 × 103 100-200 160 3

Fe – 0.24 wt.%C 0.686 21 × 103 9.5 38.3 [39] D
Fe – 0.33 wt.%C [35] 700 0.570 13 × 103 15.5 43.3 [39] D
Fe – 0.43 wt.%C 0.440 6 × 103 18 49.6 [39] D

Table 1: Growth conditions and features inferred from in situ and post mortem measurements of Widmanstätten structures in different binary alloys.

0−4−8−12
z/R
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−6

−4

−2
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y/
R

c∞=0.20
c∞=0.25
c∞=0.30

Figure 6: Tip shapes rescaled with the tip radius R (defined by the blue circle)
during steady-state growth with ε0 = 4% for different supersaturations. Dashed
line: parabola with unit curvature radius.

ture very anisotropic shapes. Finally, it is also likely that growth
in thin foils is modified with respect to growth in bulk.

Hence, although there is no doubt that the experimental data
are invaluable, it must be recognized that they are excessively
difficult to obtain and that their processing require many careful
steps. Considering their insufficient accuracy, it seems they can-
not be used to draw definite conclusion concerning their agree-
ment with the Ivantsov predictions.

4. Tip shape and size

Two important outcomes of the previous section are:

• the tip shapes seem to be independent of the growth con-
ditions (Fig. 6);

−60 −40 −20 0 20
z

−40

−20

0

20

40

y

20 d

c = 0.04
c = 0.05

c = 0.06
c = 0.07

Figure 7: Concentration level sets in matrix close to interface (continuous and
dashed black lines indicate level sets ϕ = 0.5 and ϕ = 0.05 respectively) during
steady-state growth with ε0 = 3% and Ω = 0.3.

6



• they are not parabolic or paraboloidal (Fig. 6) as usually
assumed in analytical modeling of Widmanstätten plates.

Both statements are consequences of the role of elasticity
anisotropy that can be examined with polar plots of the elas-
tic kernel B(n).

To check that our results are not specific to the very sim-
ple eigenstrains in Eqs. (10) and (11), we have considered in
this section the eigenstrain related to the transformation from
bcc β phase to hcp α phase in Ti or Zr and their alloys. This
eigenstrain can be expressed theoretically following the Burg-
ers mechanism [41] and using the lattice parameters of both
phases. Shi et al. [42] have proposed the following one:

ε∗Ti = 10−2

−8.3 −0.9 0
−0.9 12.3 0

0 0 3.5

 (14)

based on room temperature lattice parameters and accounting
for interfacial misfit dislocations observed by TEM. It describes
a shear dominated transformation like Eqs. (10) and (11), but
it is also associated with some volume variation. It is worth
noting that different shear amplitudes can be found depending
on the way the lattice parameters are obtained. For example, an
eigenstrain closer to Eq. (11) with ε0 = 10% is obtained using
lattice parameters measured at high temperature by synchrotron
Xray diffraction in [43, 31, 33]. Hence, working with Eq. (14)
will emphasize the generic nature of the results obtained with
the simple eigenstrains.

Our aim is to demonstrate a correlation between the tip shape
and the elastic kernel B(n) (Eq. (9)). To do so, we have modified
the shape of the elastic kernel by artificially changing the values
of the elastic constants. For convenience, we have used a cubic
elastic tensor in the reference frame used in (14), and we have
controlled the shape of the elastic kernel B(n) by modifying the
anisotropy ratio A = 2C44/(C11−C12). More precisely, the three
components C11, C12 and C44 have been determined so as to
give the same bulk modulus K = 1/3(C11 + 2C12) = 55 and the
same apparent isotropic shear modulus G(C11,C12,C44) = 13,
as defined by Kröner homogenization scheme [44, 45]. The
shape change of the elastic kernel for the investigated parameter
range (A ∈ [1; 5]) is presented in Fig. 8. B(n) always displays
two pairs of minima. However, the overall shape of the elastic
kernel is significantly modified between A=1 (Fig. 8a) and A=5
(Fig. 8b). Note that we observed numerically that the directions
of the minima do not do not change when varying the value of
A in the considered range.

To relate the elastic kernel to the tip shape, we have per-
formed 2D simulations. The relevant plane for the 2D simu-
lations, where growth is able to reach a stationary stage, is se-
lected considering the polar plot of B(n) as follows[30]. We first
define e1 as the direction of one pair of minima. e2 is the vector
normal to e1 in the plane containing the two pairs of minima
(as shown in Fig. 8, the pairs of minima are not normal to each
others contrary to Fig. 1)). Then e3 is defined as e3 = e1 × e2
and lies in the habit plane by construction. The 2D simulation
is then performed in the plane normal to e2. The relevant elastic

kernel for the 2D simulations is the cut of the 3D kernel in the
(e1, e3) plane ( black circles in Fig. 8).

These sections of the elastic kernels in plane (e1, e3) are plot-
ted for A=1, 3 and 5 in Fig. 9 to highlight the change in the
maxima directions when increasing A beyond a threshold value
close to 4. For low A, the maxima are aligned with direction
e3 and B(n) decreases monotonously from e3 to e1. For A=5,
the maxima are at 45◦ with respect to e3 (and e1) such that the
variation of B(n) is not monotonous between e3 and e1.

We now investigate how the shape of the elastic kernel im-
pacts the tip shape and kinetics using 2D phase field simula-
tions with different values of A between 1 and 5. As expected,
for symmetry reasons, the lengthening always proceeds along
the horizontal direction, i.e. along e3. The corresponding tip
shapes during growth with c∞ = 0.25 are plotted in Fig. 10.
Whereas for A=1 the tip is still acicular as in the previous sec-
tion, the difference is striking for A=5 with a blunted tip with a
nearly flat side perpendicular to the lengthening direction. This
comparison clearly shows that the tip shape is related to how the
elastic kernel behaves far from the habit plane direction e1 and
cannot be predicted by the usual expansion of B(n) around e1
(e.g. §8.1.2 and §8.1.3 in [46]). Despite the lack of close analyt-
ical form to predict the shape, the present calculations provide
some numerical evidence that acicular tip shapes are obtained
when the lengthening direction e3, perpendicular to the habit
plane normal e1 by symmetry, corresponds to the maximum of
the elastic kernel in plane (e3, e1).

As mentioned at the beginning of the section, the tip size does
not seem to depend on the growth condition for a given eigen-
strain (e.g. Fig. 6). This is in contrast with dendritic growth
during solidification [47, 48] as in other diffusion-controlled
growth problems where the selection is not ensured by the dif-
fusion process [49]. Indeed, the calculations of §3 have shown
that the larger ε0 the thinner the plates, with tip radii indepen-
dent of the undercooling in the investigated range. It appears
that this trend is not specific to the simple eigenstrains ε∗2D or
ε∗3D, provided that there exists a plane where the elastic kernel
features a figure eight with only one maximal direction. This
shape is likely to be obtained for any shear dominated transfor-
mation with moderate elastic constant anisotropy, as illustrated
above. As can be inferred from Fig. 10, the tip size seems to
be related to the maximum value Bmax of the elastic kernel in
plane (e1, e3): the largest the maximum, the sharpest the tip. In
order to substantiate this statement, we have performed calcula-
tions considering two different elastic kernels displaying figure
eight (A = 1 and A = 2) with the same maximum, as shown
in Fig. 11. To keep the same maximum, the isotropic bulk and
shear moduli were rescaled. We have measured the steady state
tip radii in both cases: they are equal within the precision of
the measurement (their difference is about 8% of d). Hence,
Bmax is the most important quantity to rationalize the tip radius
selection, at least for figure eight B(n). Qualitatively, it is not
surprising that the tip size results from the competition between
the interface energy and some volumic elastic energy at the tip
related to Bmax.

We have gathered the results for plates (2D) and needles
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Figure 8: Polar plot of the elastic kernel with eigenstrain ε∗Ti and isotropic elas-
tic constants with (a) A = 1 and (b) A = 5. 2D computations are performed in
plane (e3, e1).

(3D) for all investigated supersaturations and eigenstrains in
Fig. 12, plotting the tip radius with respect to Bmax. The col-
lapse of all the results into a single curve for a given eigenstrain
whatever the growth conditions suggests that the tip size would
be an equilibrium property. Thus, we have computed equilib-
rium shapes for the simple eigenstrains, considering various
box sizes, discretizations, and volume fractions (ranging from
3 to 11% to avoid any interactions with periodic images). To
rapidly obtain equilibrium shapes, we have solved only Allen-
Cahn equation (5) under the constraint of constant phase frac-
tion. For a given Bmax, all calculations have converged toward
the same equilibrium plate shape with a single tip radius (with
variations smaller than fractions of d) . In Fig. 12b for needles,

e
3

e
1

Figure 9: Polar plot of the elastic kernel for ε∗Ti and two Zener factors A = 1
(isotropic), A = 3 and A = 5.

5 d

e1

e3

A=1
A=3
A=5

Figure 10: Tip shapes (ϕ = 0.5) during growth in the same conditions (c∞ =

0.25) corresponding to Fig. 9 (the level sets have been shifted such that the tips
are all at the same location).

the small discrepancies between the growth and equilibrium
curves are smaller than the grid spacing d and can be attributed
to the interactions with periodic images due to smaller boxes
than in 2D. Using the analogy between plates and dislocations
[50, 46, 51], it is easy to understand that lengthening is ener-
getically more favorable than thickening, such that equilibrium
plate thickness increases only very slowly with length. More-
over, although the equilibrium plate thickness depends slightly
on volume fraction, the tip radius is smaller than the plate thick-
ness and do not exhibit any variations larger than a few percents
of d, in the range of volume fractions considered. Unfortu-
nately, we were not able to perform similar equilibrium cal-
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Figure 11: Polar plot of the elastic kernel for ε∗Ti and two sets of elastic constants
corresponding to A = 1 and A = 2 rescaled so as to display the same Bmax.

culations for eigenstrain (14) because of the significant elastic
interactions between periodic images even in long boxes due
to large Bmax. The resulting equilibrium values are plotted in
Fig. 12 with black lines and white dots. The agreement be-
tween these equilibrium values and the steady growth values
is excellent. We can conclude that the tip shape and size of
Widmanstätten structures are equilibrium properties when only
elasticity anisotropy is accounted for. It is likely to remain
the main selecting phenomenon, even when other sources of
anisotropy (interface energy and mobility) are present.
Using realistic scales for the parameters (§2), typical values
of the tip radius decreases from about 25 nm for Bmax =

O(10−2) GPa to a few nm for Bmax = O(1) GPa. The high-
est Bmax are generated by eigenstrains with large shears, typ-
ically around 20% for ε∗Ti corresponding to the red triangles
in Fig. 12a. Tip radii are usually reported to span only one
order of magnitude from tens to hundreds of nm (Tab. 1 and
[7, 15, 34, 36, 37]). Although the selection curves in Fig. 12 are
not universal as they depend on eigenstrains, elastic constants
and interface energies, they still give clues about the elastic en-
ergy densities that must be conveyed at the tips to reach radii
with experimental order of magnitudes. It is clear that Bmax
must be decreased by at least one order of magnitude for plates
when considering eigenshear predicted by cristallographic anal-
ysis of transformations involving fcc, bcc and hcp structures.
It is worth stressing that increasing interfacial energy does not
drastically change this statement because we had already con-
sidered a significant value of σint = 200 mJ m−2. Different phe-
nomena can contribute to decrease the elastic energy at the tip.
First, anisotropic elastic constants can have a significant im-
pact (Fig. 10). Second, concentration fields can also play a
role when the eigenstrain depends on concentration, e.g. fol-
lowing Vegard’s law. Although preliminary calculations have
shown that the relaxation associated with this process is mod-
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Figure 12: Tip radius vs. Bmax for different supersaturations (colors) and dif-
ferent eigenstrains: (a) ε∗2D (circles) and ε∗Ti (triangles) for plates (2D); (b) ε∗3D
for needles (3D). The corresponding equilibrium values are plotted with white
symbols.

erate in the case of eigenstrains with perfect invariant planes
[52], it could explain the slight variation of the tip radii mea-
sured by [35] at 700 °C with the carbon content (Tab. 1). Third,
at high temperature, plasticity is likely to relax stresses at the
tip. When described by isotropic J2 constitutive laws, plasticity
does not seem to change the selection process, keeping the same
tip shape as shown in [53]. Finally, misfit compensating in-
terfacial defects such as disconnections are likely to contribute
significantly to relax elastic energy so that the tip radius in-
creases. They can be accounted for by introducing an effective
eigenstrain as shown in [42]. Hence, we expect that accounting
for the relaxation processes will not change the conclusions of
the present work about the selection of the tip shape, but will
decrease Bmax and increase the tip size in agreement with ex-
perimental observations. Still, below a sufficiently small elastic
anisotropy, a crossover towards a dendrite-like growth with an-
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other selection criterion cannot be discarded.
A careful investigation of the effect of these relaxation pro-
cesses on the tip selection is under progress.

5. Conclusion

Considering a broader range of supersaturations and eigen-
strains than in [30], we have shown that the important fea-
tures of Widmanstätten structures can be recovered by consid-
ering the anisotropic elastic energy generated by shear domi-
nated eigenstrains: acicular morphologies (plates or needles)
and constant lengthening rates at constant supersaturations. We
have confirmed that the plates or needles lengthen at constant
velocity along a particular direction perpendicular to two min-
ima of the elastic kernel. We have also found that the Péclet
number depends only on the supersaturation of the matrix and
that this dependency is not far from Ivantsov analytical solu-
tions for parabolic and paraboloidal shapes. One of the major
outcome of the present study is that elasticity selects the tip
shape and size, independently of the growth conditions. Conse-
quently, when there is no other source of anisotropy than elas-
ticity, the tip shape and size can be obtained by equilibrium
calculations. We have shown numerically how the tip shape is
related to the shape of the elastic kernel in the plane containing
the habit plane normal and the lengthening direction. When the
elastic kernel features in this plane a maximum in the length-
ening direction, the tip is acicular. In this case, the tip size is
shown to depend mainly on this maximum. Conversely, when,
within this plane, the direction of the maximum of the elastic
kernel deviates from the lengthening direction, the tip displays
a blunted tip with a nearly flat side perpendicular to the length-
ening direction.

The present work opens new perspectives for estimating the
growth kinetics of Widmanstatten structures. First, our calcula-
tions have proved that Ivantsov solutions remain good estimates
for the solute flow at the tips even when elasticity is playing a
major role, changing the tip shape and the interface concentra-
tions. Indeed, moderate differences with respect to these solu-
tions have been found to be lower than common uncertainties
on diffusion coefficients. This explains why the regular use of
these solutions has been partly successful, e.g. [54] for a recent
example. Second, we can deduce from the present study that the
tip size can be computed independently from elasticity equilib-
rium calculations rather than ensuing from an ad hoc maximum
velocity criterion where the interface energy is tuned. More-
over, our finding suggests to revisit the available experimental
data and to perform new experiments where the difficult mea-
surements of the tip sizes could be avoided, provided that the
eigenstrain can be determined. Still, further work is needed to
substantiate the new selection criterion, in particular how re-
laxation processes such as plasticity can be accounted for in
equilibrium calculations.

Appendix A. Elastic kernel for ε∗
2D

For isotropic elasticity, the Fourier transform of the Green
function for displacements reads [46]:

Ωi j(n) =
δi j

µ
−

1
2µ(1 − ν)

nin j (A.1)

where µ is the shear modulus, and ν the Poisson ratio. For ε∗2D
Eq. (10), the eigenstress reads:

σ∗i j = −ε0

(
2µν

1 − 2ν
δi j − 2µδi2δ j2

)
(A.2)

In the (001) plane we have n3 = 0 such that B(n) simplifies to:

B(n) = σ∗22ε0 −
(
σ∗11n1

)2
Ω11 −

(
σ∗22n2

)2
Ω22

−2σ∗11n1 σ
∗
22n2 Ω12

(A.3)

with n1 = cos θ and n2 = sin θ.
Using Eq. (A.2) and Eq. (A.1), after tedious but trivial algebra
B(n) becomes:

B(n) =
2µ

1 − ν
ε2

0 (cos θ)4 (A.4)

References

References

[1] G. Thomson, On the malleable iron – essai sur le fer malléable trouvé
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[53] M. Cottura, B. Appolaire, A. Finel, Y. Le Bouar, Plastic relaxation during
diffusion-controlled growth of Widmanstätten plates, Scripta Materialia
108 (2015) 117–121.

[54] J. Yin, L. Leach, M. Hillert, A. Borgenstam, C-curves for lengthening of
Widmanstätten and bainitic ferrite, Metallurgical and Materials Transac-
tions A 48 (2017) 3997–4005.

11


