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ON THE EXISTENCE OF WEAK SOLUTIONS FOR A
FAMILY OF UNSTEADY ROTATIONAL SMAGORINSKY
MODELS

LUIGI C. BERSELLI, ALEX KALTENBACH, ROGER LEWANDOWSKI,
AND MICHAEL RUZICKA

ABSTRACT. In this paper we show that the rotational Smagorinsky
model for turbulent flows, can be put, for a wide range of parameters
in the setting of Bochner pseudo-monotone evolution equations. This
allows to prove existence of weak solutions a) identifying a proper func-
tional setting in weighted spaces and b) checking some easily verifiable
assumptions, at fixed time. We also will discuss the critical role of the
exponents present in the model (power of the distance function and
power of the curl) for what concerns the application of the theory of
pseudo-monotone operators.

1. INTRODUCTION

In this paper we introduce the unsteady general rotational Smagorinsky
model for incompressible turbulence

OV +w x v+ curl (Col*[w|w) + Vg =£ in (0,T) x Q,
w=culv in (0,7) x Q,
divv =0 in (0,7) x €, (1.1)
v=0 on (0,7T) x 09,
v(0) =vo in Q,

where € is a smooth bounded domain in R3, ¢ is the Prandt] mixing length,
a > 0 is a given exponent, C, > 0 is a calibration constant, v is the mean
velocity, w is the mean vorticity, and g is the sum of the Bernoulli pressure
of the fluid and certain potentials such as the turbulent kinetic energy and
others. Here and in the sequel, for each smooth vector u : R — R? we
define as curl the vector
3
ou,;
(curlua); := j;l eijka—w;,

where €1, is the Levi-Civita totally anti-symmetric tensor.
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Note that in the equations the linear dissipative term —vAV is not
present, since we are considering flows at very high Reynolds number, and
then viscous effects are negligible compared to the Reynolds stresses. Note
that the presence of the linear dissipative term, for any v > 0 will allow for
some simplifications of the proofs. Nevertheless, to obtain result and esti-
mates independent of v > (, a treatment as the one we provide is requested.

According to standard assumptions (see and in Sectiom7 we
will assume that ¢ behaves as the distance to the boundary. This means that
{(x) ~ d(x) when x € Q and x is close to the boundary 02 (see and
in what follows). As it is common in turbulence modeling, we assume
that the flow fields are stochastic processes, and the bar operator stands for
the expectation in the Reynolds decomposition v = v+v', 7 = T+7’, where
7 denotes the pressure and 7 the mean pressure (see Section below, even
if other choices are possible, as for instance denoting by the bar operator
the long time-averaging).

The natural value of the parameter « is equal to 2 and this model is similar
to the widely used Smagorinsky model, but the term div(Csf?|Dv|DV) is
replaced here by curl(Cef?|@|w). The equivalence between both models can
be understood for homogeneous isotropic turbulence, by the equality of the
enstrophy |w|? to the total mean deformation 2|Dv|2. The equivalence can
be obtained by a straightforward generalization of [9, Lemma 4.7]. Then,
according to this equality, in [9, Section 5.5.1] it is proved that the —5/3
Kolmogorov law yields to express the eddy viscosity as vy = Cof?|w]|. The
rotational structure of the eddy diffusion is a peculiarity of the model which
is suitable for high-speed flows with thin attached boundary-layers. The
mathematical treatment of rotational models is one of the main theoretical
contribution of this paper.

The numerical performance of this model in the steady state case has
been initially tested by Baldwin and Lomax [2], so that this model is also
known as the Baldwin—Lomax model. Numerical analysis foundations also
in the statistical non-equilibrium setting can be found in [23].

The analytical properties of a steady version of this model have been
recently studied in [3] in the setting of weighted Sobolev spaces. Some
unsteady versions, with the presence of a dispersive term —which allows for
a more classical treatment— have been recently studied in [21], 5].

The steady version can be treated within the standard theory of monotone
operators, plus a localization argument, while the unsteady one requires a
more delicate argument to deal with the precise choice of spaces and formu-
lation of the problem. As we will prove, a proper definition of the functional
setting will make system to fit into the framework of evolution prob-
lems with Bochner pseudo-monotone operators, for which the theory have
been recently developed by two of the authors in [13]. The theory developed
in [13] represents an extension and an adaption to unsteady problems of the
classical theory of pseudo-monotone operators from Brézis [6], [7], already
described in the classical monograph of Lions [I9]. Our main result is the
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following, which covers all possible positive powers of the distance function
which are strictly smaller than the critical value a = 2.

Theorem 1.1. Let us suppose that ¢(x) = d(x,09) and let o € |[0,2),
0<T < oo, Vg € L2(), and £ € L¥2(0,T; (W, > (Q,d*)*). Then, there
exists a weak solution to the initial boundary value problem (L.1)) such that

v € C([0,T]; L2(2)) N L*(0, T5 Wy 2(9,d%)),
and for all t € [0,T)

L2 ! () [ 3 S T— Lo o
SIS0 +/0 /QCad (0@ (s, %) dxds = 3 [¥5] +/0 (6,9) 15 m -

The limitation « < 2 seems to be intrinsic to the problem due to the fact
that d* is not anymore a Muckenhoupt weight for av > 2 (cf. Deﬁnition.
Hence, for @ > 2 most of the analytical properties may fail, since we cannot
ensure that the quantity from the energy estimates controls the (weighted)
full gradient of the solution. For values of a larger or equal than 2, even
the weak formulation, the density of smooth functions, and the meaning of
the boundary conditions may fail; the solution of the problem, if possible,
would pass through the introduction of a more general setting, of very weak
solutions.

In the last section we will also consider the existence for a family of
problems with different powers of the vorticity in the turbulent stress tensor,
still with the distance function raised to any exponent smaller than the
critical one, cf. Thm. [5.5

Plan of the paper. In Section [2| we derive the Rotational Smagorinsky
model from a classical turbulence modeling process, in Section [3| we define
the notion of Bochner pseudo-monotone operators and we recall the main
result for general evolutionary problems, in Section [ we recall the main
results on weighted spaces, which will be used to properly formulate the
problem. Next in the final Section [5| we show how the hypotheses apply
to problem , for relevant choices of the weight functions and discuss
generalization and critical values of the parameters.

2. MODELING

2.1. Reynolds decomposition. Let us consider the Navier—Stokes equa-
tions (NSE in the sequel) written with the convective term in the rotational
formulation:

2
vt+wxv—1/Av+V<7r+|v2|):f in (0,7) x €,
w=curlv  in (0,7) x Q,
. . (2.1)
divv = in (0,7) x €,

v=20 on (0,7) x 09,
v(0) = vo in Q,
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where v = v(t,x,w) is the velocity field, 7 = 7(¢,x,w) the pressure, w =
curl v the vorticity, (t,x) € Ry x Q, w € X (B, P), where X (B, P) is a given
probability space on the space of initial data.

For instance, if f = 0 (the argument can be adapted also to include a
smooth enough external force) it holds that for each divergence-free element
of vo € HY?(Q) there exists a lower bound T = T(|lvolli/2) > 0 for the
life-span of the unique Fujita—Kato mild solution. Since the life-span can
be estimated with the norm of the initial datum, by fixing X = B(0, R) C
HY2(Q) N {V -v = 0} for some R > 0, then the life-span is bounded from
below by some Tx > 0. This means that for each vg € X, there exists a
unique v € C(0, Tx; H'/?(Q)) solution of the NSE.

We then introduce P, which is a probability measure on the Borel sets of X.
More specifically, P can be constructed as limit of averages of Dirac mea-
sures as in [9] or the renormalized Lebesgue measure constructed from the
Borel sets of X. The final result does not depend on the choice of P. Let
us denote the expectation with a bar, hence

Vo = / Vo dP(Vo),
X

and
V(t,x):/xv(t,x,v[))dp(vo) w(t,x):/Xﬂ'(t,x,vo)dP(vo).

[v[?

More generally, for any field ¥ = dyv,w, Vv, Av, 5-..., we can define the
statistical mean as

W% = [ Wltxv0)dP(vo),

X
and consequently we can perform the usual decomposition of ¥ as
U =04+,

which is known as the Reynolds decomposition. The properties of the sta-
tistical averaging process imply (Reynolds rules) that for all ¥, 0 € X

Bv =39, VI=VU, W=0 VO=U6,
hence, taking the expectation of the NSE (2.1 yields

e _ L
VitwoXV4+w xv —vAV+V [T+ — + =f,

2 2
. w = curlv, (2.2)
divv =0,
V0o =0,
V|t=0 = Vo

The basic closure and modeling problems concern expressing w’ x v/ in terms
of averaged variables.
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2.2. Rotational Reynolds stress. When taking the expectation of the
NSE with the convective term written in the usual form, we get the term
div(v/ @ v/). The quantity e® = v/ ® v/ is called the Reynolds stress and
the Boussinesq assumption consists in assuming that

®)

o®) = —vrDv,

where v > 0 is an eddy viscosity which remains to be determined and
modeled in terms of V. If we want to use such a Boussinesq assumption,
we must express the turbulent stress (which is a vector in the rotational
formulation)
s =w xVv

in terms of derivatives of mean quantities. This is similar to the approach
used when modeling the more standard Reynolds stress tensor. We prove
in what follows the following theorem

Theorem 2.1. Assume that Q is connected and of class C'. Then, there
exists a vector a®) = alf)(t,x) and a scalar potential ® = ®(t,x) such that

Vi+@ x v+ curla® — VAV + V(7 + V> + k- @) =T,

divv =0, (2.3)
V]oo = 0, '
v|15=0 = Vo,
where k = S|V'|2 is the turbulent kinetic energy.
Proof. Let a® and ® be given by:
1 Is(t,x' 1 t,x'
a® (¢, x) = / %(’/X)dxl + — s( ’X,) x do(x),
A Jq |x—X/| AT Joq |x — X/| (2.4)
1 [ divs(t,x 1 t,x' '
O(t,x) = / de' - — s(t,x) ~do(x).
At Jo |x —X/| AT Joq |x — X/|
Therefore, by the Helmholtz—Hodge theorem, we have the relation
W x v/ = curla® — Vo, (2.5)

Inserting (2.5)) into (2.2) gives (2.3). O

The vector a®), which is continuously and uniquely determined by for-
mula (2.4]), is called the rotational Reynolds stress tensor. From now on we
write g instead of T + 1|v|? + k — @.

2.3. Closure assumption: Rotational Smagorinsky model. In order
to finish the modeling of turbulent quantities, it remains to link a® to
the mean vorticity @. Notice that a® has the dimension of a squared
velocity, while @ those of a frequency. Therefore, adapting the Boussinesq
assumption to this case yields to assume

a(R) =vrw,
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in which vy > 0 is a quantity with the dimensions of a viscosity. According
to the —5/3 Kolmogorov law and following [9, Section 5.5.1], we can assume
(for an homogeneous and isotropic flow, in the limit v — 0)

vr = vp(¢, |@)),

where ¢ is the Prandtl mixing length. The dimensional analysis of the ex-
pression shows that a consistent expression is

vr = C 02w, (2.6)

with C,, a dimensionless constant. This raises the question of the determi-
nation of £. In the case of a flow over a plate, one finds in Obukhov [22] the
following classical law:

(=1{(z) = kz, (2.7)
where z > 0 is the distance from the plate and « the von Kdarman constant.
The Van Driest formula [26] defines ¢ by:

0(2) = kz(1—e /), (2.8)

here A depends on the oscillations of the plate and on the kinematic viscosity
v, while z > 0 is again the distance from the plate.

According to these formula, we shall assume throughout the rest of the
paper that the function ¢ : Q — R is of class C? and satisfies the two
following properties:

a) U(x) =~ d(x,00) for x close to 09; (2.9)
b) VK CCQ, g >0 st. 4(x)>lg >0 VxeK, (2.10)

where d(x,0Q) denotes the distance from the boundary. In practice, we
could have directly assumed ¢(x) = d(x), i.e.,

v = Cod?|@]|. (2.11)

2.4. Generalised Rotational Smagorinsky models by dimensional
analysis. The analysis of the previous section can be put also in a more
general framework of Large Eddy Simulation (LES) models, looking also
at possible modifications of the parameters present in the expression of the
turbulent (rotational) stress vector. Let £y > 0 be a typical length scale of
the motion. For instance, in the case of a flow over a plate, one can take
EO =
Vx
where v is the kinematic viscosity and v, is the so-called friction velocity
(cf. [I).
We consider (modulo introducing an appropriate non-dimensionalization
of the equations) the following operator

curl (f%fo‘ﬁa@@) (2.12)

with @ € [0,2], which is degenerate at the boundary and for which the
natural treatment is through scales of weighted Banach spaces.
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We report some discussion about the relationships between the scaling
of the weight and that of the power of the curl. In the framework of LES
methods we show that even starting with

vp = 027w [P 2 (2.13)

this determines a link between powers o and p. Nevertheless, in the last
section we will also point out the limiting behavior of the exponent p = 3
present in model , when p=a + 1.

If one thinks of a flow as composed of eddies of different sizes in different
places, then in a region of large eddies the changes of velocity and its curl are
both O(1) of the typical distance. In a region of smaller eddies the velocity
changes over a distance of O(eddy length scale), so the local deformation is
O(1/eddy length scale), cf. [4, § 3.3.2]. Hence, the rotational Smagorinsky
model introduces a turbulent viscosity v = (C4)?|@|, where ¢ is the (local)
smallest resolved scale, such that

0(6%) in regions where || = O(1),
1% =
g 0(90) in the smallest resolved scale where [@| = O(671).

By extrapolation, motivated by experiments with central difference approxi-
mations to linear convection diffusion problems, the following alternate scal-
ing has also been proposed (cf. [4] and Layton [17]) v = (C3)P~DV[P—2,
and we consider here the rotational counterpart

vr = (COPwP?,  1<p<oo,

which resembles general power laws for non-Newtonian fluids. The above
choice of v satisfies

O(P) in regions where |@| = O(1),
e 0(9) in the smallest resolved scale where |@| = O(571),

The justification of the presence of the critical value p — 1 as power of the
distance function can be done directly by dimensional arguments as in [3]. In
fact, recall that both Vv and @ have dimensions 7!, where T is a time, and
in the turbulent viscosity vy = d?|@| ~ L*T~! (where L is a length)
has the dimensions of a viscosity. This is the only way to identify (by using
just a typical length and the vorticity) a quantity with the dimensions of a
viscosity. Introducing as third parameter as the friction velocity vy, ~ LT 1,
one can consider more general combinations. The outcome is to find a
turbulent eddy viscosity of the following form

vr = Uzda ’w’p_zv

for some constants 0, «, p. It turns out (cf. [3]) that the dimensions of this
quantity are vy ~ LVTeT2=9=P and to respect dimensions of the viscosity
one has to fix

0=3—p and a=p—1.
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A sound generalization of the rotational Smagorinsky model is then the one
with rotational stress

S(U*, d,w) = Cvi’—pdp—l |U’p_25’

and, after re-scaling, one can assume Cv2™P = 1. Note that, even for dif-
ferent values of p, the power of the distance is always the critical one (in
terms of analytical properties of the weight functions), since dP~! ¢ Ap,
cf. Lemma [£.5]

In the last section we will show that from the point of view of mathemat-
ical properties, the turbulent eddy viscosity

v =d"wP7?,

can be handled in terms of an existence theory by (pseudo)monotone op-
erators only for p > 3. Hence, the exponent p = 3 plays for the weighted
rotational operators, the same role that the exponent p = 11/5 plays for the
usual p-NSE with stress tensor S(DvV) = c|Dv|P~2.

From now and so far no risk of confusion occurs, we do not write the bar
anymore.

3. EVOLUTION EQUATIONS IN AN ABSTRACT SETTING

As already claimed in the introduction, a proper setting to the rotational
Smagorinsky model is that of pseudo-monotone evolution problems so we
briefly recall the abstract existence result we will use on the sequel.

For the convenience of the reader, we recall the following known definition.

Definition 3.1. Let X,Y be Banach spaces. An operator A :X —Y is called

(i) bounded, if for all bounded M C X | the image A(M)CY is bounded.
(ii) coercive, if Y = X* and lim (Az.z)x
(]| x =00

(iii) pseudo-monotone, if Y= X* and for any sequence (x,,)neny C X from

= Q.

zn "= 2 in X,
limsup (Azy,, z, —x)x <0,

n—oo

it follows that (Az, z—y) x <liminf,, . (Azy, z, —y)x forally € X.

It is well-known that for each f € X*, the steady problem Az = f ad-
mits a solution if A is bounded, coercive and pseudo-monotone, see [6], [7].
A typical example of a pseudo-monotone operator is the sum of a hemi-
continuous monotone and a compact operator. Recently, two of the authors
in [I3] developed an abstract framework for evolution problems, by using
the concepts of Bochner pseudo-monotone and Bochner coercive operators
to generalize the ideas of [19, Sec. 2.5], [16], [I1], [12] and [24]. We want to
access this theory for our concrete example. Therefore, for the remainder of
this section, we assume that (V, H,id) is an evolution triple, i.e., V is a sep-
arable, reflexive Banach space, H a separable Hilbert space and V' embeds
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densely into H. For I :=(0,T), T € (0,00), and p € (1,00), we set
X :=LP(I,V) and Y :=L>*(I,H).
In this framework we have the following notion of a time derivative.

Definition 3.2. A function u € X has a generalized time derivative if
there exists a function w € L? (I, V*) such that

- / (u(s), ) g (s) ds = / (w(s), 0)vip(s) ds

1 1

for every v € V and ¢ € C§°(I). Since such a function is unique du.—wis

) dt
well-defined. By
W= WP (1V, V) = {ue X |32 e 17(1, V")),

we denote the Bochner—Sobolev space with respect to the evolution triple
(V,H,id).

In the context of evolutionary problems, the following generalized notions
of pseudo-monotonicity and coercivity (cf. Definition [3.1)) are particularly
relevant and useful.

Definition 3.3 (Bochner pseudo-monotonicity). An operator A: XNY — X*
is said to be Bochner pseudo-monotone if for a sequence (uy,),eny CXNY
from

n— o0
—\

u, u in X.

u, — u inYy (n— o0),

u,(t) "=°u(t) in H forae tel,
and

lim sup (Au,,u, —u)x <0,
n—o0

it follows that (Au,u — v) ¥ < liminf, ,~ (Au,,u, — v)x forevery v € X.

Definition 3.4 (Bochner coercivity). An operator A: X NY — X* is called:

(i) Bochner coercive with respect to f € X* and ug € H if there is
a constant M := M (f, ug, A) > 0 such that for every u € X N'Y from

sla@®)|7 + (Au— £ uxpg)x < 3lluollf;  for ae. t €1,

it follows that ||ul|xny = ||ullx + [[ully < M.
(ii) Bochner coercive if it is Bochner coercive with respect to f and uy,
for every f € X* and ug € H.

The critical role of the above definitions is that they identify a vast class of
problems for which existence can be established. In fact, if A: X NY — X*
is bounded, Bochner pseudo-monotone, and Bochner coercive, then the cor-
responding evolution problem ‘fl—‘; + Au = f is solvable for any initial datum
uog € H. This result was recently obtained in [13] Thm. 4.1].
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This result is particularly relevant since the difficulty is then shifted to the
verification of the properties of induced operators, which can be performed
time-by-time in the known steady setting. We will not describe the full
result, but we propose a particular, simplified setting enough to solve (1.1).

The existence result is mainly based on the following proposition giving
sufficient conditions which have to be checked at any fixed time slice t € I and
which is a particular case of [13 Prop. 3.13].

Proposition 3.5. Let A:V — V* be an operator. Assume that there exists
a number p € (1,00) and constants cy,c1 > 0 such thaﬂ:

(C.1): For every v € V there holds
-1
1Av]ly- < collolly

(C.2): A:V — V* is pseudo-monotone.
(C.3): For every v € V there holds

(Av,v)v > cifv[y-

Then, the induced operator A : X NY — X*, for allu € X NY and
v € X defined by

(Au,v)x :z/(A(u(t)),v(t)>th,

I

is well-defined, bounded, Bochner pseudo-monotone, and Bochner coercive.

On the basis of Proposition [3.5] we immediately obtain the following ex-
istence result, which will be used to study the families of rotational mod-
els just checking that the conditions f are satisfied, after a proper
choice of the functional setting.

Theorem 3.6. Let A : V. — V* be an operator satisfying (C.1)—(C.3).
Then, for arbitraryug € H andf € ) (I,V*), there exists a solutionu € VW
of the evolution equation

/I<C§;(t)+A(u(t)),v(t)> =/<f(t),v(t))vdt Vv € X,

v I
u:(0) =up in H.

Here, the initial condition has to be understood in the sense of the unique
continuous representation u. € CO(I, H) of u € W (cf. |27, Prop. 23.23]).

IFor a pseudo-monotone operator A : X — X" (local) boundedness implies demi-
continuity, i.e., z, — z in X (n — o) implies Az, — Az in X* (n — 00), hence we do
not need here to make any further assumptions of demi-continuity.
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4. WEIGHTED SPACES

Since is a boundary value problem with the principal part given by a
space dependent (and degenerate at the boundary) operator, a natural func-
tional setting would be that of weighted Sobolev spaces. Apart from classical
Lebesgue and Sobolev spaces, we will use their weighted counterparts. We
follow the notation from the classical book of Kufner et al. [14].

A weight ¢ on R" is a locally integrable function satisfying almost every-
where 0 < p(x) < oo. The weighted space LP(£2,0), 1 < p < o0, is defined
as follows

LP(Q,0) :== {f :  — R” measurable | /Q]f(x)|p o(x)dx < oo}.

For p > 1 we have by using Holder’s inequality that
oM e L (Q) = LP(Q,0) C Lig(?) C D'(Q),

allowing to work in the standard setting of distributions. It turns out that
-1
C§°(€) is dense in LP(€, ) if the weight satisfies or—1 € L{ (R"), see [14].

loc

In addition, LP(€2, 0) is a Banach space when equipped with the norm

610 = ( [ i1t ax) "

Next, we define weighted Sobolev spaces
WkP(Q, o) := {f: Q= R"|Df € LP(Q, ) for all a s.t. |o| <k},
equipped with the norm

1/p
1£lk,p,0 == ( > HDo‘pr,g> ;

|| <k
and, as usual, we define VV(;g P(0, o) as follows

WEP(Q, 0) == (g e Ce(y Ihre,

In our application the weight o(x) will be a power of the distance d(x) > 0
of the point x € Q from the boundary 0f). Consequently, we specialize to
this setting and give specific notions regarding these so-called power-type
weights, see Kufner [14]. First, it turns out that W*P (€, d®) is a separable
Banach space provided a € R, k € Nand 1 < p < co. In this special setting,
since d(x) > Ck > 0 for each compact K CC (2, several results are stronger
or more precise due to the inclusion LP(£2,d*) C L (Q), valid for all o € R.

loc
We recall the following classical result about the distance function (cf. [14]).

Lemma 4.1. Let Q be a domain of class C%', which means that in a small
enough neighborhood Qp, for P € 9L, the boundary 0QNQp can be expressed
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(after a rigid rotation) as xs = a(x1,xe) for Lipschitz continuous a. Then,
there exist constants 0 < cg,c1 € R such that
cod(x) < la(z') — 23] < c1 d(x) Vx = (2/,23) € Qp.

One of the most relevant properties of the distance function is that the
following embedding holds true

LP(Q,d*) c LY(Q) if a<p-—1. (4.1)
It follows directly from Holder’s inequality

1 , 1/p'
/|f|dx:/da/p]f\d_a/pdx§ (/ @@ f[7dx) /p(/d_""’ Irix) "
Q Q Q Q

and using Lemma [4.T] the latter integral is finite if and only if

/
ar _*
p  p-1
In the same way we have also that
Vael0,p—1]  IP(Q,d%) C LYQ) Vge 1, HL@ [ (4.2)

As in [14] Prop. 9.10] it can be shown that:

1
Lemma 4.2. The quantity (fQ d*|vEp dx) P is an equivalent morm in
Wol’p(Q, d®), provided that 0 < a < p— 1.

In this case functions from W& P(Q,d*) are zero on 99 in the sense that
they can be approximated by smooth functions with compact support. In the
sequel we will use certain Hardy—Sobolev inequalities. Note that inequalities
of this kind, when d is replaced by |x| = d(x,0) are known as Caffarelli-
Kohn—Nirenberg inequalities [§].

Lemma 4.3. Let Q@ C R"™ be a bounded Lipschitz domain. For p € [1,n),

a#p—1andq € [p, %] there exists a constant ¢ > 0 such that for all

f e WyP(Q,d™) there holds

(/ dZ<”—P+a>—"|nydx)q <c (/ da\Vf|de>p. (4.3)
Q Q

Proof. This follows from the definition of the space WO1 P(Q,d*), [18, Theo-
rem 2.1] and the classical (p, ) Hardy inequality

</ da—p|f|1?dx>p <c </ da|Vf|de>p, (4.4)
Q Q

which is valid for all p € (1,00) and a # p — 1, for functions in Wol’p(Q, a)
(cf. [20], [15, Theorem 8.10.14]). O
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In addition to (4.1) and its role in Hardy-type inequalities, the critical
nature of the power @« = p — 1 also occurs in the notion of Muckenhoupt
weights and their relation with the maximal function.

Definition 4.4. We say that a weight o € L} (R?) belongs to the Mucken-

loc

houpt class A, for 1 < p < oo, if there exists C' such that

p—1
su x)dx x)1/(1=P) 4x
ngn%g( )d)(;égm d) <c,

where () denotes a cube in R3.

The powers of the distance function belong to the class A, according to
the following well-known result for general domains (say it is enough that
08 is a n — 1-dimensional closed set, see [10]). Here and in the sequel the
boundary will be at least locally Lipschitz to have the outward unit vector
properly defined.

Lemma 4.5. The function o(x) = (d(x))a is a Muckenhoupt weight of class
Ap if and only if -1 <a <p—1.

4.1. Solenoidal spaces. A standard approach in fluid mechanics, is to
incorporate the divergence-free constraint directly in the function spaces.
These spaces are built upon completing the space of solenoidal smooth vec-
tor fields with compact support, denoted as ¢ € Cg%, (©). For a € R define

o) = {sccp@)

-l e
Wo(0.d%) = {6 € C3o ()} .

For o = 0 they reduce to the classical spaces L5 (£2) and Wolf(Q) Next, we
will extensively use the following extension of classical inequalities linking
curl/divergence and full gradient estimates (cf. [3]).

Lemma 4.6. Let 1 < p < oo and assume that the weight o belongs to the
class Ap. Then, there exists a constant C, depending on the domain Q and
on the weight o € A, such that

. 1,
[Vullp,e < C([[divullp,e + [| curlullp,o) Vue W, P(,0).
In particular, we will use the latter result in the following special form

Corollary 4.7. For —1 < o < p — 1 there exists a constant C = C(Q, a, p)
such that

/ dY| V[P dx < C/ d*lcurlvPdx Vv e WyP(Q,d*). (4.5)
Q Q

g
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5. APPLICATION TO THE ROTATIONAL TURBULENCE MODELS: THE PROOF
OF THEOREM [L.1]

In this section we verify that the initial boundary value problem ,
after a proper selection of parameters, and definition of both the operators
and functional spaces, can be put in the framework of the abstract Theo-
rem This will be enough to give a proof of the main result of this paper,
that is the existence of weak solutions in Theorem [l

In our setting the choice of the natural spaces is determined by the prob-
lem itself which yields, by the a priori estimate obtained by testing with the
velocity Vv, that the integral

T
/ / d*| curl ¥|? dxdt
0 Q

is finite. Hence, for almost all ¢ € [0,7] the integral [, d*|curl v|* dx will
be finite, determines the choice for the Banach space V.

In order to identify the evolution triple to be used for the proper formu-
lation, we need to clarify the relationship with the L?(Q2) norm. We have
the following result which immediately derives from the basic results on
weighted spaces of the previous section.

Lemma 5.1. Let u € C§,(2) and o € [0,2). Then, there exists C =
C(a, ) such that

1/2 1/3
(/ |u|2dx> <C (/ d”| curlu|3dx> . (5.1)
Q Q

Proof. For v < 2, combining (4.3) with ¢ = 3_?2’7106 and (4.5)), it follows
for every p € (a + 1, 3)

a

q
/|u|3—iﬁadxgc (/ d°‘|Vu|pdx>p §c(/ do‘|curlu|pdx>p,
0 Q Q

for all v € CF%,(22). Since 2 < 3_?]’ﬁa the assertion follows from Hoélder’s

inequality as €2 is bounded. O

Lemma shows that one can work with the following evolution triple
for all « € [0,2)

(V, H,id) == (Wy2(Q,d*), L2(R),id).
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and as functional setting for (1.1)) we use the following spaces and operators,
where 0 < o < 2

1/3
V.= W&’j(Q,da) vy := (/ d”| curlv3dx>
Q

1/2
Him12@) V= ( P i)
Q
X =I3I1,V), Y:=L>(,H)

du
— 3 w 3/2 *
W : {ueL (I,V)]Hdt €L (I,V)},
and define the operator A:= S+ B:V — V* via

(Sv,w)y = / d*| curlv| curl v - curl w dx,
Q

(Bv,w)y = /(curlv X V) - Wdx.
Q

The induced operator & : X NY — X* inherits the properties of the oper-
ator S (cf. [28, Chapter 30]). Note that S is a strictly monotone, bounded,
coercive, and continuous operator. These properties are practically the same
known for the p-Laplace operator. In fact, from the definition, one obtains
directly the following two inequalities:

ISvily. <IIvI§  YveV,
(Sv,v)y = |v|3 VvelVl.
The monotonicity of S derives from the following lemma (cf. [3, Lemma 3.3]).

Lemma 5.2. For smooth enough vector field w; (it is actually enough that
drw; € LP(Q), with 1 < p < o0) and for a € RT it holds that

/(da’wl\p_le — d%wslPws) - (w1 — ws)dx >0,
Q

for any (not necessarily the distance) bounded function such thatd : Q — RT
for a.e. x € Q.

The proof of the above lemma is based on the observation that it can be
proved that d®(Jwi[P72w1 — |wa|P2ws) - (w1 — wa) > 0 point-wise. Then
weighted integrability of the functions this used to prove that the integral
is finite.

To treat the operator B, and the induced one B: XNY — X*, we need
to properly adapt the estimates on the convective term in weighted spaces
and this is mainly based on the previously Hardy-type inequalities .

Lemma 5.3 (Boundedness of B). For alla € [0,2) the operator B : V. — V*
is bounded. It satisfies (Bu,v)y < c||ul|?||v]ly and (Bu,u)y = 0, for all
u,velVl.
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Proof. The proof is based on the estimation of the space integral, by using
appropriate weighted version of classical Sobolev spaces tools. We have in
fact, for all smooth functions with compact support the following inequality
(obtained multiplying and dividing a.e. x € € by the positive function de/ 3)

/(curlv X u) - wdx
Q

1/3 1/3 1/3
< </ d_o‘/2|u\3dx> </ da|cur1v|3dx) (/ d_a/2|w|3dx> .
Q Q Q

It remains to show that all u € V also belong to the weighted space
L3(9,d™2), with a continuous embedding. From (£.3)) it follows for all
pel,3),ae|0,2) andu e W&’p(Q,da) that

g

o p(6—a) % %
</ d™2 |u|2G-pte) dx) <c </ d*|VulP dx) ,
Q Q

p(6 - Oé) *
= = < .
=93 _ptra) ?

One easily checks that for all a € [0,2) there exists a p € (1 + «,3) such
that 3 < ¢ < p*. Since © is bounded we deduce from this V < L3((Q, d_%)
by using Holder’s inequality.

Once the integral fQ(u x curl v) - w dx is well-defined for u,v,w € V| it
immediately follows that (Bu,u)y = 0 for all u € V| since a.e. in 2 it holds
(v xcurlv)-v=0. O

< / d=/8|u| d*/3| curl v| d=*/%|w| dx
Q

with

This is enough for what concerns the growth and coercivity. We need now
to show compactness for B in order to prove pseudo-monotonicity.

Lemma 5.4 (Compactness of B). Let a € [0,2). Then, the weak conver-
gence u, — u in 'V implies (up to a sub-sequence) that

Bu,, — Bu in V™,
i.e., the operator B is compact.

Proof. By the boundedness of the weakly converging sequence (uy,)neny €V
and by (4.2)) we get that

Jupllwirgy <C  Vrell, o [

Hence, by the usual (unweighted) compact Sobolev embedding Whr(Q) e
L™(Q), valid for all 7 < (H%)* = 2 we get also that (up to a sub-sequence)

u, - u a.e. and in L"(Q).
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By using the definition of B, the properties of the curl (with summation over
repeated indices), and integration by parts, we have that for all u,v € V

(Bu, V> = / ijlﬁjlmukvi% dX = /(&clézm — 5km511)ukvlau7m dX
Q Oy 0

oxy

Ovi

= —/ UpU;—=—— dX = —/(u®u) : Vvdx.
Q Oy, Q

Hence, we have

(Buy,v) — (Bu,v) = —/Q(un®un) :Vv—(u®u): Vvdx

:—/Q((un—u)®un) :Vv+ (u® (u, —u)) : Vvdx.

By Holder inequality we get, as in the proof of Lemma [5.3]

/Q ((up, —u) ®uy) : Vvdx

1/3 1/3 1/3
< </ d_o‘/2]unu|3dx> </ da|Vv]3dx) </ d—a/2|un|3dx)
Q Q Q

‘ 1/3
< ( a2, —ude) vl lflly-

We now observe that the last two terms are uniformly bounded, while

d=?u, —u® 50 a.e. x € ().

Consequently, to show that the integral vanishes it is enough to prove that
for some ¢ > 3 there holds

[wn =l Lo 4-ar2y < C

uniformly in n € N, which permits to apply the Vitali theorem in the
weighted space L3(Q,d_a/ 2). However, this was already obtained in the
proof of Lemma The other term in the decomposition of (Buy,v) —
(Bu,v) can be treated in the same way. O

Proof of Theorem[1.1]. In the previous lemmas we have proved that A =
S+ B is continuous and pseudo-monotone since it is the sum of a monotone
continuous and a compact one. Collecting the estimates we have that in
particular that the boundedness and coercivity are as follows

1Av]ly. < coll vl
(Av,v)v >[IV,

since (Bv,v)y = 0. Hence all hypotheses from (C.1) to (C.3) are satisfied.

This shows that the induced operator A is Bochner pseudo-monotone and
coercive, hence all the hypotheses of the abstract existence Theorem are
satisfied. This proves the main result of this paper, that is the existence of
weak solution in Theorem [l O
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5.1. The case p > 3. In this section we show that most of the results of
the previous section can be extended (even with easier proofs) to the system
with the following operator

(Spv, W)y = / d®|curl v|P 2 curl v-curlwdx  withp >3, 0<a <p—1,
Q

while the use of the tools typical of pseudo-monotone operators fails for
p < 3. We can then prove the following result

Theorem 5.5. Let p >3, a € [0,p—1), 0 < T < o0, vg € L2(9), and
fe LP(0,T; (Wol’p(Q, d*)*). Then, there exists a weak solution to the initial
boundary value problem

OV +w x ¥+ curl (d°[w|*w) + Vg = f in (0,T) x Q,
w =curlv in (0,T) x €,
divv =0 in (0,T) x €,
v=0 on (0,T) x 09,
v(0) =vo in €,

such that
v € C([0,T); L2(Q)) N LP(0,T; Wy 2(9,d*))
and for all t € [0,T)

EV 2 t Y (x)|w(s,x)[Pdxds
1901+ [ [ CatGolats P dxa

1, t 7
= 5I91% [ 06T g

The proof of this result is again just a verification that the hypotheses of
the abstract theorem are satisfied, but we will highlight the critical role of
the parameters.

First note that for p > 3 and 0 < a < p — 1 the inclusion Wol’p(ﬂ, d*) C
L?(2) holds true. Directly by Hélder’s inequality with § = p/2, §' = p/(p —
2), and Hardy inequality we get

/]u\de:/di(a_p)u\zdi(p_a) dx
Q Q
2 p—2
< (/ d* " Plual? dx)p </ d*r=: dx> ’
Q Q

< C(p,a) ( / da\vwdx)”,

since p — a > 0. This shows that one can work with the evolution triple

(V,H,id) == (WyP(Q,d%), L2(Q),id)  with p>3, 0<a<p—1.

(o}
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The properties of the operator S, are practically the same as those of the
operator S, hence one can directly show

-1
1Spvlly- < VI Vvev,
(Spv, viv = |V, VvelV.
On the other hand, the properties of B are to be checked. The operator is
the same as before, but the functional setting is different.

To show the boundedness of B: V — V* for 0 < a < p — 1, we proceed
as in Lemma[5.3 and we get

/(curlv X u) - wdx
Q

1 1 1
< (/ 4oV /P |y |2 dx) v (/ da\nydey (/ d=ov' /P || % dx) .
Q Q Q

Next, observe that 2p’ = 2p/(p—1) < p is satisfied for p > 3. Consequently,
in this case we can directly apply Holder inequality with exponents § =
(p—1)/2 and ' = (p —1)/(p — 3) to bound the first and third integrals as
follows:

/ =0/ =Dy [2 g — / =P/ (=1 [y 20 250/ (=) i
Q Q

_2 p=3
< < / d°P[uf? dx) ! ( / q(2r=30)/(r=3) dx> "
o Q

2
The first term from the right-hand side is bounded with ( [, d*|Vu/P dx)?~*
by using (4.4]), while the second is finite if

S/d_o‘/gp\u| d*/?| curlv| d=*/%|w| dx
)

2p — 3a
P o >-1 < a<p-—-1

p—3
This shows that

2

(Bu,w) < C(Q,a,p)llulli[w]v,
and the compactness of B follows with the same arguments used in the
previous section (almost everywhere convergence and Vitali theorem).

Remark 5.6. The case 1 < p < 3 does not fit with the theory for the
reasons we now explain. The argument with Hardy inequality as in the
previous lemma requires p > 3. If we try to apply the same argument used

for p = 3 with Hardy—Sobolev inequality (4.3)), we can write

/(curlv X u) - wdx
Q

. 1 =
< </ A= /P |u| % dx) 2p </ do‘\curlv\pdx>p </ d=oP /P || 2V dx) v ,
Q Q Q
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and then estimate the first and third integral with (4.3)) for ¢ = 2p’ < p*,

which holds for p > % Hence, to apply (4.3)) the precise exponent will be
3p—3—«

q= 1% 3o and since ¢ > 2p’ this implies that we have to request for

a < op — 9.
- 3
Since we would like to treat cases with a smaller but “arbitrarily close” to
p — 1, the inequality

should be correct. On the other hand the latter can be satisfied only for
p > 3. Since we are out of the range of permitted p this shows that the
estimate can not be used. Being the inequalities Hardy—Sobolev inequalities
sharp, this proves that operator B is not bounded for % < p < 3, when «
is close to p — 1, hence the basic assumptions to use the pseudo-monotone
methods are not satisfied. The existence of weak solutions, if possible, should
be obtained with different methods and possibly considering different weak
formulations of the problem.
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