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ARTICLE

Practical iridium-catalyzed direct α-arylation of
N-heteroarenes with (hetero)arylboronic acids
by H2O-mediated H2 evolution
Liang Cao1, He Zhao1, Rongqing Guan1, Huanfeng Jiang 1, Pierre. H. Dixneuf2 & Min Zhang 1✉

Despite the widespread applications of 2-(hetero)aryl N-heteroarenes in numerous fields of

science and technology, universal access to such compounds is hampered due to the lack of a

general method for their synthesis. Herein, by a H2O-mediated H2-evolution cross-coupling

strategy, we report an iridium(III)-catalyzed facile method to direct α-arylation of N-

heteroarenes with both aryl and heteroaryl boronic acids, proceeding with broad substrate

scope and excellent functional compatibility, oxidant and reductant-free conditions, opera-

tional simplicity, easy scalability, and no need for prefunctionalization of N-heteroarenes. This

method is applicable for structural modification of biomedical molecules, and offers a prac-

tical route for direct access to 2-(hetero)aryl N-heteroarenes, a class of potential cyclome-

talated C^N ligands and N^N bidentate ligands that are difficult to prepare with the existing α-
C-H arylation methods, thus filling an important gap in the capabilities of synthetic organic

chemistry.
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2-(Hetero)aryl N-heteroarenes represent a class
of important compounds in numerous fields
of science and technology, as they are

extensively applied for the development of bioactive molecules,
drugs, functional materials, ligands, and chemosensors1–3. For
instance, N-Heteroarenes 1-3 illustrated exhibit diverse interest-
ing bioactivities (Fig. 1)4–6. Selexipag (uptravi) 4 as a top-selling
drug is used for the treatment of cardiovascular diseases7,8. 2-
Pyridyl N-heteroarenes 5 possess unique binding capability
towards various metals, which make them highly useful bidentate
ligands in catalysis and organometallic chemistry9–11. In addition,
2-aryl N-heteroarenes also play a key role in photochemistry and
functional materials12–17, as they can serve as C^N ligands to
generate cyclometalated complexes with diverse photophysical
properties (Fig. 1 example 6).

Due to the widespread applications, the introduction of (het-
ero)aryl groups to the α-site of N-heteroarenes is of significant
importance, as it enables key step to access various desired 2-
(hetero)aryl N-heteroarenes. Conventionally, such compounds
are synthesized by Pd-catalyzed Suzuki cross-coupling of 2-
halogenated N-heteroarenes with arylboronic acids18. However,
the halo substrates used are often hard to prepare due to the
difficulties in the control of the chemo- and regioselectivity
during the halogenation processes. Later, the C–C cross-coupling
at C2-position of quinolines or related N-heterocycles was
achieved with ArZnEt and Ni(0) catalyst19,20, or with ArMgX by
using Fe(III)21or Co(II) catalyst22,23, or preferentially with aryl
bromides in the presence of Rh(I) catalyst but at 175–190 °C24,25

(Fig. 2a). Nevertheless, the need for high reaction temperatures or
stringent protecting operations toward air and moisture-sensitive
organometallic agents limit the practicality of these synthetic
protocols. In recent years, Minisci-type radical coupling has also
been nicely employed to arylate the α-C–H bond of N-
heteroarenes (Fig. 2b)26–31, but the related transformations gen-
erally produce several regioisomers, and consume excess of less
environmentally benign oxidants (K2S2O8 and Selectfluor). The
substrates containing oxidant-sensitive groups (e.g., –NR2 and
–SR) do not allow to afford the desired products. Moreover, all
the above-described α-C-H arylation protocols19–31 are incom-
patible with heteroaryl bromides, metallic agents, and carbox-
ylates, thus the preparation of 2-heteroaryl N-heteroarenes
including N^N bidentate ligands is restricted. In this context,
there is a high demand for strategies enabling the direct and
efficient introduction of both aryl and heteroaryl groups into the
α-site of N-heteroarenes, preferably with readily available and
stable feedstocks 32,33.

Inspired by our recent discovery of hydrogen-transfer-
mediated α-functionalization of 1,8-Naphthyridines with

tetrahydroquinolines under iridium catalysis (Fig. 3a)34, we were
motivated to test a reductive α-arylation of non-activated qui-
noline A1 with p-tolyboronic acid B1. However, with the same
iridium(III) catalyst system, the reaction of A1 and B1 in t-amyl
alcohol employing different reductants (such as i-PrOH35–37,
NH3BH3

38, Hantzsch esters39,40, HCO2H41, and HCO2Na42,43)
all failed to afford the desired 2-aryl tetrahydroquinoline C1′
(Fig. 3b). Interestingly, the absence of reductant resulted in the
production of 2-(p-tolyl)quinoline C1 in 22% yield at 110 °C.

Here, we wish to report a practical iridium-catalyzed direct α-
arylation of N-heteroarenes with both aryl and heteroarylboronic
acids by a H2O-mediated hydrogen-evolution cross-coupling
strategy (Fig. 3c), which offers a practical platform for direct
structural modification of pyridine-containing molecules includ-
ing drugs and functional materials, and facile preparation of N-
heteroarene bidentate ligands as well.

Results
Investigation of reaction conditions. Initially, we wished to
screen an efficient reaction system and the coupling of substrates
A1 and B1 was chosen as a model system to evaluate different
parameters (Table 1). At first, the reaction in t-amyl alcohol was
performed at 110 °C for 24 h by testing different catalyst pre-
cursors (Ir(III), Ir(I), Ru(0), and Pd(II)). [Cp*IrCl2]2 exhibited
the best performance to afford product C1 in 22% yield (entries
1–4). So, [Cp*IrCl2]2 was utilized to further evaluate a series of
additives (entries 5–8), the results showed that the bases had a
detrimental effect on the reaction (entries 5 and 6), whereas
amino acids, such as glycine and L-proline, significantly improved
the product yields, and the use of 20 mol% L-proline showed to
be the best choice (entries 7 and 8). Then, we tested different
solvents, we noticed that the reaction performed in dry 1,4-
dioxane failed to produce any product C1 (entry 9), whereas the
use of aqueous solution significantly increased the product yield
to 60% (entry 10), which clearly implies that the presence of H2O
plays a decisive role on the product formation. Interestingly, the
mixed solution of H2O and 1,4-dioxane (v/v= 10/1) further
improved the yield to 72% (entry 11). However, change of volume
ratios was unable to further increase the product yield (entry 12).
In comparison, H2O in combination with other solvents in a
volume ratio of 10: 1 showed to be inferior to the mixed solution
of H2O and 1,4-dioxane (entries 13–15). Decrease or increase of
the reaction temperature also failed to improve the reaction
efficiency (entry 16). The blank experiments indicated that only
the presence of both [Cp*IrCl2]2 and L-proline can constitute an
efficient catalyst system (entries 17 and18). Finally, the applica-
tion of other iridium catalysts showed that they were inferior to
[Cp*IrCl2]2 (entry 19). Hence, the optimal conditions are as
shown in entry 11 when the reaction is performed in mixed H2O
and 1,4-dioxane solution (v/v= 10/1) at 110 °C for 24 h in the
presence of 1 mol% of [Cp*IrCl2]2 and 20 mol% of L-proline.

Substrate scope. With the optimal reaction conditions in hand,
we then examined the generality of the synthetic method. First,
quinoline A1 in combination with a wide array of arylboronic
acids B (see Supplementary Fig. 1 in Supplementary Information
(SI) for structural information) were examined. As illustrated in
Fig. 4, all the reactions proceeded smoothly and furnished the
desired products in good to excellent isolated yields (C2–C28),
these products have the potential to serve as C^N ligands and
generate cyclometalates16,17. Interestingly, a variety of function-
alities (i.e., alkyl, –OMe, –SMe, –F, –Cl, –Br, –SiMe3, –COMe,
–CO2Et, –CF3, –NO2, acetal, –OPh, and–NPh2) on the aryl rings
of boronic acids were well tolerated, and the retention of these
functional groups offers the potential for molecular complexity
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Fig. 1 Selected examples containing useful 2-(hetero)aryl N-
heteroarenes. Structurally related pharmaceuticals, ligands, and
photocatalyst.
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via further chemical transformations. In general, arylboronic
acids bearing electron-donating groups (C4–C6, C8–C9, and
C20–C22) afforded the products in higher yields than those of
arylboronic acids with strong electron-withdrawing groups (C15–
C19), implying that the reaction involves a nucleophilic coupling
step. Besides, ortho-substituted arylboronic acids resulted in
relatively lower yields (C3, C7, and C10), showing that the steric
hindrance has a certain influence on the reaction. In addition to
arylboronic acids, heteroaryl boronic acids such as indolyl, pyr-
idyl, furanyl, and thiophenyl ones (B24–B28) were also amenable
to the transformation, affording the desired 2-heteroaryl N-het-
eroarenes in moderate yields (C24–C28).

Then, we screened the reaction with a variety of N-
heteroarenes (A2-A22, see Supplementary Fig. 1 for their
structures) employing p-tolyboronic acid B1. First, a variety of
quinolines with different substitution patterns (A2–A18) were
tested. As illustrated in Fig. 5, all the substrates underwent
smooth cross-coupling to generate the desired products in
moderate to excellent yields upon isolation (C29–C45). A series
of functional groups on quinolyl skeleton (i.e., –Me, –OMe, –F,
–Cl, –Br, –I, –CO2Me, –NO2) were also well tolerated, and N-
heteroarenes containing electro-withdrawing groups gave rela-
tively higher yields (C34-C37, C44 and C45) than those of
electron-rich ones (C33 and C43), which is rationalized as the

electron-deficient quinolines are beneficial to nucleophilic
coupling with arylboronic acids. Except for quinoline derivatives,
other types of N-heteroarenes such as quinoxaline, quinazo-
line, 1,5-naphthyridine, 1,8-naphthyridine, imidazo[1,2-a]pyra-
zine, 7,8-benzoquinoline, phenanthridine, and thieno[3,2-b]
pyridine (A19-A26) were also compatible coupling partners to
react with p-tolyboronic acid B1, delivering the desired cross-
coupling products in reasonable yields (C46–C53). Noteworthy,
reactants A19-A22 have two reactive α-sites, but the reaction only
generated mono-arylated products even in the presence of excess
boronic acids, showing that the reaction merits unique chemos-
electivity. In addition, the more challenging pyrimidine and
pyrazine can also give the corresponding products C54 and C55
by prolonging the reaction time. Interestingly, by introducing 20
mol% of CF3COOH as the activating agent, the α-arylation of
pyridine derivatives was also successful, albeit the product yields
were somewhat low (C56-C58). As shown in Figs. 4, 5, the
demonstrated examples indicate that the synthetic protocol
showed broad substrate scope and excellent functional group
compatibility, regardless of oxidant and acid-sensitive ones (C9
and C23).

The preparation of N-bidentate ligands with the existing C–H
arylation protocols still remains an unresolved goal due to the
difficulties in the preparation of 2-heteroaryl organometallic
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Table 1 Optimization of reaction conditionsa.

Entry Catalyst Additive Solvent C1 (%)b

1 [Cp*IrCl2]2 – t-AmOH 22
2 [IrCl(cod)]2 – t-AmOH <5
3 Ru3(CO)12 – t-AmOH 0
4 Pd(OAc)2 – t-AmOH 0
5 [Cp*IrCl2]2 K3PO4 t-AmOH Trace
6 [Cp*IrCl2]2 Cs2CO3 t-AmOH Trace
7 [Cp*IrCl2]2 Glycine t-AmOH 35
8 [Cp*IrCl2]2 L-proline t-AmOH (37, 40, 35)c

9 [Cp*IrCl2]2 L-proline dry 1,4-dioxane –
10 [Cp*IrCl2]2 L-proline H2O 60
11 [Cp*IrCl2]2 L-proline H2O/1,4-dioxane 72d

12 [Cp*IrCl2]2 L-proline H2O/1,4-dioxane (66, 70)e

13 [Cp*IrCl2]2 L-proline H2O/t-AmOH 40
14 [Cp*IrCl2]2 L-proline H2O/DMSO 35
15 [Cp*IrCl2]2 L-proline H2O/DMF 30
16 [Cp*IrCl2]2 L-proline H2O/1,4-dioxane (65, 72) f

17 – L-proline H2O/1,4-dioxane 0
18 [Cp*IrCl2]2 – H2O/1,4-dioxane 48
19 Ir complexes L-Proline H2O/1,4-dioxane (<5, <5, 32) g

Cp* 1,2,3,4,5-pentamethylcyclopentadiene, cod 1,5-cyclooctadiene, DMSO dimethyl sulfoxide, DMF N,N-dimethylformamide
a Unless otherwise stated, the reaction in t-amyl alcohol (1.5 mL) was performed with A1 (0.3 mmol), B1 (0.36 mmol), catalyst (1 mol%), additive (20mol%) at 110 °C for 24 h under N2
b Isolated yield
c Yields are with respect to use of 10 mol%, 20mol%, and 40mol% L-proline, respectively
d Mixed H2O and 1,4-dioxance solution in a volume ratio of 10:1
e Yields are with respect to used mixed H2O and 1,4-dioxane solution in volume ratios of 9:1 and 11:1, respectively
f Yields are with respect to the temperatures at 100 °C and 120 °C, respectively.
g Yields are with respect to use of catalyst [IrCl(cod)]2, [Ir(OMe)(1,5-cod)]2, IrCl3·3H2O, respectively
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Fig. 4 Synthesis of 2-aryl quinolines by variation of arylboronic acids. Reactions were conducted on a 0.3 mmol scale under the standard conditions. The
isolated yields are reported.
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reagents and in situ formation 2-heteroaryl radicals19–31. Herein,
we successfully addressed such an issue by utilizing our synthetic
method. As shown in Fig. 6, representative pyridin-2-yl and
quinolin-8-yl boronic acids (B29 and B30) were employed to
react with quinoline A1 and quinoxaline A19, respectively. All
the reactions smoothly afforded the desired cross-coupling

products in moderate yields. Interestingly, these obtained N^N
bidentate ligands (C59–C63) and the commercially available 2,2′-
bipyridine as well as 1,10-phenanthroline all did not undergo
further α-arylation even in the presence of excess arylboronic
acids, presumably because they can coordinate to the Ir(III)
catalyst, and hamper the participation of Ir(III) in activation of
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these bis-nitrogen heteroarenes. Thus, the present work offers a
practical platform for the direct and selective preparation of
valuable N-bidentate ligands 9–11.

Mechanistic investigations. To gain mechanistic insights into the
α-C–H arylation reaction, several control experiments were car-
ried out (Fig. 7). First, the model reaction does not occur at all in
the absence of Ir(III) catalyst (Table 1, entry 17), and both 1,2,3.4-
tetrahydroquinoline (A1-a) and dihydroquinolines (A1-b and
A1-c) were unable to couple with p-tolyboronic acid (B1) to yield
product C1 (Fig. 7a) under the standard conditions, showing that
the reaction involving tetrahydroquinoline and dihydroquinoline
as the intermediates is not likely, as it was the case for reductive
cross-coupling of N-heterocycles in t-amyl alcohols34, and the
catalyst plays a crucial role in initiating the reaction. Upon a
concurrent competition experiment of p-tolyboronic acid B1 with
quinoline A1 and its α-deuterated counterpart A1-d (Supple-
mentary Fig. 2), 1H-NMR analysis showed a kinetic isotope effect
(KIE) value of 1.4 (Supplementary Fig. 3), indicating that the
cleavage of α-C-H bond of quinoline A1 is not the rate-
determining step in the reaction (Fig. 7b). Noteworthy, after
completion of the reaction, B(OH)3 and H2 by-products44–46

were detected by means of 11B-NMR and GC, respectively
(Figs. 7c and 7d, see Supplementary Figs. 4 and 5, Supplementary
Table 1). To further understand the role of L-proline in the
reaction, we prepared complex Cp*Ir(L-Pro)Cl from [Cp*IrCl2]2
and L-proline (Fig. 7e). The application of Cp*Ir(L-Pro)Cl in the
model reaction resulted in product C1 in 75% yield, whereas the
combination of this complex with additional L-proline failed to
improve the product yields (Fig. 7f). In comparison, the use of
[Cp*IrCl2]2 catalyst without L-proline only gave a 48% product
yield (Table 1, entry 18). These experiments indicate that Cp*Ir

(L-Pro)Cl is the reaction catalyst, and L-proline serves as a ligand
to form the iridium catalyst.

Although the mechanistic details have not been fully
elucidated, a plausible reaction pathway for the model reaction
is depicted in Fig. 8 based on the above-described findings.
Initially, the L-proline serves as a ligand47–49 of Ir(III) metal
species (Fig. 7e) to form the complex [IrIIIX3Ln]. The
transmetalation19,20 between p-tolyboronic acid B1 and
[IrIIIX3Ln] forms aryl-Ir complex Int-1 with the elimination of
XB(OH)2. The metathesis of XB(OH)2 and H2O produces HX
and B(OH)3 (detected by 11B-NMR, Supplementary Fig. 4). Then,
quinoline A1 undergoes carbon-Ir bond insertion of complex Int-
1 into its imino motif (Int-2), and the subsequent β-hydride
elimination from Int-2 gives rise to the desired product C1 along
with the generation of metal hydride species [H-IrIIIX2Ln] (Int-
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3). Finally, the interaction of the hydride in [H-IrIIIX2Ln] with
HX (as an oxidant) would regenerate the iridium(III) catalyst and
liberate H2 gas (detected by gas chromatography, Supplementary
Fig. 5). In the whole catalytic cycle, H2O-mediated H2 evolution
plays a crucial role in facilitating the transmetalation process and
regenerating the catalyst. The profitable role of the proline is
likely coordinated through its carboxylate to Ir(III) as a X ligand
as in copper(I) catalyst 44-47and as a L ligand via its R2NH group
(Fig. 7e).

Application. Finally, we were interested in demonstrating the
synthetic utility of the developed chemistry. As shown in Fig. 9,
gram-scale synthesis of 2-arylquinoline C1 (1.42 g) was achieved
by scaling up substrates A1 and B1 to 10 mmol and 12 mmol,
respectively (Fig. 9a), and the reaction still afforded a desirable
isolated yield (65%). Meanwhile, the transfer hydrogenation of
compound C1 produced a synthetically useful
tetrahydroquinoline50 C1’ in excellent yield (Fig. 9b). Brominated
compound C37 underwent smooth Suzuki cross-coupling to
afford arylated product C37’ in 75% yield (Fig. 9c). Moreover, the
reaction is also applicable for structural functionalization of
biomedical molecule such as hydroquinidine, delivering the
desired p-tolyl-hydroquinidine hybrid in 40% yields (Fig. 9d).

Discussion
In conclusion, by a H2O-mediated H2-evolution cross-coupling
strategy, we have developed an iridium(III)-catalyzed direct α-
arylation of non-activated N-heteroarenes with both aryl and
heteroaryl boronic acids. This chemical avenue to 2-(hetero)aryl
N-heteroarenes proceeds with broad substrate scope and excellent
functional compatibility under redox neutral conditions, is
operationally simple, scalable, and applicable for structural
modification of biomedical molecules, enables direct access to
useful bidentate N-ligands that are inaccessible or difficult to

prepare with the existing α-C–H arylation protocols, and does not
need for prefunctionalization of N-heteroarenes, which fills an
important gap in the capabilities of synthetic organic chemistry.
This catalytic reaction is anticipated to be applied in numerous
fields of science and technology due to the promising potentials of
2-(hetero)aryl N-heteroarenes. Moreover, the strategy employed
should be useful in the functionalization of other unsaturated
hydrocarbons and further design of other reactions.

Methods
Typical procedure I for the synthesis of α-arylation of N-heteroarenes. Under
N2 atmosphere, [Cp*IrCl2]2 (1 mol%), L-proline (20 mol%), N-heteroarenes A (0.3
mmol), arylboronic acids B (0.36 mmol) and H2O/1,4-dioxane (10/1, 1.5 mL) were
introduced in a Schlenk tube (50 mL), successively. Then, the Schlenk tube was
closed and the resulting mixture was stirred at 110 °C (oil bath temperature) for 24
h. After cooling down to room temperature, quenched with water, extracted with
ethyl acetate (3 × 5 mL), and dried over anhydrous Na2SO4. The reaction mixture
was concentrated by removing the solvent under vacuum, and the residue was
purified by preparative TLC on silica, eluting with petroleum ether (60–90 °C) and
ethyl acetate to give the desired product C.

Data availability
The authors declare that all relevant data supporting the findings of this study are
available within the paper and its supplementary information files.
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