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SIMPLICIAL INTERSECTION HOMOLOGY REVISITED.

DAVID CHATAUR ID , MARTINTXO SARALEGI-ARANGUREN ID , AND DANIEL TANRÉ ID

Abstract. Intersection homology is defined for simplicial, singular and PL chains and it is
well known that the three versions are isomorphic for a full filtered simplicial complex. In the
literature, the isomorphism, between the singular and the simplicial situations of intersection
homology, uses the PL case as an intermediate. Here we show directly that the canonical map
between the simplicial and the singular intersection chains complexes is a quasi-isomorphism.
This is similar to the classical proof for simplicial complexes, with an argument based on the
concept of residual complex and not on skeletons.

This parallel between simplicial and singular approaches is also extended to the intersection
blown-up cohomology that we introduced in a previous work. In the case of an orientable
pseudomanifold, this cohomology owns a Poincaré isomorphism with the intersection homology,
for any coefficient ring, thanks to a cap product with a fundamental class. So, the blown-up
intersection cohomology of a pseudomanifold can be computed from a triangulation. Finally,
we introduce a blown-up intersection cohomology for PL spaces and prove that it is isomorphic
to the singular one.

The homology of a simplicial complex, K, can be computed indifferently from the simplices
of the triangulation or from the singular chains complex of its realization, |K|. In other words,
the map between chain complexes C˚pKq Ñ C˚p|K|q is a quasi-isomorphism. Classically, the
proof (see [14]) uses an induction on the skeletons Kp`q of K. The crucial point is the existence
of isomorphisms,

C˚pK
p`q,Kp`´1qq –

à

βPK,dimβ“`

C˚pβ, Bβq and H˚p|K
p`q|, |Kp`´1q|q –

à

βPK,dimβ“`

H˚p|β|, |Bβ|q.

Before developing the corresponding situation in intersection homology, let us make a brief his-
torical reminder. In their first paper ([11]) on intersection homology, M. Goresky and R. MacPher-
son introduce it for a pseudomanifold X together with a fixed PL structure and a parameter
p, called perversity. They define the complex of p-intersection, Cp

˚
pXq, as a subcomplex of the

complex of PL chains and the p-intersection homology as the homology of Cp
˚
pXq. Later, in an

appendix to [16], they define a complex of p-intersection, Cp

˚
pKq, as a subcomplex of the sim-

plicial chains of a filtered simplicial complex K. If K is a full admissible triangulation of a PL
space X, they prove that the inclusion Cp

˚
pKq Ñ C

p

˚
pXq induces an isomorphism in homology.

They do that with a nice construction of a left inverse to this inclusion. Let us specify that,
without the “full” hypothesis on K, the simplicial and PL intersection homologies may not be
isomorphic, as an explicit example shows in [16, Appendix]. The barycentric subdivision of a
simplicial complex being full, one can always find such triangulation of X.

A third step is to consider the topological realization, |K|, of K and define a complex of p-
intersection, Cp

˚
p|K|q, as a subcomplex of the singular chains on |K|. This has been done by King

([15]) who proves the existence of an isomorphism between the singular and the PL intersection
homologies, in the case of CS sets. These relationships between the three points of view are
developed in a thorough way by G. Friedman in [9, Sections 3.3 and 5.4]. Let us emphasize that,
unlike that of the classical case, the proof is not a direct comparison between the simplicial and
the singular points of view: the PL case is used as intermediate between them and a structure
of CS set is required.
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The first objective of this work is to obtain an isomorphism between singular and simplicial
intersection homologies, in a direct way, from a chain map between the corresponding complexes,
and without any restriction to CS sets. Let us start with a filtered simplicial complex K, that
is, a simplicial complex endowed with a filtration,

K “ Kn Ą Kn´1 Ą Kn´2 Ą . . . Ą K0 Ą K´1 “ H,

where each Ki is a subcomplex. Unfortunately we do not have the expected formula

C
p

˚

´

Kp`q,Kp`´1q
¯

–
à

βPK, dimβ“`

C
p

˚
pβ, Bβq, (1)

as shows the example in Subsection 2.2. To overcome this defect, we introduce for any filtered
simplicial complex, K, a pair of integers, called complexity (see Definition 1.1) and denoted
compK. With the lexicographic order, the complexity provides the opportunity for reasoning
by induction. As for an alternative decomposition to (1), we introduce a subcomplex of K, called
the residual complex, denoted LpKq and already present in [1]. The desired decomposition comes
from a particular class BpKq of simplices of K, called clot, see Definition 1.4. By noting Lβ the
link of a clot β, we get in Proposition 2.3, an isomorphism

à

βPBpKq
C
p

˚
pβ ˚ Lβ, Bβ ˚ Lβq

–
ÝÑ C

p

˚
pK,LpKqq. (2)

From it, we can adapt the proof of the classical case and prove that the canonical map between
the simplicial and the singular intersection complexes, is a quasi-isomorphism.

In fact, we apply this program not only to p-intersection homology but also to a p-intersection
cohomology obtained from simplicial blow up, denoted H

˚

p
and called blown-up intersection

cohomology. For stratified spaces in general, this cohomology is naturally equipped with cup
and cap products for any ring coefficients and with cohomology operations ([2, 8]). Regarding
duality and pseudomanifolds, since the work ([12]) of Goresky and Siegel, it is known that there
is no Poincaré duality on intersection homology with coefficients in any commutative ring. How-
ever, in [5], we prove that the cap product with the fundamental class of an oriented, compact,
n-dimensional pseudomanifold induces an isomorphism between H

˚

p
pXq and the intersection

homology Hp

n´˚
pXq. (Similar versions exist for a paracompact not necessarily compact pseudo-

manifold, with compact supports in cohomology or Borel-Moore homology, [7] and [19]). This
blown-up cohomology coincides with the cohomology obtained from the linear dual of the chain
complexes, when R is a field, or more generally with an hypothesis of R-local torsion free in a
part of the intersection homology of links, already present in [12]. Let us also mention that its
sheafification is the Deligne sheaf ([7]). The existence of the isomorphism between simplicial and
singular blown-up intersection cohomology is a new result. In short, we prove in Theorems 4.2
and 5.13:

Main Theorem. Let K be a full filtered complex and p be any perversity, then we have isomor-
phisms:

H
p

˚
pKq – H

p

˚
p|K|q and H

˚

p
pKq – H

˚

p
p|K|q.

simplicial singular simplicial singular

We also define a blown-up cohomology for PL spaces and relate it to the simplicial and
the singular blown-up cohomologies in Theorem 6.7. This theorem contains a second part on
intersection homology, with a proof of the existence of an isomorphism between singular and
PL intersection homology, without requiring the existence of a CS set structure. This answers a
question asked by G. Friedman in [9, Page 234].

In the sequel, all the complexes are considered with coefficients in an abelian group denoted R,
which is not explicitly mentioned. If X is a topological space, we denote cX “ Xˆr0, 1s{Xˆt0u
the cone on X and c̊X “ X ˆ r0, 1r{X ˆ t0u the open cone on X. The apex of a cone is v.

Our program is carried out in Sections 1-6 below whose headings are self-explanatory.
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1. Filtered simplicial setting

We introduce the definitions and properties necessary for the study of the inter-
section homology of a filtered simplicial complex, K. In particular, by allowing
proofs by induction, the notions of complexity and residual complex of K will
play an important role in the sequel.

A simplicial complex K is a set of simplices in Rp, p ď 8, such that
1. if σ, τ P K and σ X τ ‰ H then σ X τ is a face of both σ and τ ,
2. if σ P K and τ is a face of σ, written τ Ÿ σ, then τ P K,
3. (local finiteness) every vertex of a simplex of K belongs to a finite number of simplices of K.

We say that d P N is the dimension of K, denoted dimpKq “ d, if every simplex of K has
dimension lower than or equal to d and K has at least one simplex of dimension d. If this number
does not exist, we say that dimpKq “ 8. (By convention, if K “ H, we write dimK “ ´8.) A
subcollection L Ă K is a simplicial subcomplex of K if it verifies properties 1 and 2. The union
of the simplices of K whose dimension is smaller than or equal to a given ` P N is called the
`-skeleton of K and denoted Kp`q. A simplicial map from K to K 1 is a function from the set of
vertices of K to the set of vertices of K 1 such that the images of the vertices of a simplex of K
is a simplex of K 1.

Let |K| be the topological subspace of Rp formed by the union of the simplices of the simplicial
complex K. If ∆ is the standard simplex, we identify ∆ with |∆|.

A filtered simplicial complex is a simplicial complex K endowed with a filtration made up of
simplicial subcomplexes,

K “ Kn Ą Kn´1 Ą Kn´2 Ą . . . Ą K0 Ą K´1 “ H.

The integer k is the (virtual) dimension of the filtered simplicial complex Kk, denoted dimvKk “

k.

A stratum of K is a non-empty connected component, S, of a |Ki|z|Ki´1|. Its dimension is
dimv S “ i and its codimension is codim vS “ n´ i. The family of strata of K is denoted SK or
S if there is no ambiguity. The strata included in |K|z|Kn´1| are called regular, the other ones
being called singular.

We introduce a pair of integers mixing geometrical and virtual dimensions.

Definition 1.1. The complexity of a filtered simplicial complex K ‰ H is the pair comp pKq “
pa, bq where:

- a “ maxtk P t0, . . . , nu | Kn´k ‰ Hu, and
- b P N “ NY t8u is the geometrical dimension of the simplicial complex Kn´a.

By convention, we set compH “ p´8,´8q.

The associated lexicographic order will prove to be the key in the forthcoming proofs by
induction.

Recall that a subcomplex L of a simplicial complex K is full if any simplex of K having all
its vertices in L is a simplex of L. As we will see, the following reinforcement of the notion of
filtered simplicial complex is a necessary hypothesis of the main theorem.
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Definition 1.2. A filtered simplicial complex K is said full if any K` of its filtration is full.

The standard simplex K “ ∆ can be endowed with different structures of filtered simplicial
complex.

‚ The first filtration is given by the skeleta: we set K` “ ∆p`q. It is not full.
‚ A series of full filtrations is defined by induction, starting with the choice of one vertex,
K0 “ tvu. For the simplicial subcomplex K` with ` ě 1, we choose an `-dimensional face
of ∆ containing K`´1.

The fullness property can be recovered with a barycentric subdivision. This is a general fact as
the following result shows (see [16, Remark 2]).

Lemma 1.3. The barycentric subdivision of a filtered simplicial complex is full.

Proof. Consider a filtered simplicial complex

K “ Kn Ą Kn´1 Ą Kn´2 Ą ¨ ¨ ¨ Ą K0 Ą H,

inducing the filtered simplicial complex K 1 “ K 1
n Ą K 1

n´1 Ą K 1
n´2 Ą ¨ ¨ ¨ Ą K 1

0 Ą H, where the
upperscript 1 indicates the barycentric subdivision. Let σ be a simplex of K 1 with σX |K 1

i| ‰ H.
We need to prove that σ X |K 1

i| is a face of σ. Notice that σ X |K 1
i| “ σ X |Ki|.

Let us denote pτ the barycenter of a face τ P K. By definition of the barycentric subdivision,
any simplex ofK 1 is obtained from barycenters of successive faces. More precisely, the barycenters
of a family of simplices of K, τ0 Ÿ ¨ ¨ ¨ Ÿ τm, determine a simplex of K 1, σ “ rpτ0, . . . ,xτms. Let us
suppose that, for any α P K, we have

σ X α “ H or σ X α “ rpτ0, . . . , pτ`s for some ` P t0, . . . ,mu. (3)

As Ki is a simplicial complex, the intersection τmX|Ki| is a union of faces of τm and we conclude
from σ Ă τm and (3):

σ X |Ki| “ σ X τm X |Ki| “ rpτ0, . . . , pτ`s

for some ` P t0, . . . ,mu. This implies the announced conclusion σ X |Ki| Ÿ σ and it remains to
prove (3).

So, let α P K and σ “ rpτ0, . . . ,xτms P K 1 with σ X α ‰ H. Any point P P σ has the
canonical decomposition P “

ř

jPJP
tj pτj where tj Ps0, 1s for each j P JP ,

ř

jPJP
tj “ 1 and

H ‰ JP Ă t0, . . . ,mu. We define ` “ maxtj P JP | P P σ X αu, which belongs to t0, . . . ,mu
since σXα ‰ H. By construction we have the inclusions σXα Ă rpτ0, . . . , pτ`s and rpτ0, . . . , pτ`s Ă σ.
By definition, there exists a vertex Q of σXα with ` P JQ. The condition

ř

jPJQ
tj pτj P α implies

pτ` P α. This gives the second inclusion rpτ0, . . . , pτ`s Ă α. ♣

1.1. Canonical decomposition of σ P K. Let us suppose that the filtered simplicial complex
K is full. This implies that any simplex σ P K has the canonical decomposition

σ “ σ0 ˚ σ1 ˚ ¨ ¨ ¨ ˚ σn,

where σX |K`| “ σ0 ˚ ¨ ¨ ¨ ˚σ`, for each ` P t0, . . . , nu. (We use the convention H˚E “ E for any
simplicial complex E.) For each ` P t0, . . . , nu, we have:

σ` ‰ Hðñ σ X |K`|z|K`´1| ‰ H ðñ DS P SK with dimv S “ ` and σ X S ‰ H.

By connectedness, the stratum S is unique and we denote it S “ S`. (Notice that ` “ n is
equivalent to the regularity of S`.) We set

IKσ “ t` P t0, . . . , nu | σ` ‰ Hu and SKσ “ tS P SK | S X σ ‰ Hu.
In other words, we have IKσ “ tdimv S | S P SKσ u and SKσ “ tS` | ` P I

K
σ u. We also denote

IKσ “ Iσ and SKσ “ Sσ if there is no ambiguity.

Definition 1.4. Let K be a filtered simplicial complex of complexity pa, bq. A simplex σ P K is
a clot if σ “ σn´a and dimσ “ b, where comp pKq “ pa, bq. The family of clots of K is denoted
BpKq.

So, a clot is a simplex σ P K living in Kn´a with maximal geometrical dimension; i.e.,
dimσ “ dimKn´a “ b.
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1.2. Induced filtered simplicial complexes. Let K be a filtered simplicial complex. Given
a simplicial subcomplex L Ă K the induced filtration Li “ L XKi defines a filtered simplicial
complex structure on L. Notice that comp pLq ď comp pKq.

Since Li Ă Ki for any i P t0, . . . , nu, for any stratum T P SL there exists a unique stratum
S P SK with T Ă S. We say that S is the source of T . Notice that dimv T “ dimv S.

Given σ P L, we have a priori two canonical decompositions of σ: as a simplex of L or as a
simplex ofK. Since σXLk “ σXLXKk “ σXKk, for each k P t0, . . . , nu, the two decompositions
coincide. In particular IKσ “ ILσ , denoted Iσ. Moreover, the family SKσ is the family made up of
the sources of the strata of SLσ . So the source of T` is S` for each ` P Iσ.

1.3. Links and joins. We introduce two geometrical constructions associated to a filtered sim-
plicial complex K, of complexity comp pKq “ pa, bq.

The link of a simplex β of K is the simplicial complex

Lβ “ tσ P K | β ˚ σ P Ku.

Recall that Lβ inherits from K a filtered simplicial complex structure. If the simplex β is a clot
and the filtered simplicial complex K is full, then pLβqn´k “ H for k P t0, . . . , au. In particular,
comp pLβq ă comp pKq. In this case, the join β ˚ Lβ of a clot β inherits from K the following
structure of filtered simplicial complex:

pβ ˚ Lβqi “

$

&

%

β ˚ pLβqi if n´ a ă i ď n,
β if i “ n´ a,
H if 0 ď i ă n´ a.

(4)

The family Sβ˚Lβof strata of the join β ˚ Lβ comes from the filtration (4).

1.4. Residual complex. The residual complex LpKq
of a filtered simplicial complex K ‰ H with compK “

pa, bq is the simplicial subcomplex defined by
LpKq “ tσ P K | dimpσ X |Kn´a|q ă bu.

Given a simplicial subcomplex, L Ă K, we necessarily
have LpLq Ă LpKq.

The equality LpKq “ K occures if b “ 8. When b is
finite, we always have compLpKq ă compK. For a “ 0

we get LpKq “ Kpb´1q.
If K is full, any simplex σ P K has a canonical de-

composition, σ “ σn´a ˚ σn´a`1 ˚ ¨ ¨ ¨ ˚ σn, from which
we deduce,

σ P LpKq ðñ dimσn´a ă bðñ σn´a is not a clot.
This gives the following decomposition

K “ LpKq Y
ď

βPBpKq
β ˚ Lβ, (5)

and
LpKq X

ď

βPBpKq
β ˚ Lβ “

ď

βPBpKq
Bβ ˚ Lβ “

ď

βPBpKq
Lpβ ˚ Lβq. (6)

The induced filtration on the join β ˚ Lβ is that described in (4).

1.5. Perversities. A perversity on a filtered simplicial complex K is a map p : SK Ñ Z “

Z Y t˘8u taking the value 0 on the regular strata. The couple pK, pq is a perverse filtered
simplicial complex. The dual perversity Dp is defined by DppSq “ codim vS ´ 2 ´ ppSq for any
singular stratum S P SK . For each k P Z, we denote k the perversity taking the value k on each
singular stratum.

Given a simplicial subcomplex L Ă K and a perversity p on K, we also denote p the perversity
defined on the induced filtered simplicial complex L by

ppT q “ ppSq, (7)
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where T P SL and S P SK is the source of T . In general, in the rest of the text, the perversities
considered on L are perversities induced from a perversity on K.

2. Simplicial intersection homology

We present the simplicial version of the intersection homology associated to a
filtered simplicial complex, as it appears in the Appendix of [16], or with a more
detailed wording in [9, Section 3.2]. We also develop some generic examples, such
as the intersection homology of the pair pK,LpKqq (cf. Proposition 2.3) or the
intersection homology of a join (cf. Proposition 2.5).

In this work, the simplicial complexes are not supposed to be oriented, but we use oriented
simplices. An oriented simplex of a simplicial complex K is a simplex of K with an equivalence
class of orderings of its vertices, where two orderings are equivalent if they differ by an even
permutation. The simplicial chain module C˚pKq is the module generated by the oriented
simplices of K. As a simplex is determined by its vertices we denote it by rv0, . . . , v`s. So,
two writings corresponding to an even permutation of the vertices are identified. For an odd
permutation, ν, we set rv0, . . . , v`s “ ´rvνp0q, . . . , vνp`qs, which makes sense at the level of chains.

Let pK, pq be a perverse filtered simplicial complex. A simplex σ of K is p-allowable if, for
each stratum S P SK , we have

}σ}S “ dimpσ X Sq ď dimσ ´ codim vS ` ppSq. (8)

This condition is always satisfied when the stratum S is regular. Thus, the p-allowability condi-
tion is equivalent to the inequality,

}σ}S “ dimpσ X Sq ď dimσ ´ 2´DppSq, (9)

for each singular stratum S P SK . Notice that σ X S is a union of open faces of σ, so the
dimension of σ X S makes sense. A chain c P C˚pKq is a p-allowable chain if any simplex with
a non-zero coefficient in c is p-allowable. It is a p-intersection chain if c and Bc are p-allowable
chains. The complex of p-intersection chains is denoted C

p

˚
pKq. The associated homology is

the simplicial p-intersection homology Hp

˚
pKq, or simply the simplicial intersection homology if

there is no ambiguity.

If Kn´1 “ H, then Cp

˚
pKq is the usual simplicial chain complex C˚pKq.

If K is full, for each ` P Iσ the number }σ}S` is equal to }σ}` “ dimpσ0 ˚ ¨ ¨ ¨ ˚ σ`q and the
allowability condition (8) becomes, for each ` P Iσ (i.e., σ` ‰ H),

}σ}` ď dimσ ´ pn´ `q ` ppS`q. (10)

There is an important difference between the complex of simplicial chains and that of p-
intersection chains. The first one is a free module over the family of simplices. This is not
the case in the second context since there are p-allowable simplices which are not p-intersection
chains.

2.1. Relative intersection homology. Let pK, pq be a perverse filtered simplicial complex
and L Ă K be a simplicial subcomplex, endowed with the induced filtration and perversity. The
allowability condition of a simplex σ P L can be understood in L itself or in K. Both points of
view are equivalent. Let us see that. The simplex σ is p-allowable in K if, and only if,

}σ}` ď dimσ ´ pn´ `q ` ppS`q,

for each ` P IKσ . The simplex σ is p-allowable in L if, and only if,

}σ}` ď dimσ ´ pn´ `q ` ppT`q,

for each ` P ILσ . These conditions are equivalent since the two decompositions of σ are the same,
IKσ “ ILσ , and ppS`q “ ppT`q. The natural inclusion L ãÑ K gives the following exact sequence

0 // C
p

˚
pLq �
� // C

p

˚
pKq //

C
p

˚
pKq

Cp

˚
pLq

“ C
p

˚
pK,Lq // 0, (11)
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defining the relative simplicial intersection complex Cp

˚
pK,Lq. Its homology is the relative sim-

plicial intersection homology denoted Hp

˚
pK,Lq.

2.2. Example. The determination of the relative complex
C
p

˚

`

Kp`q,Kp`´1q
˘

does not go through the family of `-simplices
of K as in the classical case. Let us see an example.

As simplicial complex K, we consider the suspension of a tri-
angle L. We denote β0, β1 the apexes of the suspension. The
2-skeleton of K is K and its 1-skeleton is the union of the edges.
This simplicial complex K is endowed with the filtration

H “ K´1 Ă tβ0, β1u “ K0 “ K1 Ă K2 “ K.

A straightforward calculation gives, for the 0-perversity, H0

j

`

Kp2q,Kp1q
˘

“ 0, for j ‰ 2 and

H
0

2

`

Kp2q,Kp1q
˘

“ R ‘ R. On the other hand, we have
À

σPK,dimσ“2H
0

2
pσ, Bσq “ 0. Therefore

the formula (1) cannot be true.
For having a decomposition of the relative intersection homology, we must replace the skeleton

by the residual complex. Let us notice that LpKq “ L, which is also the link of β0, β1. Here, we
do have the following decomposition, for any j,

H
0

j
pK,LpKqq “ H

0

j
pK,Lq “

à

i“0,1

H
0

j
pβi ˚ L,Lq “

à

i“0,1

H
0

j
pβi ˚ L,Lpβi ˚ Lqq.

This decomposition exists in the general case of a full simplicial complex, as we prove in
Proposition 2.3. The proof proceeds by induction on the complexity. Firstly, we need the
following Lemma.

Lemma 2.1. Let pK, pq be a perverse full filtered simplicial complex. Consider a face α of a clot
β P BpKq and a simplex ε of the link Lβ. If the stratum Q P SK containing β is singular, we
have the following equivalence:

α ˚ ε is a p-allowable simplex ðñ
"

dim ε ě DppQq ` 1 and
ε is a p-allowable simplex. (12)

Proof. We write q “ dimv Q. We have

Iα˚ε “ t` P t0, . . . , nu | pα ˚ εq X p|pα ˚ Lβq`|z|pα ˚ Lβq`´1|q ‰ Hu

“ tqu Y t` P ta` 1, . . . , nu | εX p|pLβq`|z|pLβq`´1|q ‰ Hu “ tqu Y Iε.

So,

α ˚ ε is a p-allowable simplexðñ
"

}α ˚ ε}q ď dimpα ˚ εq ´ pn´ qq ` ppQq and
}α ˚ ε}` ď dimpα ˚ εq ´ pn´ `q ` ppS`q, @` P Iεztnu,

ðñ

"

dimα ď dimα` dim ε` 1´ pn´ qq ` ppQq and
dimα` }ε}` ` 1 ď dimα` 1` dim ε´ pn´ `q ` ppS`q, @` P Iεztnu,

ðñ

"

0 ď dim ε` 1´ pn´ qq ` ppQq and
}ε}` ď dim ε´ pn´ `q ` ppS`q, @` P Iεztnu,

ðñ

"

dim ε ě DppQq ` 1 and
ε is a p-allowable simplex.

♣

In the case of a face α of the clot β, we have

α is a p-allowable simplexðñ
"

Q is singular and DppQq ` 2 ď 0, or
Q is regular. (13)

Lemma 2.2. Let pK, pq be a perverse full filtered simplicial complex. Then, we have

C
p

˚
pKq “ C

p

˚
pLpKqq `

à

βPBpKq
C
p

˚
pβ ˚ Lβq.
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Proof. It suffices to prove the inclusion Ď. From (5), we know that any chain c P C
p

˚
pKq

can be written c “ f `
ř

βPBpKq cβ with f P C
˚
pLpKqq and cβ P C

˚
pβ ˚ Lβq. As (see (6))

LpKq X
Ť

βPBpKq β ˚ Lβ “
Ť

βPBpKq Bβ ˚ Lβ , we obtain a unique writing of c as

c “ f `
ÿ

βPBpKq
cβ “ f `

ÿ

βPBpKq
nβ β ˚ eβ `mβ β,

with nβ,mβ P R and eβ P Lβ . Since the elements of this decomposition are independent, the
p-allowability of c gives the p-allowability of the chains f , cβ , eβ (see Lemma 2.1). Let Qβ be
the stratum containing β. From Lemma 2.1 and (13), we also deduce

#

dim eβ ě DppQβq ` 1 if nβ ‰ 0, and

DppQβq ` 2 ď 0 if mβ ‰ 0 and Qβ singular.

The boundary Bc of c is given by

Bc “
ÿ

βPBpKq
nβ Bβ ˚ eβ `

ÿ

βPBpKq
p´1qdimβ`1nβ β ˚ Beβ `

ÿ

βPBpKq
mβ Bβ ` Bf. (14)

(In the case dimβ “ 0, the join Bβ ˚ eβ means eβ , and similarly if dim eβ “ 0.) Following a
new time Lemma 2.1 and (13), we get that each element of the first sum in (14) is a p-allowable
chain. Therefore, the chain

ÿ

βPBpKq
p´1qdimβ`1nβ β ˚ Beβ `

ÿ

βPBpKq
mβ Bβ ` Bf

is p-allowable and so is every element of this sum. In short, we get f P Cp

˚
pLpKqq and cβ P

C
p

˚
pβ ˚ Lβq, for each β P BpKq, which gives the claim. ♣

Proposition 2.3. Let pK, pq be a perverse full filtered simplicial complex. The inclusion maps
induce an isomorphism of chain complexes,

à

βPBpKq
C
p

˚
pβ ˚ Lβ, Bβ ˚ Lβq

–
ÝÑ C

p

˚
pK,LpKqq. (15)

Proof. Notice that, for each clot β P BpKq, we have Bβ ˚ Lβ “ Lpβ ˚ Lβq Ă LpKq. (The case
dimβ “ 0 corresponds to Lβ “ Lpβ ˚ Lβq Ă LpKq.) Thus the inclusion maps are well defined.
The result comes from Lemma 2.2 and (6). ♣

Remark 2.4. Let us consider a filtered simplicial complexK with dimK “ b ă 8 and the trivial
filtration K “ Kn Ą H. So, we have compK “ p0, bq, K “ Kpbq, βpKq “ tβ P K | dimβ “ bu

and LpKq “ Kpb´1q. The previous formula (15) becomes

C
˚
pK,LpKqq –

à

βPK

dimβ“b

C
˚
pβ, Bβq – C

˚

´

Kpbq,Kpb´1q
¯

.

Thus our approach contains the classical formula (1).

2.3. Intersection homology of the join. To make the writing easier, we employ the dual
perversity Dp of p. Notice that the intersection homology Hp

0
pKq of a filtered simplicial complex

can be 0 when there are no regular strata. This is why the following statement contains more
cases to consider than that of [4, Proposition 1.49] for instance. The same phenomenon appears
for the calculation of the intersection homology of a cone between King’statement [15, Proposition
5] and Friedman’s [9, Theorem 4.2.1].
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Proposition 2.5. Consider a perverse full filtered simplicial complex pK, pq. Let β P BpKq be a
clot such that the stratum Q P SK containing β is a singular stratum. We have,

H
p

i
pβ ˚ Lβq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

H
p

i
pLβq if i ď DppQq,

0 if i ą DppQq, i ‰ 0,

R if i “ 0 and DppQq ă ´1,

R if i “ 0, DppQq “ ´1 and Hp

0
pLβq ‰ 0,

0 if i “ 0, DppQq “ ´1 and Hp

0
pLβq “ 0.

The first isomorphism is given by the inclusion Lβ ãÑ β ˚ Lβ. On the third and fourth lines, a
generator of R is a point in β or any p-allowable point in Lβ, respectively.

Proof. We write β “ xv0, . . . , v`y and q “ dimv Q. (Since Q is singular, we have DppQq “
n´ q ´ 2´ ppQq.) Any chain c P C˚pβ ˚ Lβq can be written as,

c “ f `
ÿ

αŸβ

cα “ f `
ÿ

αŸβ

nα α ˚ eα `mαα, (16)

where f P C˚pLβq, nα,mα P R and eα P Lβ , for any αŸ β. With these notations, the character-
izations (12) and (13) become

c is p-allowableðñ

$

&

%

dim eα ě DppQq ` 1 and eα is p-allowable, if nα ‰ 0,
DppQq ` 2 ď 0, if mα ‰ 0,
and f is p-allowable.

(17)

We determine Hp

i
pβ ˚ Lβq by distinguishing the three cases boxed below.

‚ i “ 0. A chain c P Cp

0
pβ ˚ Lβq is of the form c “

řb
k“0 nk vk ` f with f P Cp

0
pLβq or c “ f

if DppQq ` 1 ě 0. We distinguish 3 cases. The first one, DppQq ` 1 ą 0, is postponed in the
third item, for any degree i. So, we are left with:

‚‚ DppQq ` 1 “ 0. Here, c “ f P C
p

0
pLβq. Two p-allowable points p1, p2 P Lβ define

the same class in Hp

0
pβ ˚ Lβq, since p1 ´ p2 “ Bpv0 ˚ p

1 ´ v0 ˚ p
2q, where v0 ˚ p

1 and
v0 ˚ p

1 are p-allowable (see (17)). As a point cannot be the boundary of a 1-chain,
the vanishing of Hp

0
pβ ˚ Lβq is equivalent to the non-existence of p-allowable points

in Cp

0
pLβq which gives the two last lines of the statement.

‚‚ DppQq` 1 ă 0. Let us write f “
ř

iPI mi pi, with mi P R and pi P L
p0q
β . From (17),

we deduce that
ř

iPI mi v0˚pi is a p-intersection chain of boundary f´
ř

iPI mi v0. So
the map ι0 : H

p

0
pβq Ñ H

p

0
pβ ˚ Lβq, induced by the canonical inclusion, is surjective.

Recall that Hp

0
pβq “ H

0
pβq “ R is generated by rv0s. If n rv0s, n P R, is sent to

zero by ι0, we have n v0 “ Bγ, with γ P C
p

1
pβ ˚ Lβq. Thus the augmentation map ε

gives n “ εpBγq “ 0. We deduce Hp

0
pβq – H

p

0
pβ ˚ Lβq – R and the third line of the

statement.

‚ i ą 0 and DppQq ď ´1. Let η Ÿ β be the opposite face to the vertex v0 or η “ H when

dimβ “ 0. We consider a cycle γ P C
p

i
pβ ˚ Lβq and we prove that it is a boundary. We

decompose γ “ γ0 ` γ1 where γ0 is a chain of simplices having v0 as vertex and γ1 “
ř

imi γ
1
i,

with γ1i P η ˚Lβ . As γ is a cycle, a direct calculation shows that γ “ Bp
ř

imi v0 ˚γ
1
iq, since i ą 0.

To prove the second line of the statement, we only need to establish that v0 ˚ γ
1
i is a p-allowable

simplex. For that we use (17). As γ1i is p-allowable by hypothesis, we have the three different
cases:

‚‚ γ1i “ α where αŸ η and DppQq ` 2 ď 0,
‚‚ γ1i “ α ˚ eα where αŸ η and eα P Lβ is a p-allowable simplex,
‚‚ γ1i “ eα where eα P Lβ is a p-allowable simplex,
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sinceDppQq`1 ď 0. The same analysis for the simplex v0˚γ
1
i, again with (17) andDppQq`1 ď 0,

gives the claim.

‚ DppQq ě 0. Let us introduce the following truncation of the complex Cp

˚
pLβq,

τC
p

i
pLβq “

$

&

%

C
p

i
pLβq if i ą DppQq ` 1,

C
p

i
pLβq X B

´1p0q if i “ DppQq ` 1,
0 if i ă DppQq ` 1.

Notice that HipτC
p

˚
pLβqq “ H

p

i
pLβq, if i ě DppQq ` 1, and HipτC

p

˚
pLβqq “ 0 otherwise. Let us

consider the map,
Ψ: C˚pβq b τC

p

˚
pLβq Ñ C

˚`1
pβ ˚ Lβq,

defined at the level of simplices by Ψpαbγq “ p´1qdegαα˚γ. (Notice that deg γ ą 0.) By abuse
of notation, we will also denote ˚ the extension of Ψ to chains. We will use it mainly in the case
of the boundary of a simplex. Ce map Ψ verifies the following properties.
iq If degα ą 0 we have

ΨpBpcb γqq “ ΨpBαb γq ` p´1qdegαΨpαb Bγq “ p´1qdegα´1pBα ˚ γq ` pα ˚ Bγq

“ p´1qdegα´1pBα ˚ γ ` p´1qdegα´1α ˚ Bγq “ p´1qdegα´1Bpα ˚ γq

“ ´BΨpαb γq.

iiq If degα “ 0, we have

ΨpBpαb γqq “ Ψpαb Bγq “ α ˚ Bγ “ γ ´ Bpα ˚ γq “ γ ´ BΨpαb γq.

iiiq The simplex Ψpαb γq is p-allowable, see (17).

From these points, we deduce that the map

ψ : C˚pβq b τC
p

˚
pLβq Ñ

C
p

˚`1
pβ ˚ Lβq

Cp

˚`1
pLβq

,

defined by ψpα b γq “ p´1qdegαrrα ˚ γss is a well-defined chain map of degree 1. It is clearly a
monomorphism. Let us now prove that ψ is surjective.

Let c P Cp

i
pβ ˚ Lβq. From (17), we have

c “ f `
ÿ

αŸβ

nα α ˚ eα `
ÿ

αŸβ

mα α,

with f P C˚pLβq, nα, mα P R and eα P L
pjq
β with j ě DppQq ` 1. Notice that dim eα ą 0 for

each nα ‰ 0. The boundary of c is also p-allowable, with

Bc “ Bf `
ÿ

αŸβ
dimα“0

nαeα `
ÿ

αŸβ
dimαą0

nα Bα ˚ eα `
ÿ

αŸβ

p´1qdegα´1nα α ˚ Beα `
ÿ

αŸβ

mα Bα.

From (17), we deduce f P Cp

˚
pLβq and eα P τC

p

˚
pLβq, which implies

ř

αŸβp´1qdegα nα αb eα P

C
˚
pβq b τC

p

˚
pLβq. This gives the claim since

ψp
ÿ

αŸβ

p´1qdegαnα α ˚ eαq “ rr
ÿ

αŸβ

nα α ˚ eαss “ rrcss.

Also, the map Φ: τC
p

˚
pLβq Ñ C˚pβq b τC

p

˚
pLβq, defined by Φpγq “ ´v0 b γ, is a quasi-

isomorphism. Let us consider the short exact sequence

0 // C
p

˚
pLβq

� � // C
p

˚
pβ ˚ Lβq //

C
p

˚
pβ ˚ Lβq

Cp

˚
pLβq

// 0. (18)
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By using Ψ and Φ, we may replace the homology of the quotient by the homology of the trun-
cation, with a shift of one degree. Therefore, the long exact sequence associated to (18) can be
written,

. . . // H
p

i`1
pLβq // H

p

i`1
pβ ˚ Lβq // HipτC

p

˚
pLβqq

� � δ / H
p

i
pLβq // . . . ,

where the connecting map δ becomes the inclusion. Replacing HipτC
p

˚
pLβqq by its value, we

get Hp

i
pβ ˚ Lβq – H

p

i
pLβq, if i ď DppQq, and Hp

i
pβ ˚ Lβq “ 0 otherwise. Moreover, the isomor-

phisms are induced by the inclusion Lβ ãÑ β ˚ Lβ . ♣

When Q is a regular stratum, we have Lβ “ H, Hp

i
pβ ˚ Lβq “ H

p

i
pβq “ Hipβq “ 0 if i ą 0

and Hp

0
pβ ˚ Lβq “ H

p

0
pβq “ H0pβq “ R.

3. Singular intersection homology

The singular version of the intersection homology goes back to King [15]. We
focus here on the singular intersection homology of the realization of a filtered
simplicial complex K. As in the simplicial case of Section 2, we develop the
relative intersection homology of the pair p|K|, |LpKq|q (cf. Proposition 3.3) and
the intersection homology of the realization of a join (cf. Proposition 3.4).

Definition 3.1. A filtered space is a Hausdorff topological space X endowed with a filtration by
closed subspaces,

X “ Xn Ą Xn´1 Ą ¨ ¨ ¨ Ą X0 Ą X´1 “ H.

The integer n is the dimension of X. The i-strata of X are the non-empty connected components
of XizXi´1. The open strata are called regular, the other ones being called singular. The set of
singular strata of X is denoted SX , or S if there is no ambiguity. The dimension of a stratum
S Ă XizXi´1 is dimv S “ i. Its codimension is codim vS “ n´ i.

Given a n-dimensional filtered simplicial complex K, the associated filtration

|K| “ |Kn| Ą |Kn´1| Ą |Kn´2| Ą . . . Ą |K0| Ą K´1 “ H,

defines a n-dimensional filtered space. By definition, there is a canonical bijection S|K| – SK .

3.1. Induced filtered spaces. Let X “ Xn Ą Xn´1 Ą Xn´2 Ą . . . Ą X0 Ą X´1 “ H be
a filtered space. Given a subset Y Ă X, the induced filtration Yi “ Y X Xi defines a filtered
space structure on Y . Since Yi Ă Xi for any i P t0, . . . , nu, then for any stratum T P SY there
exists a unique stratum S P SX with T Ă S. We say that S is the source of T . Notice that
dimv T “ dimv S.

3.2. Perversities. A perversity on a filtered space X is a map p : SX Ñ Z taking the value 0
on the regular strata. The couple pX, pq is a perverse filtered space. Given a subset Y Ă X and
a perversity p on X, we also denote p the perversity defined on the induced filtered space Y by

ppT q “ ppSq,

where T P SY and S P SX is the source of T .

3.3. Perverse degree. For each stratum S P SX , the perverse degree of a singular simplex
σ : ∆ Ñ X along S is

}σ}S “

"

´8 if S X σp∆q “ H,
dimσ´1pSq if not.

By definition, the dimension of a non-empty subset A Ă ∆ is the smallest s P N for which the
subset A is included in the s-skeleton of ∆.
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3.4. The definition. We have all the ingredients needed for the definition of the intersection
homology of a filtered space. (For further information, the reader should consult the historical
definition in [15], or [9, Section 3.4], [6].)

Definition 3.2. Let pX, pq be a perverse filtered space. A singular simplex σ : ∆ Ñ X, is
p-allowable if,

}σ}S ď dim ∆´ codim vS ` ppSq, (19)
for each stratum S P SX . This condition is always satisfied if the stratum S is regular. Thus,
the p-allowability condition is equivalent to the inequality

}σ}S ď dim ∆´DppSq ´ 2, (20)

for each singular stratum S P SX . A singular chain c is p-allowable if any simplex with a non-zero
coefficient in c is p-allowable. It is a p-intersection chain if c and Bc are p-allowable chains. The
associated homology is the singular intersection homology denoted Hp

˚
pXq.

When Xn´1 “ H, the complex Cp

˚
pXq is the usual singular chain complex C˚pXq.

3.5. Relative intersection homology. Let pX, pq be a perverse filtered space and Y Ă X be
a subspace endowed with the induced filttration and perversity. The natural inclusion Y ãÑ X
gives the following exact sequence,

0 // C
p

˚
pY q �

� // C
p

˚
pXq //

C
p

˚
pXq

Cp

˚
pY q

“ C
p

˚
pX,Y q // 0, (21)

defining the relative singular intersection complex Cp

˚
pX,Y q. Its homology is the relative singular

intersection homology denoted Hp

˚
pX,Y q.

Proposition 3.3. Let pK, pq be a perverse full filtered simplicial complex. The inclusion map
induces the isomorphism,

à

βPBpKq
H

p

˚
p|β ˚ Lβ|, |Lpβ ˚ Lβq|q

–
ÝÑ H

p

˚
p|K|, |LpKq|q.

Proof. Recall Lpβ ˚ Lβq “ Bβ ˚ Lβ . The proof is divided into two steps.

Step 1: Thickening. The barycenter of β P BpKq is denoted bβ . We have the equality
|β ˚ Lβ| “ |bβ ˚ Bβ ˚ Lβ|, where Bβ “ H if dimβ “ 0.

So, any point of x P |β˚Lβ| can be written as x “ p1´tqbβ`ta, where t P r0, 1s and a P |Bβ˚Lβ|.
This writing is unique when x ‰ bβ (i.e., t ‰ 0). Notice that the assignment p1´tqbβ`tc ÞÑ pc, tq
induces the homeomorphism

|β ˚ Lβ|ztbβu – |Bβ ˚ Lβ|ˆs0, 1s. (22)

Under this homeomorphism, the filtration on the subset |β ˚ Lβ|ztbβu becomes the product
filtration, with the trivial filtration on s0, 1s. Inspired by Subsection 1.4, we define the open
subset

W “ |K|z
ď

βPBpKq
tbβu “ |LpKq| Y

ď

βPBpKq
p|β ˚ Lβ|ztbβuq .

Associated to this open subset, we define a map, F : W ˆ r0, 1s ÑW by

F px, sq “

"

x if x P |LpKq|,
sx` p1´ sqy if x “ p1´ tqbβ ` ty P |β ˚ Lβ|ztbβu.
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Let us specify the restriction of F to |β ˚ Lβ|ztbβu ˆ r0, 1s, with β P BpKq. By definition, we
have F pp1 ´ tqbβ ` ty, sq “ sp1 ´ tqbβ ` p1 ` st ´ sqy. Composing it with the homeomorphism
(22), we get a map, still denoted F , from |Bβ ˚ Lβ|ˆs0, 1s ˆ r0, 1s to |Bβ ˚ Lβ|ˆs0, 1s, defined by
F py, t, sq “ py, 1` st´ sq. This is the identity on the factor |Bβ ˚ Lβ|. Combined with the fact
that F is the identity on the factor LpKq, we conclude that F is a stratified homotopy in the
sense of [9, Definition 4.1.9].

Let us notice that F p´, 1q is the identity on W . The map F p´, 0q is the identity on |LpKq|
by construction, and sends x R |LpKq| on y P |Bβ ˚ Lβ| Ă |LpKq|. Thus, F p´, 0q gives a map
ν : W Ñ |LpKq|. If we denote j : |LpKq| ãÑ W the inclusion we have ν ˝ j “ idLpKq. On the
other hand, F is a stratified homotopy between F p´, 0q “ j ˝ ν and F p´, 1q “ idW . Therefore
([9, Proposition 4.1.10]), the map j ˝ ν induces the identity map in homology.

In short, the inclusion j induces an isomorphism H
p

˚
pW q – H

p

˚
p|LpKq|q and therefore an

isomorphism
H

p

˚
p|K|,W q – H

p

˚
p|K|, |LpKq|q.

Step 2: Excision. By excision (see [9, Corollary 4.4.18]), we get an isomorphism,

H
p

˚
p|K|,W q – H

p

˚
p|K|z|LpKq|,W z|LpKq|q.

From Subsection 1.4, we have the disjoint unions

|K|z|LpKq| “
ğ

βPBpKq
|β˚Lβ|z|Bβ˚Lβ| and W z|LpKq| “

ğ

βPBpKq
|β˚Lβ|zptbβuY|Bβ˚Lβ|q. (23)

This implies

H
p

˚
p|K|z|LpKq|,W z|LpKq|q –

à

βPBpKq
H

p

˚
p|β ˚ Lβ|z|Bβ ˚ Lβ|, |β ˚ Lβ|zptbβu Y |Bβ ˚ Lβ|q.

An excision relatively to the closed subset |Bβ ˚ Lβ| gives

H
p

˚
p|β ˚ Lβ|z|Bβ ˚ Lβ|, |β ˚ Lβ|zptbβu Y |Bβ ˚ Lβ}qq – H

p

˚
p|β ˚ Lβ|, |β ˚ Lβ|ztbβuq.

Finally, from (22), we may replace |β ˚ Lβ|ztbβu by |Bβ ˚ Lβ|ˆs0, 1s and obtain

H
p

˚
p|β ˚ Lβ|, |β ˚ Lβ|ztbβuq – H

p

˚
p|β ˚ Lβ|, |Bβ ˚ Lβ|q,

which gives the claim. ♣

3.6. Intersection homology of the join. As in Subsection 2.3, we use the dual perversity.
The following determination meets the same pattern as in Proposition 2.5.

Proposition 3.4. Consider a perverse full filtered simplicial complex pK, pq. Let β P BpKq be a
clot such that the stratum Q P SK containing β is a singular stratum. We have

H
p

i
p|β ˚ Lβ|q “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

H
p

i
p|Lβ|q if i ď DppQq,

0 if i ą DppQq, i ‰ 0,

R if i “ 0 and DppQq ă ´1,

R if i “ 0, DppQq “ ´1 and Hp

0
p|Lβ|q ‰ 0,

0 if i “ 0, DppQq “ ´1 and Hp

0
p|Lβ|q “ 0.

The first isomorphism is given by the inclusion |Lβ| ãÑ |β ˚ Lβ|. On the third and fourth lines,
a generator of R is any point in β or any p-allowable point in Lβ, respectively.

Proof. We write q “ dimv Q. Since Q is singular, we have DppQq “ n´ q ´ 2´ ppQq. The case
dimβ “ 0 is given by the classical cone formula, see [9, Theorem 4.2.1]. When dimβ ą 0 we
consider η “ xv0y the 0-simplex given by the first vertex v0 of β. It suffices to prove that the
inclusion η ãÑ β induces the isomorphism H

p

˚
p|η ˚ Lβ|q – H

p

˚
p|β ˚ Lβ|q. Consider a simplicial

homotopy F : β ˆ r0, 1s Ñ β between the identity on β and the constant map β Ñ η. The
realization map, still denoted F : |β ˚Lβ| ˆ r0, 1s Ñ |β ˚Lβ|, is a homotopy between the identity
on |β ˚ Lβ| and the map ξ : |β ˚ Lβ| Ñ |η ˚ Lβ| given by v ˚ x ÞÑ v0 ˚ x.
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From [9, Proposition 4.1.10], we get that both maps F p´, 0q, F p´, 1q : |β˚Lβ| Ñ |β˚Lβ| induce
the same morphism inHp

˚
-homology. Since F p´, 0q is the identity, then pF p´, 1qq˚ : H

p

˚
p|β ˚ Lβ|q Ñ

H
p

˚
p|η ˚ Lβ|q is the identity.

Finally, since the identity map is equal to the composition |η ˚ Lβ| ãÑ |β ˚ Lβ|
ξ
ÝÑ |η ˚ Lβ|

and the map F p´, 1q to the composition |β ˚ Lβ|
ξ
ÝÑ |η ˚ Lβ| ãÑ |β ˚ Lβ|, we conclude that the

inclusion |η ˚ Lβ| ãÑ |β ˚ Lβ| induces an isomorphism H
p

˚
p|η ˚ Lβ|q – H

p

˚
p|β ˚ Lβ|q. ♣

When Q is a regular stratum we have Lβ “ H, Hp

i
p|β ˚ Lβ|q “ H

p

i
p|β|q “ Hip|β|q “ 0 if i ą 0

and Hp

0
p|β ˚ Lβ|q “ H

p

0
p|β|q “ H0p|β|q “ R.

4. Simplicial versus Singular

Let pK, pq be a perverse filtered simplicial complex. After a reminder of the
canonical inclusion map, ι : Cp

˚
pKq Ñ C

p

˚
p|K|q, we prove in Theorem 4.2 that

the map ι induces an isomorphism in homology when K is full. The result is no
longer true if we remove the hypothesis “full,” as it is pointed out in [16, Remark
2].

Consider a perverse full filtered simplicial complex pK, pq. With the “well ordering theorem”
applied inductively to K0, K1zK0, and so on, we can assume that the set of vertices of K is
provided with an order ď that restricts to a total order on each simplex and verifies

v ď w and w P Kk ñ v P Kk. (24)

Let σ P K be an oriented simplex whose vertices are tv0, . . . , viu with v0 ă v1 ă ¨ ¨ ¨ ă vi.
If σ “ xv0, . . . , viy, we say that σ is an ordered simplex. Taking in account the identification
made in the definition of oriented simplices, we notice that ´σ is an ordered simplex if σ is not
and vice-versa. So, the chain complex of oriented simplices C˚pKq is generated by the ordered
simplices. Associated to such simplicial simplex, we have the singular simplex ιpσq : ∆ Ñ |K|
defined by:

ιpσq

˜

i
ÿ

j“0

tjaj

¸

“

i
ÿ

j“0

tjvj , (25)

where ∆ “ xa0, . . . , aiy is the standard simplex. It is well known that ιpσq : ∆ Ñ |K| is a linear
map and that ι : C˚pKq Ñ C˚p|K|q is a chain map.

Proposition 4.1. Let pK, pq be a perverse full filtered simplicial complex of virtual dimension n.
The map ι : Cp

˚
pKq Ñ C

p

˚
p|K|q, associated to an order verifying (24), is a chain map.

Proof. Let σ “ xv0, . . . , viy P K, with v0 ă v1 ă ¨ ¨ ¨ ă vi. It suffices to prove }ιpσq}S “ }σ}S
for each singular stratum S P S|K| verifying S X ιpσqp∆q “ S X σp∆q ‰ H. As we observed in
Subsection 1.1, the canonical decomposition of σ is given by

σ X |K`| “ σ0 ˚ ¨ ¨ ¨ ˚ σ`, (26)

for each ` P t0, . . . , nu. The sets ∆i “ ιpσq´1pσiq are empty-sets or faces of ∆. We have

ιpσq´1p|K`|q “ ιpσq´1pσ X |K`|q “ ιpσq´1pσ0 ˚ ¨ ¨ ¨ ˚ σ`q “ ∆0 ˚ ¨ ¨ ¨ ˚∆`.

If j “ dimv S, the stratum S is the only j-dimensional stratum that meets σ and we deduce the
claim from

}σ}S “ dimpσ X Sq “ dimpσ X |Kj |z|Kj´1|q “ dimpσ X |Kj |q

“ dimpσ0 ˚ ¨ ¨ ¨ ˚ σjq “ dimp∆0 ˚ ¨ ¨ ¨ ˚∆jq “ }ιpσq}S .

♣

The next statement is the existence of an isomorphism between the singular and the simplicial
intersection homologies, for a full complex. This result was proven between the PL and the
singular intersection homologies by M. Goresky and R. MacPherson in the Appendix of [16].
The key point of their proof is taken up in the proof of Proposition 6.5 below. The isomorphism
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between the singular and the PL intersection homologies is set up by H. King in [15] for a CS-set.
Let us also mention that these two isomorphisms are taken over with detail and comments in
[9, Sections 3.3 and 5.4]. So, in the literature, the isomorphism between the singular and the
simplicial intersection homologies is established by using the PL intersection homology as an
intermediate. Here, the proof comes from a direct comparison between these two homologies and
does not need a restriction to CS sets.

Theorem 4.2. Let pK, pq be a perverse full filtered simplicial complex, with an order on the
set of vertices verifying (24). Then, the associated inclusion, ι : Cp

˚
pKq Ñ C

p

˚
p|K|q, induces the

isomorphism
H

p

˚
pKq–H

p

˚
p|K|q.

Proof. We proceed in two steps.
First Step: we suppose K “ Kp`q for some ` P N.

Given a subcomplex L Ă K we also have L “ Lp`q. If compL “ paL, bLq then bL ď dimL ă 8
and therefore compLpLq ă compL (cf. Subsection 1.4). We use an induction on the complexity
pa, bq of K. If a “ b “ 0 then K “ Kn is a discrete family of 0-dimensional simplices. So,
C
p

˚
pKq “ C

p

˚
p|K|q and we get the claim. Let us suppose pa, bq ą p0, 0q and consider the following

commutative diagram defining the relative homology,

0 // C
p

˚
pLpKqq

��

� � // C
p

˚
pKq //

��

C
p

˚
pK,LpKqq

��

// 0

0 // C
p

˚
p|LpKq|q �

� // C
p

˚
p|K|q // C

p

˚
p|K|, |LpKq|q // 0,

where the vertical maps are induced by the inclusion map ι (cf. (11), (21)). From the induction
hypothesis, we know that the left vertical arrow is a quasi-isomorphism. So, it suffices to prove
that the right vertical arrow is a quasi-isomorphism. Using Propositions 2.3 and 3.3, this assertion
is equivalent to the fact that, for each clot β P BpKq, the following map is a quasi-isomorphism

C
p

˚
pβ ˚ Lβ,Lpβ ˚ Lβq Ñ C

p

˚
p|β ˚ Lβ|, |Lpβ ˚ Lβ|q.

Again we combine the short exact sequences (11) and (21) in a commutative diagram,

0 // C
p

˚
pLpβ ˚ Lβqq �

� //

��

C
p

˚
pβ ˚ Lβq

��

// C
p

˚
pβ ˚ Lβ,Lpβ ˚ Lβqq

��

// 0

0 // C
p

˚
p|Lpβ ˚ Lβ|q �

� // C
p

˚
p|β ˚ Lβ|q // C

p

˚
p|β ˚ Lβ|, |Lpβ ˚ Lβq|q // 0,

where the vertical maps are induced by the inclusion map ι. As noticed at the beginning of this
proof, we know that compLpβ ˚Lβq ă comp pβ ˚Lβq ď compK. With the induction hypothesis,
the left vertical arrow is a quasi-isomorphism. It remains to prove that the middle arrow is a
quasi-isomorphism. For doing that, we distinguish two cases.
‚ The clot β is included in a regular stratum. Here, we have Lβ “ H and the middle arrow

becomes ι˚ : C
˚
pβq Ñ C

˚
p|β|q. The claim comes from the classical situation.

‚ The clot β is included in a singular stratum. From Subsection 1.3, we have compLβ ă
compK. From Propositions 2.5, 3.4 and the induction hypothesis, we deduce that the middle
vertical arrow is a quasi-isomorphism.

Second Step: the general case. We consider the induced map ι˚ : H
p

˚
pKq ÝÑ H

p

˚
p|K|q and

decompose the proof in two points.
‚Claim: ι˚ is an epimorphism. Consider a cycle c P Cp

˚
p|K|q. The chain c being a finite sum,

there exists an integer ` P N with c P C
p

˚

`

|Kp`q|
˘

. Applying the first step of the proof, there
exist f P Cp

˚

`

|Kp`q|
˘

and e P Cp

˚

`

Kp`q
˘

with Be “ 0 and ιpeq “ c ` Bf . Since f P Cp

˚
p|K|q and

e P C
p

˚
pKq, we get ι˚presq “ rcs and the claim.
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‚ Claim: ι˚ is a monomorphism. Consider a cycle e P Cp

˚
pKq and a chain f P Cp

˚
p|K|q with

ιpeq “ Bf . Since e and f are finite sums, there exists an integer ` P N with e P Cp

˚

`

Kp`q
˘

and
f P C

p

˚

`

|Kp`q|
˘

. Applying the first step of the proof, there exists g P Cp

˚

`

Kp`q
˘

with e “ Bg.
Since g P Cp

˚
pKq, we get res “ 0 and the claim. ♣

The intersection cohomology H˚

p
p´q of [10] is defined as the cohomology of the dual complex

HompC
p

˚
p´q;Rq. As the Universal Coefficient Theorem is true in this context ([9, Theorem 7.14]),

the singular and simplicial intersection cohomologies are isomorphic for a full filtered simplicial
complex.

5. Blown-up intersection cohomologies

Intersection homology and cohomology do not verify the Poincaré duality for
any ring of coefficient (see [12, 10]). The blown-up intersection cohomology has
been introduced in order to recover this property through a cap product with a
fundamental class (see [5]). In this section, we extend the paradigm (simplicial,
singular) to the blown-up intersection cohomology. After their definitions, we
show in Propositions (5.10), (5.11) and (5.12) that the process used for intersec-
tion homology is still valid here. Finally, we prove the existence of an isomor-
phism between the simplicial and singular blown-up intersection cohomologies in
Theorem 5.13, for a full filtered simplicial complex.

Definition 5.1. Let X be a filtered space of dimension n. A filtered singular simplex of X is a
continuous map, σ : ∆ Ñ X, such that σ´1pXiq is a face of ∆, for i P t0, . . . , nu, or the empty
set. The family of these simplices is denoted SingFX. A filtered singular simplex σ is regular if
σ´1pXnzXn´1q ‰ H. The subfamily of regular simplices is denoted SingF`X.

Definition 5.2. A filtered simplex is a decomposition ∆ “ ∆0 ˚ ¨ ¨ ¨ ˚∆n, where each ∆i is a face
of the standard simplex ∆ or the empty set. If ∆n ‰ H we say that the simplex is regular. The
blow up of a regular simplex is the prism r∆ “ c∆0 ˆ ¨ ¨ ¨ ˆ c∆n´1 ˆ∆n.

The domain of a filtered singular simplex, σ : ∆ Ñ X, inherits a decomposition

∆σ “ ∆0 ˚∆1 ˚ ¨ ¨ ¨ ˚∆n,

with σ´1pXiq “ ∆0 ˚ ¨ ¨ ¨ ˚ ∆i, and ∆i possibly empty, for each i P t0, . . . , nu. We call it the
σ-decomposition of ∆. This simplex σ is said regular if ∆n ‰ H. Notice that each filtered
singular simplex σ : ∆ Ñ X (resp. regular) induces a filtered simplex (resp. regular) on ∆. The
family SingFX is a ∆-set in the sense of Rourke and Sanderson ([18]) for the usual face maps
δi. The blown-up construction, we describe above, is the key point in the construction of our
cohomology. Let us begin with the local situation.

Definition 5.3. A face of r∆ is represented by pF, εq “ pF0, ε0q ˆ ¨ ¨ ¨ ˆ pFn, εnq, with εi P t0, 1u,
εn “ 0 and Fi a face of ∆i for i P t0, . . . , nu, or the empty set with εi “ 1.

More precisely, we have:
‚ εi “ 0 and Fi Ÿ∆i, that is, pFi, 0q “ Fi is a face of ∆i, or
‚ εi “ 1 and Fi Ÿ∆i, that is, pFi, 1q “ cFi is the cone of a face of ∆i, or
‚ εi “ 1 and Fi “ H, that is, pH, 1q is the apex of the cone c∆i, called the virtual apex.

Recall εn “ 0. We also set

|pF, εq|ąj “ dimpFj`1, εj`1q ` ¨ ¨ ¨ ` dimpFn, εnq.

Let us denote N˚

p∆q the complex of simplicial cochains defined on the standard simplex ∆, with
coefficients in R.

Definition 5.4. The blown-up complex of a regular simplex ∆ “ ∆0 ˚ ¨ ¨ ¨ ˚ ∆n is the tensor
product

rN˚p∆q “ N˚pc∆0q b ¨ ¨ ¨ bN
˚pc∆n´1q bN

˚p∆nq.
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Let 1pFi,εiq be the cochain on c∆i, taking the value 1 on the simplex pFi, εiq and 0 on the
other simplices of c∆i, for i P t0, . . . , n ´ 1u. Similarly for 1pFn,εnq. A basis of rN˚p∆q is given
by the family

1pF,εq “ 1pF0,ε0q b ¨ ¨ ¨ b 1pFn,εnq,

where pF, εq runs over the faces of r∆. Each element of this basis owns an extra degree, coming
from the filtration and called perverse degree.

Definition 5.5. Let ` P t1, . . . , nu. The `-perverse degree of the cochain 1pF,εq P rN˚p∆q is equal
to

}1pF,εq}` “

"

´8 if εn´` “ 1,
|pF, εq|ąn´` if εn´` “ 0.

The `-perverse degree of ω “
ř

µ λµ 1pFµεµq P
rN
˚

p∆q, with each λµ ‰ 0, is equal to

}ω}` “ max
µ
}1pFµ,εµq}`.

By convention, we set }0}` “ ´8.

Remark 5.6. Let us consider a face pF, εq of r∆ with F0 “ ¨ ¨ ¨ “ Fm´1 “ H for some m P

t0, . . . , n ´ 1u. From the definition, we observe that the perverse degrees }1pF,εq}`, for ` P
t1, . . . , nu, do not depend on the face Fm.

Let X be a filtered space and P be a subset of SingFX stable by the face operators. The
subfamily of its regular elements is denoted P`. In Example 5.9, we detail two examples of
subsets P of interest for this work.

Let us define the blown-up cochain complex associated to P Ď SingFX. First, to any regular
simplex, σ : ∆ “ ∆0 ˚ ¨ ¨ ¨ ˚∆n Ñ X in P, we associate the cochain complex defined by

rN
˚

σ
“ rN˚p∆q “ N

˚

pc∆0q b ¨ ¨ ¨ bN
˚

pc∆n´1q bN
˚

p∆nq.

A face operator δ` : ∇ “ ∇0 ˚ ¨ ¨ ¨ ˚∇n Ñ ∆ “ ∆0 ˚ ¨ ¨ ¨ ˚∆n is regular if ∇n ‰ H. By restriction,
such δ` induces

δ˚` : N
˚

pc∆0q b ¨ ¨ ¨ bN
˚

pc∆n´1q bN
˚

p∆nq Ñ N
˚

pc∇0q b ¨ ¨ ¨ bN
˚

pc∇n´1q bN
˚

p∇nq.

Definition 5.7. Let X be a filtered space and P be a sub ∆-set of SingFX. The blown-up
complex, rN

˚,P
pXq, is the cochain complex formed by the elements ω, associating to any σ P P an

element ωσ P rN
˚

σ
, so that δ˚` pωσq “ ωσ˝δ` , for any regular face operator, δ`, of P. The differential

of rN
˚,P
pXq is defined by pδωqσ “ δpωσq. The perverse degree of ω P rN

˚,P
pXq along a singular

stratum, S P SX , is equal to

}ω}S “ sup t}ωσ}codim vS | σ P P` with Imσ X S ‰ Hu .

We denote }ω} : SX Ñ Z the map associating to any singular stratum S of K the element }ω}S
and 0 to any regular stratum.

Definition 5.8. Let p be a perversity on a filtered space X and P be a sub ∆-set of SingFX.
A cochain ω P rN

˚,P
pXq is p-allowable if }ω} ď p. A cochain ω is of p-intersection if ω and its

coboundary, δω, are p-allowable.
We denote rN˚,Pp pXq the complex of p-intersection cochains and H ˚,P

p pXq its homology, called
the blown-up intersection cohomology of X with coefficients in R, for the perversity p.

Example 5.9. Let X be a filtered space and p be a perversity on X. In the sequel, we consider
the two following cases of subsets P Ă SingFX.

a) If P “ SingFX, we recover the complex of blown-up p-intersection cochains of X and the
blown-up intersection cohomology defined in [3]. We denote them rN

˚

p
pXq and H

˚

p
pXq. If

there is an ambiguity with the simplicial situation introduced in the next item, we will call
them the singular blown-up intersection complex and the singular blown-up intersection
cohomology.
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b) Let X “ |K| be the geometric realization of a full filtered simplicial complex K. The
family of singular simplices induced by the simplices of K is denoted SimpK. Since
K is full, this is a sub ∆-set of SingF |K| and we can apply the previous process with
P “ SimpK. We denote rN

˚

p
pKq and H

˚

p
pKq the associated complex and cohomology

and call them the simplicial blown-up intersection complex and the simplicial blown-up
intersection cohomology.

In Theorem 5.13, we prove the existence of an isomorphism between the singular and the
simplicial blown-up intersection cohomologies, H

˚

p
pKq –H

˚

p
p|K|q.

The next result allows the existence of relative blown-up intersection cohomologies.

Proposition 5.10. Let pK, pq be a perverse full filtered simplicial complex. Then, the two fol-
lowing restrictions,

a) γ : rN
˚

p
p|K|q Ñ rN

˚

p
p|LpKq|q, and

b) γ : rN
˚

p
pKq Ñ rN

˚

p
pLpKqq,

are onto maps.

Proof. Let compK “ pa, bq. When b “ 8, we have LpKq “ K and the result is clear. Suppose
now b ă 8, which implies (see Subsection 1.4) compLpKq ă compK.

a) It suffices to prove that the extension, η P rN
˚

p|K|q, by 0 of a cochain ω P rN
˚

p
p|LpKq|q

belongs to rN
˚

p
p|K|q. We clearly have }η} ď }ω}. Now, we want to bound }δ|K|η}. For that, we

write
δ|K|η “ δ|LpKq|η ` pδ|K| ´ δ|LpKq|qpηq

and notice first that }δ|LpKq|η} ď }δ|LpKq|ω}. As the perverse degree of a linear combination is
the maximum of the perverse degrees of its terms (see Definition 5.7), we are reduced to study
}pδ|K| ´ δ|LpKq|qpηq}. We claim that

}pδ|K| ´ δ|LpKq|qpηq} ď }ω}, (27)

which gives the result. Without loss of the generality, it suffices to prove that

}δ|LpKq|1pF,εq ´ δ|K|1pF,εq} ď }1pF,εq},

where σ : ∆ Ñ |K| is a regular singular simplex and pF, εq is a face of the blown-up r∆ such that
σpF q Ă |LpKq|.

Since Kn´a´1 “ H and compLpKq ă compK, we have F0 “ ¨ ¨ ¨ “ Fn´a´1 “ H and
σpFn´aq Ă |K

pb´1q
n´a |. An element of δ|LpKq|1pF,εq ´ δ|K|1pF,εq is of the form ˘1pH,τq and we can

suppose, without loss of generality, that pH, τq is a face of r∆. This face verifies pF, εq Ÿ pH, τq,
dimpH, τq “ dimpF, εq ` 1, and σpHq Ć |LpKq| (i.e., σpHn´aq Ć K

pb´1q
n´a ). This implies Hn´a ‰

Fn´a, Hi “ Fi, for i ‰ n ´ a, and τ “ ε. Since }1pH,τq} “ }1pF,εq} (cf. Remark 5.6), we get the
claim.

b) The proof of the singular situation is similar. ♣

From Proposition 5.10, we deduce the two following exact sequences,

0 // rN
˚

p
p|K|, |LpKq|q �

� // rN
˚

p
p|K|q

γ //// rN
˚

p
p|LpKq|q // 0,

0 // rN
˚

p
pK,LpKqq �

� // rN
˚

p
pKq

ν //// rN
˚

p
pLpKqq // 0.

(28)

The homology of rN
˚

p
p|K|, |LpKq|q is isomorphic to the relative blown-up p-intersection cohomol-

ogy introduced in [3]. We denote it H ˚
p p|K|,Lp|K|q. The homology of the complex rN

˚

p
pK,LpKqq

is denoted H
˚

p
pK,LpKqq. In the next statement, we show that the relative intersection coho-

mology can be decomposed, as does the relative homology of pXp`q, Xp`´1qq in the case of a
CW-complex X.

Proposition 5.11. Let pK, pq be a perverse full filtered simplicial complex. The restriction map
induces the isomorphisms
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i) H
˚

p
p|K|, |LpKq|q –ÝÑ

ź

βPBpKq
H

˚

p
p|β ˚ Lβ|, |Lpβ ˚ Lβq|q, and

ii) H
˚

p
pK,LpKqq –ÝÑ

ź

βPBpKq
H

˚

p
pβ ˚ Lβ,Lpβ ˚ Lβqq.

Proof. i) We proceed as in the proof of Proposition 3.3 keeping the same notations. Applying [3,
Proposition 11.3], we get that the inclusion induces the isomorphism H

˚

p
pW q – H

˚

p
p|LpKq|q

which gives an isomorphism

H
˚

p
p|K|,W q –H

˚

p
p|K|, |LpKq|q.

By excision (cf. [3, Proposition 12.9]) we have

H
˚

p
p|K|,W q –H

˚

p
p|K|z|LpKq|,W z|LpKq|q.

From the decompositions made in (23), we get

H
˚

p
p|K|z|LpKq|,W z|LpKq|q –

ź

βPBpKq
H

˚

p
p|β ˚ Lβ|z|Bβ ˚ Lβ|, |β ˚ Lβ|zptbβu Y |Bβ ˚ Lβ|qq.

Using excision relatively to the closed subset |Bβ ˚ Lβ|, we obtain

H
˚

p
p|β ˚ Lβqz|Bβ ˚ Lβ|, |β ˚ Lβ|zptbβu Y |Bβ ˚ Lβ|qq –H

˚

p
p|β ˚ Lβ|, |β ˚ Lβ|ztbβuq.

Finally, applying [3, Theorem D] to the homeomorphism(22), we deduce

H
˚

p
p|β ˚ Lβ|, |β ˚ Lβ|ztbβuq –H

˚

p
p|β ˚ Lβ|, |Bβ ˚ Lβ|q

and therefore the isomorphism i).

ii) The complex rN
˚

p
pK,LpKqq is made up of the cochains of K vanishing on LpKq. From (6)

we get rN
˚

p
pK,LpKqq –

ś

βPBpKq
rN
˚

p
pβ ˚ Lβ,Lpβ ˚ Lβqq and therefore,

H
˚

p
pK,LpKqq –

ź

βPBpKq
H

˚

p
pβ ˚ Lβ,Lpβ ˚ Lβqq,

by restriction. ♣

The next result specifies the blown-up intersection cohomology of some pieces of the decom-
position brought by Proposition 5.11.

Proposition 5.12. Consider a perverse full filtered simplicial complex pK, pq. Let β P BpKq be
a clot such that the stratum Q P SK containing β is singular. We have

i) H
˚

p
p|β ˚ Lβ|q –

"

H
˚

p
p|Lβ|q if ˚ ď ppQq,

0 if not,

ii) H
˚

p
pβ ˚ Lβq –

"

H
˚

p
pLβq if ˚ ď ppQq,

0 if not,
where the isomorphisms are induced by the natural inclusion Lβ ãÑ β ˚ Lβ.

Proof. If Lβ “ H then N
˚

p
pβ ˚ Lβq “ N

˚

p
pβq “ 0 since there are no regular simplices (Q is

singular). So, we can suppose Lβ ‰ H. Let compK “ pa, bq.
i) We proceed as in the proof of Proposition 3.4 keeping the same notations. The case dimβ “ 0

is given by [3, Theorem E], since Lβ ‰ H. When dimβ ą 0 by using [3, Proposition 11.3], we
get that pF p´, 1qq˚ : H

˚

p
p|β ˚ Lβ|q ÑH

˚

p
p|β ˚ Lβ|q is the identity. Finally, since id : |η ˚ Lβ| ãÑ

|β ˚ Lβ|
ξ
ÝÑ |η ˚ Lβ| and F p´, 1q : |β ˚ Lβ|

ξ
ÝÑ |η ˚ Lβ| ãÑ |β ˚ Lβ|, we conclude that the inclusion

|η ˚ Lβ| ãÑ |β ˚ Lβ| induces the isomorphism H
˚

p
p|β ˚ Lβ|q –H

˚

p
p|η ˚ Lβ|q.

ii) By definition, we have

rN
˚

pβ ˚ Lβq “ N
˚

pcβq b rN
˚

pLβq,
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and any cochain ω P rN
˚

pβ ˚ Lβq can be written as a sum

ω “
ÿ

FŸβ

1pF,0q b ωF `
ÿ

FŸβ

1pF,1q b τF ` 1pH,1q b τH,

with ωF , τF , τH in rN
˚

pLβq if F Ÿ β. The perverse degrees are computed as follows,

- }1pF,0q b τ}` “
"

deg τ if ` “ a,
}τ}` if ` ă a,

- }1pF,1q b τ}` “
"

´8 if ` “ a,
}τ}` if ` ă a,

for each ` P t1, . . . , nu. The condition }ω} ď p is equivalent to maxp}ωF }, }τF }, }τH}q ď p and
degωF ď ppQq, for each F Ÿ β. For }δω} ď p, this becomes maxp}δωF }, }δτF }, }δτH}q ď p, and
degpδωF q ď ppQq. In particular, we have, for each F Ÿ β,

ωF P rN
ăppQq

p
pLβq ‘

´

rN
ppQq

p
pLβq X δ

´1p0q
¯

and τF , τH P rN
˚

p
pLβq.

The complex N˚

pcβ, βq is made up of the cochains on cβ vanishing on β. It is generated by the
family t1pF,1q | F “ H or F Ÿ βu. Let us consider the two short exact sequences,

0 Ñ N
˚

pcβ, βq ãÑ N
˚

pcβq
ν
ÝÑ N

˚

pβq Ñ 0,

where ν
´

ř

FŸβ nF 1pF,0q `
ř

FŸβmF 1pF,1q ` nH 1pH,1q

¯

“
ř

FŸβ uF 1F , with nF , mF , nH P R,
and

0 Ñ N
˚

pcβ, βq b rN
˚

p
pLβq ãÑ rN

˚

p
pβ ˚ Lβq

υ
ÝÑ N

˚

pβq b τppQq rN
˚

p
pLβq Ñ 0,

where υ
´

ř

FŸβ 1pF,0q b ωF `
ř

FŸβ 1pF,1q b τF ` 1pH,1q b τH

¯

“
ř

FŸβ 1pF,0q b ωF .

Since the map ν is a quasi-isomorphism, the complex N˚

pcβ, βq is acyclic. So, the map υ is
a quasi-isomorphism. The result comes from H

j
pβq “ 0 if i ą 0 and H0

pβq “ R. ♣

When Q is a regular stratum, we have Lβ “ H, H
i

p
p|β ˚ Lβ|q “ H

i

p
p|β|q “ H

i
p|β|q “ 0

if i ą 0 and H
0
p|β|q “ R. Similarly, the simplicial blown-up intersection cohomology verifies

H
i

p
pβ ˚ Lβq “H

i

p
pβq “ H

i
pβq “ 0 if i ą 0 and H

0

p
pβq “ H

0
pβq “ R.

The second main result of this work establishes an isomorphism between the singular and the
simplicial blown-up intersection cohomologies. These cohomologies are related by the cochain
map ρ : rN

˚

p
p|K|q Ñ rN

˚

p
pKq induced by the natural inclusion SimpK Ă SingF |K| (cf. (25)).

Theorem 5.13. Let pK, pq be a perverse full filtered simplicial complex. Then, the map ρ induces
an isomorphism

H
˚

p
p|K|q–H

˚

p
pKq. (29)

Proof. We proceed in two steps.

First Step : Suppose compK “ pa, bq with b ă 8. Given a subcomplex L Ă K, we also
have bL ď dimL ă 8, with compL “ paL, bLq, and therefore compLpLq ă compL (cf. Subsec-
tion 1.4). We use an induction on the complexity pa, bq of K. When a “ b “ 0, the complex K
is a discrete family of 0-dimensional simplices, so we have N˚

p
pKq “ N

˚

p
p|K|q and the claim. For

the inductive step, we consider the following commutative diagram deduced from (28),

0 // N
˚

p
p|K|, |LpKq|q

��

� � // N
˚

p
p|K|q

γ //

��

N
˚

p
p|LpKq|q

��

// 0

0 // N
˚

p
pK,LpKqq �

� // N
˚

p
pKq

γ // N
˚

p
pLpKqq // 0

where the vertical maps are induced by the map ρ. From the induction hypothesis, we know
that the right arrow is a quasi-isomorphism. So, it suffices to prove that the left arrow is a
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quasi-isomorphism. Using Proposition 5.11, this assertion is equivalent to the fact that the map
ρ induces a quasi-isomorphism, for each β P BpKq,

N
˚

p
p|β ˚ Lβ|, |Lpβ ˚ Lβ|qq Ñ N

˚

p
pβ ˚ Lβ,Lpβ ˚ Lβqq.

From (28), we deduce the commutative diagram

0 // N
˚

p
p|β ˚ Lβ|, |Lpβ ˚ Lβq|q

��

� � // N
˚

p
p|β ˚ Lβ|q

γ //

��

N
p

˚
p|Lpβ ˚ Lβq|q

��

// 0

0 // N
˚

p
pβ ˚ Lβ,Lpβ ˚ Lβqq �

� // N
˚

p
pβ ˚ Lβq

γ // N
˚

p
pLpβ ˚ Lβqq // 0

where the vertical maps are induced by ρ. We have compLpβ˚Lβq ă comp pβ˚Lβq ď compK (cf.
Subsection 1.2) and the induction hypothesis implies that the right arrow is a quasi-isomorphism.
It remains to prove that the middle arrow is a quasi-isomorphism. We distinguish two cases.

‚ β is included in a regular stratum. We have Lβ “ H and this case is resolved in the paragraph
following the proof of Proposition 5.12.

‚ β is included in a singular stratum. We have compLβ ă compK (cf. Subsection 1.3). From
Proposition 5.12 and the induction hypothesis, the middle arrow is a quasi-isomorphism.

Second Step : Suppose compK “ pa,8q. We proceed by induction on a P t0, . . . , nu. When
a “ 0, K has no singular part, that is, Kn´1 “ H. So, from the classical situation, the map ρ
induces the isomorphism H

˚

p|K|q–H
˚

pKq. Let us consider the inductive step with a ą 0.
Given k P N, we define Kk “ tσ P K | dimσn´a ď ku and K´1 “ tσ P K | σn´a “ Hu. They

are simplicial subcomplexes of K with K “
Ť

kě´1K
k and there exists an infinite sequence

K´1 Ă K0 Ă ¨ ¨ ¨ Ă Kk Ă Kk`1 Ă . . .

Each of theses complexes is endowed with the induced structure defined in Subsection 1.2. We
prove that the filtered simplicial complex Kk, with k P NY t´1u, verifies (29).

Let us begin with the case k “ ´1. By construction, we have comp pK´1q “ pa´, b´q ă pa, 0q.
If b´ ă 8, the First Step gives the claim. If b´ “ 8, the inductive step assures us that K´1

verifies (29). Let k P N with Kk ‰ Kk´1, we have compKk “ pa, kq. Following the First
Step, we conclude that Kk verifies (29). We also have LpKkq “ Kk´1 by definition. By using
Proposition 5.10, we know that the morphisms,

ρ˚ : N
˚

p

´

Kk
¯

Ñ N
˚

p

´

Kk´1
¯

and ρ˚ : N
˚

p

´

|Kk|

¯

Ñ N
˚

p

´

|Kk´1|

¯

, (30)

induced by the inclusion Kk´1 ãÑ Kk, are onto maps.
Associated to the directed set K “

Ť

kě´1K
k “ lim

ÝÑ
Kk, we have the towers pN˚

p

`

Kk
˘

qkě´1

and pN˚

p

`

|Kk|
˘

qkě´1. As they are Mittag-Leffler (see (30)), we have the commutative diagram,

0 // lim
ÐÝ

1H
˚´1

p

`

|Kk|
˘

//

��

H
˚

p
p|K|q //

��

lim
ÐÝ

H
˚

p

`

|Kk|
˘

//

��

0

0 // lim
ÐÝ

1H
˚´1

p

`

Kk
˘

// H
˚

p
pKq // lim

ÐÝ
H

˚

p

`

Kk
˘

// 0,

where the vertical maps are induced by ρ. From the first step, the left and right maps are
isomorphisms. So the Five’s Lemma ends the proof. ♣

6. Simplicial and singular versus PL

Let X be a PL space relatively to a family T of triangulations, endowed with
a PL filtration. In this section, we first define the PL blown-up intersection
cohomology of X. In Theorem 6.7, we prove that this cohomology is isomorphic
to the singular blown-up intersection cohomology of X and to the simplicial
blown-up cohomology of any full triangulation belonging to T .
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Let us begin with basic recalls on PL spaces.

Definition 6.1. A triangulation of X is a pair pK,hq of a simplicial complex, K, and a homeo-
morphism, h : |K| Ñ X. A subdivision of pK,hq is a pair pL, hq where L is a subdivision of K, de-
noted L C K. Two triangulations, pK,hq and pL, fq, ofX are equivalent if f´1h : |K| Ñ X Ñ |L|
is induced by a simplicial isomorphism K Ñ L.

Definition 6.2. A PL space is a second countable, Hausdorff topological space, X, endowed
with a family, T , of triangulations of X, called admissible and such that the following properties
are satisfied.
(a) If pK,hq in T and L C K, then pL, hq P T .
(b) If pK,hq P T and pL, fq P T , they have a common subdivision in T .

Definition 6.3. Let pX, T q and pY,Sq be two PL spaces. A PL map, ψ : pX, T q Ñ pY,Sq, is
a continuous map, ψ : X Ñ Y , such that for any pK,hq P T and any pL, fq P S, there is a
subdivision K 1 of K for which j´1ψh takes each simplex of K 1 linearly into a simplex of L. A
PL subspace of pX, T q is a PL space pX 1, T 1q, such that X 1 is a subspace of X and the inclusion
map, X 1 ãÑ X, is a PL map.

Definition 6.4. A filtered PL space is a PL space pX, T q, filtered by a sequence of closed PL
subspaces,

X “ Xn ) Xn´1 Ą ¨ ¨ ¨ Ą X0 Ą X´1 “ H.

From [9, Subsection 2.5.2], we may suppose that there is a triangulation pK,hq of X with
respect to which each of the Xi is the image under h of a subcomplex of K.

If L is a full subcomplex of a simplicial complex K and K 1 is a subdivision of K, we denote
L1 the subdivision of L induced by K 1. If L is full in K, then ([17, Lemma 3.3]) L1 is full in K 1.
Therefore the fullness property adapts to PL spaces: any filtered PL space admits an admissible
full triangulation, see [9, Lemma 3.3.19].

6.1. Blown-up and subdivision. Let us connect the blown-up cochain complex of a simplicial
complex and of one of its subdivisions.

Proposition 6.5. Let K 1 be a subdivision of a full filtered simplicial complex K and p be a
perversity. There exist cochain maps

jK1K : rN
˚

p

`

K 1
˘

Ñ rN
˚

p
pKq and ϕKK1 : rN

˚

p
pKq Ñ rN

˚

p

`

K 1
˘

such that jK1K ˝ ϕKK1 “ id.

Proof. Let σ : ∆σ Ñ K be an oriented, regular, filtered simplex ofK. The filtration onK induces
a decomposition in join product, ∆σ “ ∆σ,0 ˚ ¨ ¨ ¨ ˚∆σ,n, where each ∆σ,iz∆σ,i´1 is included in
a stratum Si. The simplex σ is subdivided in some oriented simplices pσt`uq1ď`ďk of K 1, of
equal dimension. Let ` P t1, . . . , ku. We can suppose that the orientations of σ and σt`u are
compatible. Each simplex of the subdivision is obtained by adding new vertices to a subset of
Vert pKq. These new vertices belongs to a stratum and we can write ∆σt`u as a join product
∆σt`u “ ∆σt`u,0 ˚ ¨ ¨ ¨ ˚∆σt`u,n.
‚ Construction of jK1K . For any ε as in Definition 5.3 and any ` P t1, . . . , ku, we set

j
´

1p∆σt`u,εq

¯

“ 1p∆σ ,εq.

We get a cochain map j : rN
˚

pK 1q Ñ rN
˚

pKq. Concerning the perverse degrees, let us notice that
dimp∆σt`u X Sq ď dimp∆σ X Sq. Thus, we have }1p∆σ ,εq} ď }1p∆σt`u,εq} for any ` P t1, . . . , ku.
Defined on a basis, the association j extends linearly in a map

jK1K : rN
˚

p

`

K 1
˘

Ñ rN
˚

p
pKq.

On each factor of the join product, this map is the transposed map of the subdivision map. From
[9, Lemmas 3.3.1, 3.3.15], it follows that jK1K is a chain map.

‚ Construction of ϕKK1 . We use a simplicial map, ν : K 1 Ñ K, built by Goresky and MacPher-
son in [16, Appendix]. Let us recall their construction, using [9, Subsection 3.3.4], assuming
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that K is full and that the set Vert pKq is well ordered. The map ν is defined from a map
ν : Vert pK 1q Ñ Vert pKq between the set of vertices of K and K 1, that is extended linearly on
simplices.

If the vertex v1 P K 1 is already in K, we set νpv1q “ v1. Otherwise, v1 is in the interior of a
simplex σ of K. Denote S the stratum of |K| containing the interior of σ. One knows (see [16]
or [9, Lemma 3.3.25]) that the interior of a simplex is contained in the stratum S if, and only
if, all the vertices of σ are contained in the closure S and at least one vertex of σ is in S. We
define νpv1q as the vertex of σ in S that is greatest in the selected order. As the vertices v1 and
νpv1q are in the same stratum (see [9, Proof of Lemma 3.3.21]), the map ν is compatible with
the strata decomposition. Also, from the same proof, it is explicit that only one of the simplices
∆σt`u of the subdivision has an image by ν which is of the same dimension than ∆σ. Let us
denote it ∆σtνu and set

ϕKK1
`

1p∆σ ,εq

˘

“ 1p∆σtνu,εq.

As ν : K 1 Ñ K is a simplicial map, compatible with the strata, we have }1p∆σ ,εq} “ }1p∆σtνu,εq}

and a map

ϕKK1 : rN
˚

p
pKq Ñ rN

˚

p

`

K 1
˘

.

As the association ν gives a chain map (see [16, Appendix] or [9, Lemma 3.3.21]), by duality,
ϕKK1 is a chain map. The equality jK1K ˝ ϕKK1 “ id follows directly from the definitions of the
two maps. ♣

6.2. PL blown-up cohomology and simplicial cohomology. Let pX, T q be a PL filtered
space and K be any triangulation of T . We denote sd K the barycentric subdivision of K and
psdi KqiPN the family of iterated barycentric subdivisions, with the convention sd0 “ id. The
subdivision maps give a direct system Subi : sdi`1 K Ñ sdi K, for i P N. Let p be a perversity
on X. In [9, Lemma 5.4.1], Friedman proves that the PL homology is obtained as the homology
of the inductive limit of this direct system, Hp

˚,PL
pXq – H˚plimÝÑi

C
p

˚

`

sdi K
˘

q.

Denote ji : rN
˚

p

`

sdi K
˘

Ñ rN
˚

p

`

sdi´1 K
˘

and ϕi : rN
˚

p
pKq Ñ rN

˚

p

`

sdi K
˘

from the maps of
Proposition 6.5, for i P N. More specifically, we set ji “ jsdiK sdi´1K and, by induction, ϕi “
ϕsdi´1K sdiK ˝ ϕi´1 and ϕ0 “ id. By construction and Proposition 6.5, it follows ji ˝ ϕi “ ϕi´1.
The maps ji define a projective system which allows the following definition.

Definition 6.6. Let pX, T q be a PL filtered space and p be a perversity on X. The complex of
p-intersection PL cochains is the inverse (projective) limit,

rN
˚,PL

p
pXq “ lim

ÐÝ
i

rN
˚

p

`

sdi K
˘

.

We denote H
˚,PL

p
pXq the corresponding cohomology, and call it the PL blown-up p-intersection

cohomology.

From Lemma 1.3, we can suppose that K is full. Let’s now prove that the PL blown-up
p-intersection cohomology is isomorphic to the blown-up singular and the blown-up simplicial
ones, and thus is independent of the choice of K.

Theorem 6.7. Let pX, T q be a PL filtered space and p be a perversity on X. Then for a pure
K P T , there are isomorphisms,

H
˚,PL

p
pXq –H

˚

p
pKq –H

˚

p
pXq and H

p

˚,PL
pXq – H

p

˚
pKq – H

p

˚
pXq.

The last part recovers [9, Theorem 5.4.2] without the hypothesis of CS set structure.
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Proof. Let jďi be the map defined by jď1 “ j1 and jďi “ jďi´1˝ji. We also denote pi : rN
˚,PL

p
pXq Ñ

rN
˚

p

`

sdipKq
˘

the projection given by the projective limit.

rN
˚

p
pKq

rN
˚,PL

p
pXq

p0

55

pi´1

//

pi ))

rN
˚

p

`

sdi´1 K
˘

jďi´1

OO

rN
˚

p
pKq

id

ϕi´1

oo

ϕivv

Ψ

]]

rN
˚

p

`

sdi K
˘

ji

OO

(31)

From the equalities ji ˝ ϕi “ ϕi´1 and the universal property of inverse limits, we get a cochain
map Ψ: rN

˚

p
pKq Ñ rN

˚,PL

p
pXq such that p0 ˝ Ψ “ id and pi ˝ Ψ “ ϕi for any i P N. From

Proposition 6.5 applied to sdi K and sdi´1 K, we deduce that each ji and each H˚pjiq is
surjective. Thus [13, Proposition 13.2.3] and Theorem 5.13 give the existence of isomorphisms,

H
˚,PL

p
pXq “ H˚plimÐÝ

i

rN
˚

p

`

sdi K
˘

q – lim
ÐÝ
i

H
˚

p

`

sdi K
˘

– H
˚

p
pKq –H

˚

p
pXq.

The existence of the isomorphisms in p-intersection homology follows directly from Theorem 4.2
and the commutativity of homology with inductive limits. ♣
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