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et Modélisation d’Évry
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Abstract

The Expectation Maximization (EM) algorithm is the default algorithm for infer-
ence in latent variable models. As in any other field of machine learning, appli-
cations of latent variable models to very large datasets makes the use of advanced
parallel and distributed architectures mandatory. This paper introduces FedEM,
which is the first extension of the EM algorithm to the federated learning context.
FedEM is a new communication efficient method, which handles partial participa-
tion of local devices, and is robust to heterogeneous distributions of the datasets.
To alleviate the communication bottleneck, FedEM compresses appropriately de-
fined complete data sufficient statistics. We also develop and analyze an extension
of FedEM to further incorporate a variance reduction scheme. In all cases, we de-
rive finite-time complexity bounds for smooth non-convex problems. Numerical
results are presented to support our theoretical findings, as well as an application
to federated missing values imputation for biodiversity monitoring.

1 Introduction

The Expectation Maximization (EM) algorithm is the most popular approach for inference in latent
variable models. The EM algorithm, a special instance of the Majorize/Minimize algorithm [24],
was formalized by [8] and is without doubt one of the fundamental algorithms in machine learning.
Applications include among many others finite mixture analysis, latent factor models inference, and
missing data imputation; see [38, 29, 26, 13] and the references therein. As in any other field of
machine learning, training latent variable models on very large datasets make the use of advanced
parallel and distributed architectures mandatory. Federated Learning (FL) [22, 39], which exploits
the computation power of a large number of edge devices to perform distributed machine learning,
is a powerful framework to achieve this goal.

The conventional EM algorithm is not suitable for FL settings. We propose several new distributed
versions of the EM algorithm supporting compressed communication. More precisely, our objective
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is to minimize a non-convex finite-sum smooth objective function

Argminθ∈Θ F (θ), F (θ) :=
1

n

n∑
i=1

Li(θ) + R(θ) , Θ ⊆ Rd , (1)

where n is the number of workers/devices which are connected to a central server, and the worker
#i only has access to its local data; finally R is a penalty term which may be introduced to pro-
mote sparsity, regularity, etc. In latent variable models, Li(θ) = −m−1

∑m
j=1 log p(yij ; θ), where

{yij}mj=1 are the m observations available for worker #i, and p(y; θ) is the incomplete likeli-
hood. p(y; θ) is defined by marginalizing the complete-data likelihood p(y, z; θ) defined as the
joint probability density function of the observation y and a non-observed latent variable z ∈ Z, i.e.
p(y; θ) =

∫
Z
p(y, z; θ)µ(dz) where Z is the latent space and µ is a measure on Z. We focus in this

paper on the case where p(y, z; θ) belongs to a curved exponential family, given by

p(y, z; θ) := ρ(y, z) exp
{
〈s(y, z), φ(θ)〉 − ψ(θ)

}
; (2)

where s(y, z) ∈ Rq is the complete-data sufficient statistics, φ : Θ → Rq and ψ : Θ → R,
ρ : Y × Z→ R+ are vector/scalar functions.

In absence of communication constraints, the EM algorithm is a popular method to solve (1). It
alternates between two steps: in the Expectation (E) step, using the current value of the iterate θcurr,
it computes a majorizing function θ 7→ Q(θ, θcurr) given up to an additive constant by

Q(θ, θcurr) := − 〈̄s(θcurr), φ(θ)〉+ ψ(θ) + R(θ) where s̄(θ) :=
1

n

n∑
i=1

s̄i(θ) ; (3)

and s̄i(θ) is the ith device conditional expectation of the complete-data sufficient statistics:

s̄i(θ) :=
1

m

m∑
j=1

s̄ij(θ) , s̄ij(θ) :=

∫
Z

s(yij , z)p(z|yij ; θ)µ(dz) , (4)

where p(z|yij ; θ) := p(yij , z; θ)/p(yij ; θ). As for the M step, an updated value of θcurr is computed
as a minimizer of θ 7→ Q(θ, θcurr). The majorizing function is then updated with the new θcurr; this
process is iterated until convergence. The EM algorithm is most useful when for any θcurr ∈ Θ,
the function θ 7→ Q(θ, θcurr) is a convex function of the parameter θ which is solvable in θ either
explicitly or with little computational effort. A major advantage of the EM algorithm stems from
its invariance under homeomorphisms, contrary to classical first-order methods: the EM updates are
the same for any continuous invertible re-parametrization [23].

In the FL context, the vanilla EM algorithm is affected by three major problems: (1) the communi-
cation bottleneck, (2) data heterogeneity, and (3) partial participation (PP) of the workers.

When the number of workers is large, the cost of communication becomes overwhelming. A classi-
cal technique to alleviate this problem is to use communication compression. Most FL algorithms are
first order methods and compression is typically applied to stochastic gradients. Yet, these methods
are not appropriate to solve (1) since (i) they do not preserve the desirable homeomorphic invariance
property, and (ii) the full EM iteration is not distributed since the M step is performed by the central
server only. This calls for an extension of the EM algorithm to the FL setting.

Since workers are often user personal devices, the issue of data heterogeneity naturally arises. Our
model in Equations (1), (3) and (4) allows the local loss functions to depend on the worker i ∈
{1, . . . , n} and the observations yij to be independent but not necessarily identically distributed.
In addition, our theoretical results deal with specific behaviors for each worker i ∈ {1, . . . , n},
see e.g., A5, 7 and 8. In the FL-EM setting, heterogeneity manifests itself by the non-equality of
the local conditional expectations of the complete-data sufficient statistics s̄i’s; modifications to the
algorithms must be performed to ensure convergence at the central server.

Finally, a subset of users are potentially inactive in each learning round, being unavailable or unwill-
ing to participate. Thus, taking into account PP of the workers and its impact on the convergence of
algorithms, is a major issue.

• FedEM. The main contribution of our paper is a new method called FedEM, supporting commu-
nication compression, partial participation and data heterogeneity. In this algorithm, the workers
compute an estimate of the local complete-data sufficient statistics s̄i using a minibatch of data,
apply an unbiased compression operator to a noise compensated version (using a technique inspired
by [17, 15]) and send the result to the central server, which performs aggregation and the M-step
(i.e. the parameter update).
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• VR-FedEM. We improve FedEM by adding a variance reduction method inspired by the SPIDER
framework [9] which has recently been extended to the EM framework [10]. For both FedEM and
VR-FedEM, the central server updates the expectations of the global complete-data sufficient statistics
through a Stochastic Approximation procedure [3, 4]. When compared to FedEM, VR-FedEM addi-
tionally performs variance reduction for each worker, progressively alleviating the variance brought
by the random oracles which provide approximations of the local complete-data sufficient statistics.
• Theoretical analysis. EM in the curved exponential family setting converges to the roots of a
function h (see e.g. Section 2). We introduce a unified theoretical framework which covers the
convergence of FedEM and VR-FedEM algorithms in the non-convex case and establish convergence
guarantees for finding an ε-stationary point (see Theorem 1 and Theorem 3). In both cases, we
provide the number Kopt(ε) of optimization steps and the number KCE(ε) of computed conditional
expectations s̄ij’s required to reach ε-stationarity. These results show that in the Stochastic Approx-
imation steps of VR-FedEM , the step sizes are independent of m, the number of observations per
server. Furthermore, the computational cost in terms of KCE(ε) improves on earlier results. In this
respect, VR-FedEM has the same advantages as SPIDER [9] compared to SVRG [18] and SAGA [6], or
as SPIDER-EM [10] compared to sEM-vr [5] and FIEM [20, 11]. Lastly, our bounds demonstrate the
robustness of FedEM and VR-FedEM to data heterogeneity.
• Finally, seen as a root finding algorithm in a quantized FL setting, VR-FedEM can be compared
to VR-DIANA [17]: we show that VR-FedEM does not require the step sizes to decrease with m and
provides state of the art iteration complexity to reach a precision ε.

Notations. For vectors a, b in Rq , 〈a, b〉 is the Euclidean scalar product, and ‖·‖ denotes the asso-
ciated norm. For r ≥ 1, ‖a‖r is the `r-norm of a vector a. The Hadamard product a � b denotes
the entrywise product of the two vectors a, b. By convention, vectors are column-vectors. For a
matrix A, A> is its transpose and ‖A‖F is its Frobenius norm; for two matrices A,B, 〈A,B〉 :=
Trace(B>A). For a positive integer n, set [n]? := {1, · · · , n} and [n] := {0, · · · , n}. The set of
non-negative integers (resp. positive) is denoted by N (resp. N?). The minimum (resp. maximum)
of two real numbers a, b is denoted by a∧b (resp. a∨b). We will use the Bachmann-Landau notation
a(x) = O(b(x)) to characterize an upper bound of the growth rate of a(x) as being b(x).

2 FedEM: Expectation Maximization algorithms for federated learning

Recall the definition of the negative penalized (normalized) log-likelihood F (θ) from (1). Along the
entire paper, we make the following assumptions A1 to A3,which define the model at hand.
A1. The parameter set Θ ⊆ Rd is a convex open set. The functions R : Θ → R, φ : Θ → Rq ,
ψ : Θ → R, and ρ(yij , ·) : Z → R+, s(yij , ·) : Z → Rq for i ∈ [n]? and j ∈ [m]? are measurable
functions. For any θ ∈ Θ and i ∈ [n]?, the log-likelihood is finite: −∞ < Li(θ) <∞.
A2. For all θ ∈ Θ and i ∈ [n]?, the conditional expectation s̄i(θ) is well-defined.
A3. For any s ∈ Rq , the map s 7→ Argminθ∈Θ {ψ(θ) + R(θ)− 〈s, φ(θ)〉} exists and is unique;
the singleton is denoted by {T(s)}.

EM defines a sequence {θk, k ≥ 0} that can be computed recursively as θk+1 = T◦ s̄(θk), where the
map T is defined in A3 and s̄ is defined in (3). On the other hand, the EM algorithm can be defined
through a mapping in the complete-data sufficient statistics, referred to as the expectation space. In
this setting, the EM iteration defines a Rq-valued sequence {Ŝk, k ≥ 0} given by Ŝk+1 = s̄◦T(Ŝk).
Thus, we observe that the EM algorithm admits two equivalent representations:

(Parameter space) θk+1 = T ◦ s̄(θk); (Expectation space) Ŝk+1 = s̄ ◦ T(Ŝk). (5)
In this paper, we focus on the expectation space representation; see [23] for an interesting discussion
on the connection of EM and mirror descent. It has been shown in [7] that if s? is a fixed point to
the EM algorithm in the expectation space, then θ? := T(s?) is a fixed point of the EM algorithm in
the parameter space, i.e., θ? = T ◦ s̄(θ?); note that the converse is also true. Define the functions hi
and h from Rq to Rq by h(s) := 1

n

∑n
i=1 hi(s) with hi(s) := s̄i ◦ T(s)− s .

h(s) :=
1

n

n∑
i=1

hi(s) , hi(s) := s̄i ◦ T(s)− s . (6)

A key property is that the fixed points of EM in the expectation space are the roots of the mean
field s 7→ h(s) (see (3) for the definition of s̄). Therefore, convergence of EM-based algorithms is
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evaluated in terms of ε-stationarity (see [14, 10]): for all ε > 0, there exists a (possibly random)
termination time K s.t. E

[
‖h(ŜK)‖2

]
≤ ε . Another key property of EM is that it is a monotonic

algorithm: each iteration leads to a decrease of the negative penalized log-likelihood i.e. F (θk+1) ≤
F (θk) or, equivalently in the expectation space F ◦T(Ŝk+1) ≤ F ◦T(Ŝk) (for sequences {θk, k ≥ 0}
and {Ŝk, k ≥ 0} given by (5)). A4 assumes that the roots of the mean field h are the roots of the
gradient of F ◦ T (see [7] for the same assumption when studying Stochastic EM). A5 assumes
global Lipschitz properties of the functions hi’s.

A4. The function W := F ◦ T : Rq → R is continuously differentiable on Rq and its gradient is
globally Lipschitz with constant LẆ. Furthermore, for any s ∈ Rq , ∇W(s) = −B(s)h(s) where
B(s) is a q × q positive definite matrix. In addition, there exist 0 < vmin ≤ vmax such that for any
s ∈ Rq , the spectrum of B(s) is in [vmin, vmax].

A5. For any i ∈ [n]?, there exists Li > 0 such that for any s, s′ ∈ Rq , ‖hi(s) − hi(s
′)‖ =

‖(s̄i ◦ T(s)− s)− (̄si ◦ T(s′)− s′)‖ ≤ Li‖s− s′‖ .

A Federated EM algorithm.
Algorithm 1: FedEM with partial participation
Data: kmax ∈ N?; for i ∈ [n]?, V0,i ∈ Rq;

Ŝ0 ∈ Rq; a positive sequence
{γk+1, k ∈ [kmax − 1]}; α > 0; a coefficient
p = EA∼PPP

[card(A)]/n.
Result: The FedEM-PP sequence:

{Ŝk, k ∈ [kmax]}
1 Set V0 = n−1

∑n
i=1 V0,i

2 for k = 0, . . . , kmax − 1 do
3 Sample Ak+1 ∼ PPP

4 for i ∈ Ak+1 do
5 (worker #i)
6 Sample Sk+1,i, an approximation of s̄i ◦ T(Ŝk)

7 Set ∆k+1,i = Sk+1,i − Vk,i − Ŝk
8 Set Vk+1,i = Vk,i + αQuant(∆k+1,i).
9 Send Quant(∆k+1,i) to the central server

10 for i /∈ Ak+1 do
11 (worker #i)
12 Set Vk+1,i = Vk,i (no update)
13 (the central server)
14 Set

Hk+1 = Vk + (np)−1
∑
i∈Ak+1

Quant(∆k+1,i)

15 Set Ŝk+1 = Ŝk + γk+1Hk+1

16 Set Vk+1 = Vk + αn−1
∑
i∈Ak+1

Quant(∆k+1,i)

17 Send Ŝk+1 and T(Ŝk+1) to the n workers

Our first contribution, the novel al-
gorithm FedEM is described by algo-
rithm 1. The algorithm encompasses
partial participation of the workers:
at iteration #(k + 1), only a subset
Ak+1 of active workers participate to
the training, see line 3. The averaged
fraction of participating workers is de-
noted p. Each of the active workers #i
computes an unbiased approximation
Sk+1,i (line 6) of s̄i◦T(Ŝk); condition-
ally to the past (see Appendix D.2 for
a rigorous definition), these approxi-
mations are independent. The work-
ers then transmit to the central server
a compressed information about the
new sufficient statistics. A naive so-
lution would be to compress and trans-
mit Sk+1,i−Ŝk, but data heterogeneity
between servers often prevents these
local differences from vanishing at the
optimum, leading to large compres-
sion errors and impairing convergence
of the algorithm. Following [28], a
memory Vk,i (initialized to hi(Ŝ0) at
k = 0) is introduced; and the dif-
ferences ∆k+1,i := Sk+1,i − Ŝk −
Vk,i are compressed for i ∈ Ak+1

(line 7 and line 9). These memories
are updated locally: Vk+1,i = Vk,i +
αQuant(∆k+1,i), at line 8, with α > 0 (typically set to 1/(1 + ω) where ω is defined in A6).
On its side, the central server releases an aggregated estimate Ŝk+1 of the complete-data sufficient
statistics by averaging the quantized difference (np)−1

∑
i∈Ak+1

Quant(∆k+1,i) and by adding Vk
(line 14 and line 15). Then, it updates Vk+1 = Vk + αn−1

∑n
i=1 Quant(∆k+1,i), see line 16. The

final step consists in solving the M-step of the EM algorithm, i.e. in computing T(Ŝk+1) (see A3).

We finally state our assumption on the compression process. We consider a large class of unbiased
compression operators Quant satisfying a variance bound:

A6. There exists ω≥0 s.t. for any s ∈ Rq: E [Quant(s)] = s, and E
[
‖Quant(s)‖2

]
≤ (1+ω)‖s‖2.
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Intuitively, the stronger the compression is, the larger ω will be. Remark that if no compression is
used, or equivalently for all s ∈ Rq , Quant(s) = s, then A6 is satisfied with ω = 0. An example
of quantization operator satisfying A6 is the random dithering that can be described as the random
operator Quant : Rq → Rq , Quant(x) = (1/squant)‖x‖r sign(x)�bsquant(|x|/‖x‖r) + ξcwhere
r ≥ 1 is user-defined, ξ is a uniform random variable on [0, 1]q and squant ∈ N? is the number of
levels of roundings; see [17, 2]. This operator satisfies A6 with ω = s−1

quantO(q1/r + q1/2); see [17,
Example 1]. Another example, namely the block-p-quantization, is provided in the supplemental
(see Appendix B). More generally, this assumption is valid for many compression operators, for
example resulting in sparsification [see. e.g. 28].

The convergence analysis is under the following assumptions on the oracle Sk+1,i: for any i ∈ [n]?,
the approximations Sk+1,i are unbiased and their conditional variances are uniformly bounded in k.
For each k ∈ N, denote by Fk the σ-algebra generated by {S`,i,A`; i ∈ [n]?, ` ∈ [k]} and including
the randomness inherited from the quantization operator Quant up to iteration #k.

A 7. For all k ∈ N, conditional to Fk, {Sk+1,i}ni=1 are independent. Moreover, for any
i ∈ [n]?, E [Sk+1,i|Fk ] = s̄i ◦ T(Ŝk) and there exists σ2

i > 0 such that for any k ≥ 0

E
[
‖Sk+1,i − s̄i ◦ T(Ŝk)‖2

∣∣∣Fk ] ≤ σ2
i .

A7 covers both the finite-sum setting described in the introduction, and the online setting. In the
finite-sum setting, s̄i is of the form m−1

∑m
j=1 s̄ij . In that case, Sk+1,i can be the sum over a mini-

batch Bk+1,i of size b sampled at random in [m]?, with or without replacement and independently of
the history of the algorithm: we have Sk+1,i = b−1

∑
j∈Bk+1,i

s̄ij ◦T(Ŝk). In the online setting, the
oracles Sk+1,i come from an online processing of streaming informations; in that case Sk+1,i can
be computed from a minibatch of independent examples so that the conditional variance σ2

i , which
will be inversely proportional to the size of the minibatch, can be made arbitrarily small.

Reduction of communication complexity for FL. Reducing the communication cost between
workers is a crucial aspect of the FL approach [19]. In gradient based optimization, four tech-
niques have been used to reduce the amount of communication: (i) increasing the minibatch size
and reducing the number of iterations, (ii) increasing the number of local steps between two com-
munication rounds, (iii) using compression, (iv) sampling clients at each step. Here, we provide a
tight analysis of strategies (i), (iii) and (iv) (sampling client is part of PP).

Regarding the interest of performing multiple iterations (ii), as analyzed for example in [21, 27] for
the classical gradient settings, we note that: first, from a theoretical standpoint, tradeoffs between
larger minibatch and more local iterations are unclear [37]. Secondly, performing local iterations is
not possible in the EM setting: one iteration of EM is the combination of two steps E and M and the
M step, which required the use of the map T , is only performed by the central server; this remark is
a fundamental specificity of the EM framework (which is not shared by the gradient framework). In
applications, we usually do not want T to be available at each local node. However, our work allows
to perform multiple local iterations of the E step before communicating with the central server. In
algorithm 1, the local statistics Sk+1,i are general enough to cover this case; see the comment above
on A7.

Finally, as we do not perform local full EM iterations, we do not face the well-identified client-
drift challenge (in the presence of heterogeneity). Yet, we stress that combining compression and
heterogeneity results in other challenges: it is known in the Gradient Descent setting (see e.g. [28,
31]), that heterogeneity strongly hinders convergence in the presence of compression. To alleviate
the impact of heterogeneity, we introduce the Vk,i’s memory-variables.

Convergence analysis, full participation regime. In this paragraph, we focus on the full-
participation regime (p = 1): for all k ∈ [kmax]?, Ak = [n]∗. We now present in Theorem 1 our
key result, from which complexity expressions are derived. The proof is postponed to Appendix C.

Theorem 1. Assume A1 to A7 and set L2 := n−1
∑n
i=1 L

2
i , σ2 := n−1

∑n
i=1 σ

2
i . Let {Ŝk, k ∈

[kmax]} be given by algorithm 1, with ω > 0, α := (1 + ω)−1 and γk = γ ∈ (0, γmax] where

γmax :=
vmin

2LẆ

∧
√
n

2
√

2L(1 + ω)
√
ω
. (7)
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Denote byK the uniform random variable on [kmax−1]. Then, taking V0,i = hi(Ŝ0) for all i ∈ [n]?:

vmin

(
1− γ

LẆ

vmin

)
E
[
‖h(ŜK)‖2

]
≤ 1

γkmax

(
W(Ŝ0)−min W

)
+ γLẆ

1 + 5ω

n
σ2 . (8)

When there is no compression (ω = 0 so that Quant(s) = s), we prove that the introduction of the
random variables Vk,i’s play no role whatever α > 0 and the choice of the V0,i’s, and we have for
any γ ∈ (0, 2vmin/LẆ) (see (29) in the supplemental)(

1− γ
LẆ

2vmin

)
E
[
‖h(ŜK)‖2

]
≤ 1

γkmax

(
W(Ŝ0)−min W

)
+ γLẆ

σ2

n
. (9)

Optimizing the learning rate γ, we derive the following corollary (see the proof in Appendix C).

Corollary 2 (of Theorem 1). Choose γ :=
( (W(Ŝ0)−min W)n
kmaxLẆ(1+5ω)σ2

)1/2 ∧ γmax. We get

E
[
‖h(ŜK)‖2

]
≤ 4

vmin

(√(
W(Ŝ0)−min W

)
LẆ(1 + 5ω)σ2

nkmax
∨
(

W(Ŝ0)−min W
)

γmaxkmax

)
.

Theorem 1 and Corollary 2 do not require any assumption regarding the distributional heterogeneity
of workers. These results remain thus valid when workers have access to data resulting from different
distributions — a widespread situation in FL frameworks. Crucially, without assumptions on the
heterogeneity of workers, the convergence of a “naive” implementation of compressed distributed
EM (i.e. an implementation without the variables Vk,i’s) would not converge.

Let us comment the complexity to reach an ε-stationary point, and more precisely how the com-
plexity evaluated in terms of the number of optimization steps depend on ω, n, σ2 and ε. Since
KOpt(ε) = kmax, from Corollary 2 we have that: Kopt(ε) = O

(
(1+ω)σ2

nε2

)
∨O

(
1

γmaxε

)
.

Maximal learning rate and compression. The comparison of Theorem 1 with the no compression
case (see (9)) shows that compression impacts γmax by a factor proportional to

√
n/ω3/2 as ω

increases (similar constraints were observed in the risk optimization literature, e.g. in [17, 32]).
This highlights two different regimes depending on the ratio

√
n/ω3/2: if the number of workers

n scales at least as ω3, the maximal learning rate is not impacted by compression; on the other
hand, for smaller numbers of workers n � ω3, compression can degrade the maximal learning
rate. We highlight this conclusion with a small example in the case of scalar quantization for which
ω ∼ √q/squant: for q = 102 and squant = 4 (obtaining a compression rate of a factor 16), the
maximal learning rate is almost unchanged if n ≥ 16.

Dependency on ε. The complexity Kopt(ε) is decomposed into two terms scaling respectively as
σ2ε−2 and γ−1

maxε
−1, the first term being dominant when ε → 0. This observation highlights two

different regimes: a high noise regime corresponding to γmax(1 + ω)σ2/(nε−1) ≥ 1 where the
complexity is of order σ2ε−2, and a low noise regime where γmax(1 + ω)σ2/(nε−1) ≤ 1 and the
complexity is of order γ−1

maxε
−1. An extreme example of the low noise case is σ2 = 0, occurring for

example in the finite-sum case (i.e., when s̄i = m−1
∑m
j=1 s̄ij) with the oracle Sk+1,i = s̄i ◦T(Ŝk).

Impact of compression for ε-stationarity. As mentioned above, the compression simulta-
neously impacts the maximal learning rate (as in (7)) and the complexity Kopt(ε). Conse-
quently, the impact of the compression depends on the balance between ω, n, σ2 and ε, and
we can distinguish four different “main” regimes. In the following tabular, for each of the
four situations, we summarize the increase in complexity Kopt(ε) resulting from compression.

Complexity regime:
(Dominating term in Kopt(ε))

(1+ω)σ2

nε2
1

γmaxε

γmax regime:
(Dominating term in (7))

Example situation High noise σ2,
small ε

Low σ2 (e.g., large minibatch)
larger ε

vmin

2LẆ
large ratio n/ω3 ×ω ×1

√
n

2
√

2L(1+ω)
√
ω

low ratio n/ω3 ×ω ×ω3/2/
√
n

Depending on the situation, the complexity can be multiplied by a factor ranging from 1 to
ω ∨ (ω3/2/

√
n) . Remark that the communication cost of each iteration is typically reduced by
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compression of a factor at least ω. Moreover, the benefit of compression is most significant in the
low noise regime and when the maximal learning rate is vmin/(2LẆ) (e.g., when n large enough).
We then improve the communication cost of each iteration without increasing the optimization com-
plexity, effectively reducing the communication budget “for free”.

Because of space constraints, the results in the PP regime are postponed to Appendix A.

3 VR-FedEM: Federated EM algorithm with variance reduction

A novel algorithm, called VR-FedEM and described by algorithm 2, is derived to additionally incor-
porate a variance reduction scheme in FedEM. It is described in the finite-sum setting when for all
i ∈ [n]?, s̄i := m−1

∑m
j=1 s̄ij : at each iteration #(t, k + 1), the oracle on s̄i ◦ T(Ŝt,k) will use a

minibatch Bt,k+1,i of examples sampled at random (with or without replacement) in [m]?.

Algorithm 2: VR-FedEM
Data: kout, kin, b ∈ N?; for i ∈ [n]?, V1,0,i ∈ Rq;

Ŝinit ∈ Rq; a positive sequence
{γt,k+1, t ∈ [kout]

?, k ∈ [kin − 1]}; α > 0

Result: sequence: {Ŝt,k, t ∈ [kout]
?, k ∈ [kin]}

1 Ŝ1,0 = Ŝ1,−1 = Ŝinit, V1,0 = n−1
∑n
i=1 V1,0,i

2 for i = 1, . . . , n do
3 S1,0,i = 1

m

∑m
j=1 s̄ij ◦ T(Ŝinit)

4 for t = 1, . . . , kout do
5 for k = 0, . . . , kin − 1 do
6 for i = 1, . . . , n (worker #i, locally) do
7 Sample at random a batch Bt,k+1,i of size b in

[m]?

8 Set St,k+1,i = St,k,i +

b−1
∑
j∈Bt,k+1,i

(
s̄ij ◦ T(Ŝt,k)− s̄ij ◦ T(Ŝt,k−1)

)
9 Set ∆t,k+1,i = St,k+1,i − Ŝt,k − Vt,k,i

10 Set Vt,k+1,i = Vt,k,i + αQuant(∆t,k+1,i).
11 Send Quant(∆t,k+1,i) to the central server
12 (the central server)
13 Set Ht,k+1 = Vt,k + n−1

∑n
i=1 Quant(∆t,k+1,i)

14 Set Ŝt,k+1 = Ŝt,k + γt,k+1Ht,k+1

15 Set Vt,k+1 = Vt,k +αn−1
∑n
i=1 Quant(∆t,k+1,i)

16 Send Ŝt,k+1 and T(Ŝt,k+1) to the n workers

17 Ŝt+1,0 = Ŝt+1,−1 = Ŝt,kin
18 Vt+1,0 = Vt,kin
19 for i = 1, . . . , n do
20 St+1,0,i = 1

m

∑m
j=1 s̄ij ◦ T(Ŝt+1,0)

21 Vt+1,0,i = Vt,kin,i

The algorithm is decomposed into
kout outer loops (indexed by t), each
of them having kin inner loops (in-
dexed by k). At iteration #(k +
1) of the inner loops, each worker
#i updates a local statistic St,k+1,i

based on a minibatch Bt,k+1,i of its
own examples {s̄ij , j ∈ Bt,k+1,i}
(see Line 8): starting from Ŝt,0,i :=

m−1
∑m
j=1 s̄ij ◦T(Ŝt,−1), Ŝt,k+1,i is

defined in such a way that it approx-
imates m−1

∑m
j=1 s̄ij ◦ T(Ŝt,k) (see

Corollary 18). Then, the worker #i
sends to the central server a quan-
tization of ∆t,k+1,i (see Line 12)
which can be seen as an approxima-
tion of α−1{hi(Ŝt,k) − hi(Ŝt,k−1)}
upon noting that the variable Vt,k+1,i

defined by Line 10 approximates
hi(Ŝt,k) (see Proposition 26). The
central server learns the mean value
Vt,k+1 = n−1

∑n
i=1 Vt,k+1,i (see

Line 15 and Lemma 21) and, by
adding the quantized quantities, de-
fines a field Ht,k+1 which ap-
proximates n−1

∑n
i=1 hi(Ŝt,k) (see

Proposition 24). Line 14 can be seen
as a Stochastic Approximation up-
date, with learning rate γt,k+1 and
mean field s 7→ n−1

∑n
i=1 hi(s) (see

(6) for the definition of hi).

The variance reduction is encoded in
the definition of St,k+1,i, Line 8. We
have St,k+1,i = b−1

∑
j∈Bt,k+1,i

s̄ij◦
T(Ŝt,k) + Υt,k+1,i. The first term is the natural approximation of s̄i ◦T(Ŝt,k) based on a minibatch
Bt,k+1,i. Conditionally to the past, Υt,k+1,i is correlated to the first term and biased, but its bias is
canceled at the beginning of each outer loop (see Line 20 and Appendix E.3.2): Υt,k+1,i defines a
control variate. Such a variance reduction technique was first proposed in the stochastic gradient
setting [30, 9, 36] and then extended to the EM setting [10, 12]. At the end of each outer loop, the
local approximations St+1,0,i are initialized to the full sum m−1

∑m
j=1 s̄ij ◦ T(Ŝt,kin) (see Line 20)

thus canceling the bias of S·,i (see Proposition 17).
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When there is a single worker and no compression is used (n = 1, ω = 0), VR-FedEM reduces to
SPIDER-EM, which has been shown to be rate optimal for smooth, non-convex finite-sum optimiza-
tion [10]. Theorem 3 studies the FL setting (n ≥ 1 and ω ≥ 0): it establishes a finite time control of
convergence in expectation for VR-FedEM . Assumptions A5 and A7 are replaced with A8.

A8. For any i ∈ [n]? and j ∈ [m]?, the conditional expectations s̄ij(θ) are well defined for any
θ ∈ Θ, and there exists Lij such that for any s, s′ ∈ Rq , ‖(̄sij ◦ T(s) − s) − (̄sij ◦ T(s′) − s′)‖ ≤
Lij‖s− s′‖ .

Theorem 3. Assume A1 to 3, A4, A6 and A8. Set L2 := n−1m−1
∑n
i=1

∑m
j=1 L

2
ij . Let {Ŝt,k, t ∈

[kout]
?, k ∈ [kin − 1]} be given by algorithm 2 run with α := 1/(1 + ω), V1,0,i := hi(Ŝ1,0) for any

i ∈ [n]?, b := d kin
(1+ω)2 e and

γt,k = γ :=
vmin

LẆ

(
1 + 4

√
2
vmax

LẆ

L√
n

(1 + ω)
(
ω +

1 + 10ω

8

)1/2
)−1

. (10)

Let (τ,K) be the uniform random variable on [kout]
? × [kin − 1], independent of {Ŝt,k, t ∈

[kout]
?, k ∈ [kin]}. Then, it holds

E
[
‖Hτ,K+1‖2

]
≤

2
(
E
[

W(Ŝ1,0)
]
−min W

)
vminγkinkout

, (11)

E
[
‖h(Ŝτ,K)‖2

]
≤ 2
(

1 + γ2L
2(1 + ω)2

n

)
E
[
‖Hτ,K+1‖2

]
. (12)

The proof is postponed to Appendix E. This result is a consequence of the more general Proposi-
tion 25. We make the following comments:

1. Eq. (11) provides the convergence of E
[
‖Hτ,K+1‖2

]
, and Eq. (12) ensures that the quantity

of interest E[‖h(Ŝτ,K)‖2] is controlled by E[‖Hτ,K+1‖2]. We observe that 2(1 + γ2 L
2(1+ω)2

n ) is
uniformly bounded w.r.t. ω as, by (10), γ2 = Oω→∞(ω−3).
2. Up to our knowledge, this is the first result on Federated EM, that leverages advanced variance
reduction techniques, while being robust to distribution heterogeneity (the theorem is valid without
any assumption on heterogeneity) and while reducing the communication cost.
3. Without compression (ω = 0) and in the single-worker case (n = 1), Fort et al. [10] use kin = b:
we recover this result as a particular case. When n > 1 and ω > 0, the recommended batch size b
decreases as 1/(1 + ω)2.

Convergence rate and optimization complexity. Our step-size γ is chosen constant and inde-
pendent of kin, kout. Indeed, contrary to Theorem 1, there is no Bias-Variance trade-off (as typi-
cally observed with variance reduced methods), and the optimal choice of γ is the largest one to
ensure convergence. Consequently, since the number of optimization steps is koutkin, we have
Kopt(ε) = O( 1

γε ).

Impact of compression on the learning rate and ε-stationarity. The compression constant ω does
not directly appear in (11), but impacts the value of γ. Two different regimes appear:

1. if 4
√

2 vmax

LẆ

L√
n

(1 + ω)
(
ω + 1+10ω

8

)1/2 � 1 (i.e. we focus on the large ω, n asymptotics when
ω3 � n), then γ ' vmin

LẆ
has nearly the same value as without compression [10]. The complexity

is then similar to the one of SPIDER-EM [10], with a smaller communication cost. The gain from
compression is maximal in this regime.
2. if 4

√
2 vmax

LẆ

L√
n

(1 + ω)
(
ω + 1+10ω

8

)1/2 � 1 (i.e. we focus on the large ω, n asymptotics when

ω3 � n), then γ = O
(

vmin
√
n

vmaxLω3/2

)
is strictly smaller than without compression. The optimization

complexity is then higher to the one of SPIDER-EM1 (by a factor proportional to ω3/2/
√
n) with a

smaller communication cost (typically at least ω times less bits exchanged per iteration). The overall
trade-off thus depends on the comparison between ω and n.

1As a corollary of [10, Theorem 2], the optimization complexity of SPIDER-EM is kout + kinkout that is
ε−1 in order to reach ε-stationarity.
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Complexity : 1/(γε)

γ regime: (Dominating
term in (10))

Example situation

vmin/LẆ large ratio n/ω3 ×1

vmin
√
n/(vmaxLω

3/2) low ratio n/ω3 ×ω3/2/
√
n

We summarize these two regimes in this tabular, fo-
cusing on the large n, large ω asymptotic regimes.
For the two regimes, we indicate the increase in
complexity Kopt(ε) resulting from compression.

We provide a discussion on computed conditional expectations complexity KCE in Appendix E.2.

4 Numerical illustrations

In this section, we illustrate the performance of FedEM and VR-FedEM applied to inference in Gaus-
sian Mixture Models (GMM), on a synthetic data set and on the MNIST data set. We also present
an application to Federated missing data imputation, in the context of citizen science data analysis
for biodiversity monitoring with the analysis of a subsample of the eBird data set [34, 1].

Synthetic data. The synthetic data are from the following GMM model: for all ` ∈ [N ]? and
g ∈ {0, 1}, P(Z` = g) = πg; and conditionally to Z` = g, Y` ∼ N2(µg,Σ). The 2 × 2 covariance
matrix Σ is known, and the parameters to be fitted are the weights (π0, π1) and the expectations
(µ0, µ1). The total number of examples is N = 104, the number of agents is n = 102, and the
probability of participation of servers is p = 0.75. FedEM and VR-FedEM are run with γ = 10−2,
ω = 1 and α = 10−2. For FedEM, we consider the finite-sum setting when s̄i = m−1

∑m
j=1 s̄ij

with m = 102; the oracle Sk+1,i is obtained by a sum over a minibatch of b = 20 examples. For
VR-FedEM, we set b = 5 and kin = 20. We run the two algorithms for 500 epochs (one epoch
corresponds to N conditional expectation evaluations s̄ij). Figure 1 shows a trajectory of ‖Hk‖2
given by FedEM (and ‖Ht,k‖2 given by VR-FedEM), along with the theoretical value of the mean field
‖h(Ŝk)‖2 for FedEM (and ‖h(Ŝt,k)‖2 for VR-FedEM). The results illustrate the variance reduction,
and gives insight on the variability of the trajectories resulting from the two algorithms.

MNIST Data set. We perform a similar experiment on the MNIST dataset to illustrate the be-
haviour of FedEM and VR-FedEM on a GMM inference problem with real data. The dataset consists
of N = 7 × 104 images of handwritten digits, each with 784 pixels. We pre-process the dataset
by removing 67 uninformative pixels (which are always zero across all images) to obtain d = 717
pixels per image. Second, we apply principal component analysis to reduce the data dimension. We
keep the dPC = 20 principal components of each observation. These N preprocessed observations
are distributed at random across n = 102 servers, each containing m = 700 observations. We
estimate a RdPC -multivariate GMM model with G = 10 components. Details on the multivariate
Gaussian mixture model are given in the supplementary material (see Appendix F). Here again, s̄i
is a sum over the m examples available at server #i; the minibatches are independent and sampled
at random in [m]? with replacement; we choose b = 20 and the step size is constant and set to
γ = 10−3. The same initial value Ŝinit is used for all experiments: we set Ŝinit := s̄(π0, µ0, Σ̂0),
where π0

g = 1/G for all g ∈ [G]?, the expectations µ0
g are sampled uniformly at random among the

available examples, and Σ̂0 is the empirical covariance matrix of the N examples. Figure 3 shows
the sequence of parameter estimates for the weights and the squared norm of the mean field ‖Hk‖2
for FedEM (resp. ‖Ht,k‖2 for VR-FedEM ) vs the number of epochs.

Federated missing values imputation for citizen science. We develop FedMissEM, a special in-
stance of FedEM designed to missing values imputation in the federated setting; we apply it to the
analysis of part of the eBird data base [34, 1], a citizen science smartphone application for biodiver-
sity monitoring. In eBird, citizens record wildlife observations, specifying the ecological site they
visited, the date, the species and the number of observed specimens. Two major challenges occur:
(i) ecological sites are visited irregularly, which leads to missing values and (ii) non-professional
observers have heterogeneous wildlife counting schemes.

• Model and the FedMissEM algorithm. I observers participate in the programme, there are J
ecological sites and L time stamps. Each observer #i provides a J × L matrix Xi and a subset of
indices Ωi ⊆ [J ]? × [L]?. For j ∈ [J ]? and ` ∈ [L]?, the variable Xi

j` encodes the observation
that would be collected by observer #i if the site #j were visited at time stamp #`; since there
are unvisited sites, we denote by Y i := {Xi

j`, (j, `) ∈ Ωi} the set of observed values and Zi :=

{Xi
j`, (j, `) /∈ Ωi} the set of unobserved values. The statistical model is parameterized by a matrix

θ ∈ RJ×L, where θj` is a scalar parameter characterizing the distribution of species individuals at
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Figure 1: Trajectory of FedEM vs the number
of epochs (left; blue line: ‖h(Ŝk)‖2; red line:
‖Hk‖2) and of VR-FedEM (right; dashed blue
line: ‖h(Ŝk)‖2; solid red line: ‖Ht,k‖2).
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Figure 2: Estimated temporal trends for Common
Buzzard (Left) and Mallard (right). Blue crosses: es-
timated monthly counts; Red triangles: number of
missing values. Dotted lines: LOESS regressions for
the estimated counts (blue) and the number of miss-
ing values (red).
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Figure 3: [Left to right] For FedEM : Evolution of the estimates of the weights π` for ` ∈ [G]? vs
the number of epochs (first plot) and Evolution of the squared norm of the mean field ‖Hk‖2 vs the
number of epochs (second plot). Then, the same things for VR-FedEM (third and fourth plots).

site j and time stamp `. For instance, θj` is the log-intensity of a Poisson distribution when the
observations are count data or the log-odd of a binomial model when the observations are presence-
absence data. This model could be extended to the case observers #i and #i′ count different number
of specimens on average at the same location and time stamp, because they do not have access to
the same material or do not have the same level of expertise: heterogeneity between observers could
be modeled by using different parameters for each individual #i say θi ∈ RJ×L. Here, we consider
the case when θij` = θj` for all (j, `) ∈ [J ]? × [L]? and i ∈ [I]?. We further assume that the
entries {Xi

j`, i ∈ [I]?, j ∈ [J ]?, ` ∈ [L]?} are independent with a distribution from an exponential
family with respect to some reference measure ν on R of the form: x 7→ ρ(x) exp{xθj` − ψ(θj`)}.
Algorithm 7 in Appendix F.2 provides details on the model, and the pseudo-code for FedMissEM.

• Application to eBird data analysis. We apply FedMissEM to the analysis of part of the eBird data
base [34, 1] of field observations reported in France by I = 2, 465 observers, across J = 9, 721
sites and at L = 525 monthly time points. We analyze successively two data sets corresponding
to observations of two relatively common species: the Common Buzzard and the Mallard. These
subsamples correspond respectively to N = 5, 980 and N = 12, 185 field observations. The I field
observers are randomly assigned into n = 10 groups (the observations of the field observers from
the group c ∈ [n]? are allocated to the server #c). For c ∈ [n]?, server c contains Nc observations;
in our two examples, Nc ranges between 400 and 1, 500. We run FedMissEM for 150 epochs; with
γ = 10−4, α = 10−3, b = 102, a rank r = 2 and λ = 0; for the distribution of the variablesXi

j`, we
use a Gaussian distribution with unknown expectation θj` and variance 1. We recover aggregated
temporal trends at the national French level for these two bird species by summing the estimated
counts across ecological sites, for each time stamp; the trends are displayed in Figure 2, along with
a locally estimated scatterplot smoothing (LOESS).

5 Conclusions

We introduced FedEM which is, to the best of our knowledge, the first algorithm implementing EM in
a FL setting, and handles compression of exchanged information, data heterogeneity and partial par-
ticipation. We further extended it to incorporate a variance reduction scheme, yielding VR-FedEM.
We derived complexity bounds which highlight the efficiency of the two algorithms, and illustrated
our claims with numerical simulations, as well as an application to biodiversity monitoring data. In
a simultaneously published work, Marfoq et al. [25] consider a different Federated EM algorithm,
in order to address the personalization challenge by considering a mixture model. Under the as-
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sumption that each local data distribution is a mixture of unknown underlying distributions, their
algorithm computes a model corresponding to each distribution. On the other hand, we focus on
the curved exponential family, with variance reduction, partial participation and compression and on
limiting the impact of heterogeneity, but do not address personalization.
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[16] S. Horváth and P. Richtarik. A better alternative to error feedback for communication-efficient
distributed learning. In International Conference on Learning Representations, 2021.

12
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R. Nock, A. Özgür, R. Pagh, H. Qi, D. Ramage, R. Raskar, M. Raykova, D. Song, W. Song,
S. U. Stich, Z. Sun, A. Theertha Suresh, F. Tramèr, P. Vepakomma, J. Wang, L. Xiong, Z. Xu,
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Supplementary materials for “Federated Expectation
Maximization with heterogeneity mitigation and

variance reduction”
This supplementary material is organized as follows. Appendix A extends the results obtained in
Theorem 1 to the Partial Participation regime. Appendix B contains additional details on compres-
sion mechanisms satisfying A6, including an example of admissible quantization operator. Ap-
pendix C contains the pseudo-code for algorithm FedEM in the full participation regime case, and
the proof of Theorem 1 – including necessary technical lemmas. Appendix D contains details con-
cerning the extension to partial participation of the workers and the proof of Theorem 4. Appendix E
is devoted to the proof of Theorem 3 concerning the convergence of VR-FedEM and necessary tech-
nical results; it also contains a discussion on the complexity of VR-FedEM in terms of conditional
expectations evaluations. Finally, Appendix F contains additional details about the latent variable
models used in the numerical section, as well as the pseudo code for FedMissEM.
Note that, in order to make our numerical results reproducible, code is also provided as supplemen-
tary material.

Notations For two vectors a, b ∈ Rq , 〈a, b〉 is the Euclidean standard scalar product, and ‖ · ‖
denotes the associated norm. For r ≥ 1, ‖a‖r is the `r-norm of a vector a. The Hadamard product
a � b denotes the entrywise product of the two vectors a, b. By convention, vectors are column-
vectors. For a matrix A, A> denotes its transpose and ‖A‖F is its Frobenius norm. For a positive
integer n, set [n]? := {1, · · · , n} and [n] := {0, · · · , n}. The set of non-negative integers (resp.
positive) is denoted by N (resp. N?). The minimum (resp. maximum) of two real numbers a, b is
denoted by a ∧ b (resp. a ∨ b). We will use the Bachmann-Landau notation a(x) = O(b(x)) to
characterize an upper bound of the growth rate of a(x) as being b(x).
We denote byKp(µ,Σ) the Gaussian distribution in Rp, with expectation µ and covariance matrix Σ.

A Results for FedEM with partial participation and compression.

In this paragraph, we extend the results of Theorem 1 to the Partial Participation (PP) regime, in
which only a fraction of the workers participate to the training at each step of the learning process.
This is a key feature in the FL framework, as individuals may not always be available or willing to
participate [27]. To analyze the convergence in this situation, we make the following assumption.

A9. For all k ∈ [kmax − 1], Ak+1 := {i ∈ [n]? s.t. Bk+1,i = 1} where the random variables
Bk+1,i for i ∈ [n]? and k ∈ [kmax − 1] are independent Bernoulli random variables with success
probability p ∈ (0, 1).

This assumption is standard in the FL literature [33, 35, 31], and can easily be extended to worker
dependent probabilities of participation [16].

Usage of the control variates (Vk,i)i∈[n]∗ with PP. We have Vk = n−1
∑n
i=1 Vk,i for all k ≥ 0

(see Proposition 12) even when the workers are not all active at iteration #k. A noteworthy point is
that, upon receiving Quant(∆k+1,i) for all i ∈ Ak+1, the central server computes

Hk+1 = Vk + (np)−1
∑

i∈Ak+1

Quant(∆k+1,i)

and not
(np)−1

∑
i∈Ak+1

(Vk,i + Quant(∆k+1,i)) .

Though the later solution may appear more natural, it would actually not only require to store all
values Vk,i for i ∈ [n]∗ on the central server, but also impair convergence in the heterogeneous set-
ting. Indeed, even in the uncompressed regime, in which Quant(∆k+1,i) = ∆k+1,i, our algorithm
differs from a naive implementation of a distributed EM: FedEM computes

Hk+1 = Vk − (np)−1
∑

i∈Ak+1

Vk,i + (np)−1
∑

i∈Ak+1

(
Sk+1,i − Ŝk

)
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while a naive distributed EM would compute

HdEM
k+1 := (np)−1

∑
i∈Ak+1

(
Sk+1,i − Ŝk

)
.

Such an update HdEM
k+1 is expected not to be robust to data heterogeneity as proved in [31] for the

Stochastic Gradient algorithm in the FL setting.

The following theorem extends Theorem 1 to the partial participation regime. Its proof is in Ap-
pendix D.

Theorem 4. Assume A1 to A9 and set L2 := n−1
∑n
i=1 L

2
i , σ2 := n−1

∑n
i=1 σ

2
i . Let {Ŝk, k ∈

[kmax]} be given by algorithm 1, run with α := (1 + ω)−1 and γk = γ ∈ (0, γmax], where

γmax :=
vmin

2LẆ

∧ p
√
n

2
√

2L(1 + ω)
√
ω + (1− p)(1 + ω)/p

.

Denote by K the uniform random variable on [kmax − 1]. Then, taking V0,i := hi(Ŝ0) for i ∈ [n]?,
we get

vmin

(
1− γ

LẆ

vmin

)
E
[
‖h(ŜK)‖2

]
≤

(
W(Ŝ0)−min W

)
γkmax

+γLẆ

1 + 5 (ω + (1− p)(1 + ω)/p)

n
σ2 .

The above expressions can be simplified upon noting that ω + (1 − p)(1 + ω)/p ≤ (1 + ω)/p.
When p = 1, Theorem 1 and Theorem 4 coincide. More generally, Theorem 4 highlights that partial
participation impacts both the limiting variance (which increases by a factor proportional to p−1)
and the maximal learning rate.

B An example of quantization mechanisms: the block-p-quantization

In this section, we recall the definition of a common lossy data compression mechanism in FL
(see, e.g. [28]), called block-p-quantization, and demonstrate that such quantizations satisfy the
assumptions required to derive our theoretical results.

Block-p-quantization. Let x ∈ Rq . Choose {q`, ` ∈ [m]?} a sequence of positive integers such
that

∑m
`=1 q` = q; and p ∈ N?. For x ∈ Rq , we define the block partition

x =

x(1)

· · ·
x(m)

 , x(l) ∈ Rq` for all ` ∈ [m]?.

For all ` ∈ [m]?, set

X̂(`) := ‖x(`)‖p

 sign(x(`),1)
· · ·

sign(x(`),q`)

� [U`,1· · ·
U`,q`

]
U`,j

indep∼ B
( |x(`),j |
‖x(`)‖p

)
, (13)

where x(`) = (x(`),1, · · · , x(`),q`)
> ∈ Rq` and B(u) denotes the Bernoulli random variable with

success probability u. The block-p-quantization operator Quant : Rq → Rq is defined by

Quant(x) :=

 X̂(1)

· · ·
X̂(m)

 . (14)

The following Lemma ensures the block-p-quantization operator Quant satisfies the assumption A
6 on the compression mechanism required by Theorem 1, Theorem 4 and Theorem 3.
Lemma 5. Let p ∈ N? and {q`, ` ∈ [m]?} be positive integers such that

∑m
`=1 q` = q. For any

x ∈ Rq , we have

E [Quant(x)] = x , E
[
‖Quant(x)− x‖2

]
=

m∑
`=1

(
‖x(`)‖1‖x(`)‖p − ‖x(`)‖2

)
,

where Quant is the block-p-quantization operator defined in (13) and (14). Thus, A6 holds. In
particular, for p = 2, we may take ω = max`∈[m]∗(

√
q` − 1).
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Proof. We start by noticing that, for all ` ∈ [m]?, (Quant(x))(`) = X̂(`). Furthermore,

E
[
X̂(`)

]
= ‖x(`)‖p

 sign(x(`),1)
· · ·

sign(x(`),q`)

� [E [U`,1]
· · ·

E [U`,q` ]

]
= ‖x(`)‖p

 sign(x(`),1)
· · ·

sign(x(`),q`)

�

|x(`),1|
‖x(`)‖p
· · ·
|x(`),q`

|
‖x(`)‖p



=

 sign(x(`),1)
· · ·

sign(x(`),q`)

�
 |x(`),1|

...
|x(`),q` |

 =

x(`),1

...
x(`),q`

 = x(`) ,

which concludes the proof of the first statement. To prove the second statement, we write

‖Quant(x)− x‖2 =

m∑
`=1

‖X̂(`) − x(`)‖2 =

m∑
`=1

‖x(`)‖2p
q∑̀
j=1

(U`,j − E [U`,j ])
2
.

Since U`,j is a Bernouilli random variable with parameter |x(`),j |/‖x(`)‖p, it holds that

E
[
(U`,j − E [U`,j ])

2
]

=
|x(`),j |

(
‖x(`)‖p − |x(`),j |

)
‖x(`)‖2p

.

Hence

E
[
‖Quant(x)− x‖2

]
=

m∑
`=1

q∑̀
j=1

{
|x(`),j |

(
‖x(`)‖p − |x(`),j |

)}
=

m∑
`=1

(
‖x(`)‖1‖x(`)‖p − ‖x(`)‖2

)
,

which proves the second statement. In the particular case where p = 2, using the fact that ‖x(`)‖1 ≤√
q`‖x(`)‖, we obtain that

E
[
‖Quant(x)− x‖2

]
≤

m∑
`=1

(
√
q` − 1)‖x(`)‖2 ≤ max`∈[m]∗(

√
q` − 1) ‖x‖2,

which concludes the proof.

C Convergence analysis of FedEM

This section contains all the elements to derive the convergence analysis of FedEM developed in
Section 2 in the full participation regime. The analysis is organized as follows. First, Appendix C.1
gives the pseudo code of the FedEM algorithm; Appendix C.2 introduces rigorous definitions for
filtrations and a technical Lemma, and Appendix C.3 presents preliminary results. Then, the proof
of Theorem 1 is given in Appendix C.4 and the proof of Corollary 2 is in Appendix C.5.

The assumptions A1 to A3 are assumed throughout this section.
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C.1 Pseudo code of the FedEM algorithm

For the sake of completeness of the supplementary material, we start by recalling the pseudo code
which defines the FedEM sequence in the full participation regime. It is given in algorithm 3 below.

Algorithm 3: FedEM

Data: kmax ∈ N?; for i ∈ [n]?, V0,i ∈ Rq; Ŝ0 ∈ Rq; a positive sequence
{γk+1, k ∈ [kmax − 1]}; α > 0

Result: The sequence: {Ŝk, k ∈ [kmax]}
1 Set V0 = n−1

∑n
i=1 V0,i ;

2 for k = 0, . . . , kmax − 1 do
3 for i = 1, . . . , n do
4 (worker #i) ;
5 Sample Sk+1,i, an approximation of s̄i ◦ T(Ŝk) ;
6 Set ∆k+1,i = Sk+1,i − Vk,i − Ŝk ;
7 Set Vk+1,i = Vk,i + αQuant(∆k+1;i). Send Quant(∆k+1;i) to the central server ;
8 (the central server) ;
9 Compute Hk+1 = Vk + n−1

∑n
i=1 Quant(∆k+1;i) ;

10 Set Ŝk+1 = Ŝk + γk+1Hk+1 ;
11 Set Vk+1 = Vk + αn−1

∑n
i=1 Quant(∆k+1;i) ;

12 Send Ŝk+1 and T(Ŝk+1) to the n workers

C.2 Notations and technical lemma

In this section, we start by introducing the appropriate filtrations employed later on to define condi-
tional expectations. Then, we present a technical lemma used in the main proof of Theorem 1 (see
Appendix C.4).

Notations. For any random variable U , we denote by σ(U) the sigma-algebra generated by U . For
n sigma-algebras {Fk, k ∈ [n]?}, we denote by

∨n
k=1 Fk the sigma-algebra generated by {Fk, k ∈

[n]?}.

Definition of filtrations. Let us define the following filtrations. For any i ∈ [n]?, we set

F0,i = F+
0,i := σ

(
Ŝ0;V0,i

)
and F0 :=

n∨
i=1

F0,i .

Then, for all k ≥ 0,

(i) Fk+1/2,i := F+
k,i ∨ σ (Sk+1,i),

(ii) Fk+1,i := Fk+1/2,i ∨ σ (Quant(∆k+1,i)),

(iii) Fk+1 :=
∨n
i=1 Fk+1,i,

(iv) F+
k+1,i := Fk+1,i ∨ Fk+1.

Note that, with these notations, for k ≥ 0 and i ∈ [n]?, the random variables of the FedEM sequence
defined in Algorithm 3 belong to the filtrations defined above as follows:

(i) Ŝk ∈ F+
k,i, Ŝk ∈ Fk,

(ii) Sk+1,i,∆k+1,i ∈ Fk+1/2,i,
(iii) Vk+1,i ∈ Fk+1,i,

(iv) Ŝk+1, Hk+1, Vk+1 ∈ Fk+1.

Note also that we have the following inclusions for filtrations: Fk ⊂ F+
k,i ⊂ Fk+1/2,i ⊂ Fk+1,i ⊂

Fk+1 for all i ∈ [n]?.
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Elementary lemma. In the main proof of Theorem 1, we use the following elementary lemma.
Lemma 6. For any x, y ∈ Rq and for any α ∈ R, one has:

‖αx+ (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2.

Proof. The LHS is equal to

α2‖x‖2 + (1− α)2‖y‖2 + 2α(1− α) 〈x, y〉 .
The RHS is equal to

α‖x‖2 + (1− α)‖y‖2 − α(1− α)
(
‖x‖2 + ‖y‖2 − 2 〈x, y〉

)
.

The proof is concluded upon noting that α−α(1−α) = α2 and (1−α)−α(1−α) = (1−α)2.

C.3 Preliminary results

In this section, we gather preliminary results on the control of the bias and variance of random vari-
ables of interest, which will be used in the main proof of Theorem 1. Namely, Proposition 8 controls
the random field Hk+1, Proposition 10 controls the local increments ∆k+1,i and Proposition 11
controls the memory term Vk,i.

C.3.1 Results on the memory terms Vk.

Proposition 7 shows that, even if the central server only receives the variation α−1(Vk+1,i − Vk,i)
from each local worker #i, it is able to compute n−1

∑n
i=1 Vk+1,i as soon as the quantity V0 is

correctly initialized.
Proposition 7. For any k ∈ [kmax], we have

Vk =
1

n

n∑
i=1

Vk,i .

Proof. The proof is by induction on k. When k = 0, the property holds true by Line 1 in algorithm 3.
Assume that the property holds for k ≤ kin − 2. Then by definition of Vk+1 and by the induction
assumption:

Vk+1 = Vk + α
1

n

n∑
i=1

Quant(∆k+1,i) =
1

n

n∑
i=1

(Vk,i + αQuant(∆k+1,i))

=
1

n

n∑
i=1

Vk+1,i .

This concludes the induction.

C.3.2 Results on the random field Hk+1.

We compute in Proposition 8 the conditional expectation of Hk+1 with respect to the appropriate
filtration Fk defined in Appendix C.2, as well as an upper bound on its variance. These results
are combined in an upper bound on the conditional expectation of the square norm ‖Hk+1‖2 in
Corollary 9.

Proposition 8 shows that the stochastic field Hk+1 is a (conditionally) unbiased estimator of h(Ŝk).
In the case of no compression (i.e. ω = 0), the conditional variance of Hk+1 is σ2/n where σ2 is
the mean variance of the approximations Sk+1,i over the n workers (see A7); when supi σ

2
i < ∞,

the variance is inversely proportional to the number of workers n.
Proposition 8. Assume A6 and A7 and set σ2 := n−1

∑n
i=1 σ

2
i . For any k ≥ 0,

E [Hk+1|Fk ] = h(Ŝk) , (15)

E
[
‖Hk+1 − E [Hk+1|Fk ] ‖2

∣∣Fk ] ≤ ω

n

(
1

n

n∑
i=1

E
[
‖∆k+1,i‖2

∣∣Fk ])+
σ2

n
. (16)
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Proof. Let k ≥ 0. A6 guarantees

E

[
n∑
i=1

Quant(∆k+1,i)

∣∣∣∣∣Fk+1/2,i

]
=

n∑
i=1

E
[
Quant(∆k+1,i)

∣∣Fk+1/2,i

]
=

n∑
i=1

{Sk+1,i − Vk,i − Ŝk} . (17)

Note also that, by A7, E
[
Sk+1,i

∣∣∣F+
k,i

]
= s̄i ◦ T(Ŝk), and that Vk ∈ Fk and Fk ⊂ F+

k,i ⊂ Fk+1/2,i

(see Appendix C.2). Combined with (17) and using that n−1
∑n
i=1 Vk,i = Vk (see Proposition 7),

this yields

E [Hk+1|Fk ] = E

[
n−1

n∑
i=1

Quant(∆k+1,i)

∣∣∣∣∣Fk
]

+ Vk =
1

n

n∑
i=1

s̄i ◦ T(Ŝk)− Ŝk = h(Ŝk) .

We now prove the second statement, and start by writing

Hk+1 − h(Ŝk) =
1

n

n∑
i=1

Quant(∆k+1,i) + Vk −
1

n

n∑
i=1

s̄i ◦ T(Ŝk) + Ŝk

=
1

n

n∑
i=1

{
Quant(∆k+1,i)− E

[
Quant(∆k+1,i)

∣∣Fk+1/2,i

]}
+

1

n

n∑
i=1

{Sk+1,i − s̄i ◦ T(Ŝk)} ,

where we applied (17) to obtain the last equality. Using the fact that Sk+1,i− s̄i ◦T(Ŝk) ∈ Fk+1/2,i

and since, conditionally to Fk, the workers are independent we have

E
[
‖Hk+1 − h(Ŝk)‖2

∣∣∣Fk ] =
1

n2

n∑
i=1

E
[
‖Quant(∆k+1,i)− E

[
Quant(∆k+1,i)

∣∣Fk+1/2,i

]
‖2
∣∣Fk ]

+
1

n2

n∑
i=1

E
[
‖Sk+1,i − s̄i ◦ T(Ŝk)‖2

∣∣∣Fk ] .
The second terme in the RHS is upped bounded by n−1σ2 (see A7). For the first term, using A6 and
since ∆k+1,i ∈ Fk+1/2,i, for any i ∈ [n]? we have

E
[
‖Quant(∆k+1,i)− E

[
Quant(∆k+1,i)

∣∣Fk+1/2,i

]
‖2
∣∣Fk+1/2,i

]
= E

[
‖Quant(∆k+1,i)‖2

∣∣Fk+1/2,i

]
− ‖∆k+1,i‖2

≤ (1 + ω)‖∆k+1,i‖2 − ‖∆k+1,i‖2 = ω‖∆k+1,i‖2 ,

which concludes the proof upon conditioning with respect to Fk.

Corollary 9 (of Proposition 8).

E
[
‖Hk+1‖2

∣∣Fk ] ≤ ‖h(Ŝk)‖2 +
ω

n

(
1

n

n∑
i=1

E
[
‖∆k+1,i‖2

∣∣Fk ])+
σ2

n
.

C.3.3 Results on the local increments ∆k+1,i.

We compute in Proposition 10 an upper bound on the second conditional moment of ∆k+1,i, with
respect to the appropriate filtration Fk (see Appendix C.2).

Proposition 10. Assume A7. For any i ∈ [n]? and k ∈ [kmax − 1],

E
[
‖∆k+1,i‖2

∣∣Fk ] ≤ ‖Vk,i − hi(Ŝk)‖2 + σ2
i .
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Proof. Let i ∈ [n]? and k ∈ [kmax − 1]. By A7, E
[
Sk+1,i − Ŝk

∣∣∣F+
k,i

]
= hi(Ŝk); in addition,

Ŝk ∈ Fk, Vk,i ∈ F+
k,i and Fk ⊂ F+

k,i. Hence, we get

E
[
‖∆k+1,i‖2

∣∣∣F+
k,i

]
= E

[
‖Sk+1,i − Vk,i − Ŝk‖2

∣∣∣F+
k,i

]
= ‖hi(Ŝk)− Vk,i‖2 + E

[
‖Sk+1,i − Ŝk − hi(Ŝk)‖2

∣∣∣F+
k,i

]
= ‖hi(Ŝk)− Vk,i‖2 + E

[
‖Sk+1,i − s̄i ◦ T(Ŝk)‖2

∣∣∣F+
k,i

]
A7
≤ ‖hi(Ŝk)− Vk,i‖2 + σ2

i . (18)

The proof is concluded upon noting that Fk ⊂ F+
k,i, Ŝk ∈ Fk and Vk,i ∈ Fk.

C.3.4 Results on the memory terms Vk,i.

Our final preliminary result is to compute in Proposition 11 an upper bound to control the condi-
tional variance of the local memory terms Vk,i with respect to the appropriate filtration Fk (see
Appendix C.2).

Proposition 11. Assume A5, A6 and A7; set L2 := n−1
∑n
i=1 L

2
i and σ2 := n−1

∑n
i=1 σ

2
i . For any

k ≥ 0, set

Gk :=
1

n

n∑
i=1

‖Vk,i − hi(Ŝk)‖2 .

For any k ∈ [kmax − 1] and α ∈ (0, (1/(1 + ω))], it holds that

E [Gk+1|Fk ] ≤
(

1− α

2
+ 2γ2

k+1

L2

α

ω

n

)
Gk + 2γ2

k+1

L2

α
‖h(Ŝk)‖2

+ 2

(
α+ γ2

k+1

L2

α

1 + ω

n

)
σ2 .

Proof. We start by computing an upper bound for the local conditional expectations
E
[
‖Vk+1,i − hi(Ŝk+1)‖2

∣∣∣Fk ], i ∈ [n]? and then derive the result of Proposition 11 by averag-
ing over the n local workers.

Let i ∈ [n]?; from Lemma 6, we have for any s ∈ Rq∥∥E [Vk+1,i − s
∣∣Fk+1/2,i

]∥∥2
= ‖(1− α) (Vk,i − s) + α (Sk+1,i − Ŝk − s)‖2

= (1− α) ‖Vk,i − s‖2 + α‖Sk+1,i − Ŝk − s‖2 − α(1− α)‖∆k+1,i‖2 .

On the other hand,∥∥Vk+1,i − E
[
Vk+1,i

∣∣Fk+1/2,i

]∥∥2
= α2

∥∥Quant(∆k+1,i)− E
[
Quant(∆k+1,i)

∣∣Fk+1/2,i

]∥∥2

and by A6 (see the proof of Proposition 8 for the same computation)

E
[∥∥Vk+1,i − E

[
Vk+1,i

∣∣Fk+1/2,i

]∥∥2
∣∣∣Fk+1/2,i

]
≤ α2ω‖∆k+1,i‖2 .

Hence

E
[
‖Vk+1,i − s‖2

∣∣Fk+1/2,i

]
≤ E

[∥∥Vk+1,i − s− E
[
Vk+1,i − s

∣∣Fk+1/2,i

]∥∥2
∣∣∣Fk+1/2,i

]
+ E

[∥∥E [Vk+1,i − s
∣∣Fk+1/2,i

]∥∥2
∣∣∣Fk+1/2,i

]
≤ (1− α) ‖Vk,i − s‖2 + α‖Sk+1,i − Ŝk − s‖2 + α (α(1 + ω)− 1) ‖∆k+1,i‖2 . (19)
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For any β > 0, using that ‖a+ b‖2 ≤ (1 + β2)‖a‖2 + (1 + β−2)‖b‖2, we have

E
[
‖Vk+1,i − hi(Ŝk+1)‖2

∣∣∣Fk ]
≤ (1 + β−2)E

[
‖Vk+1,i − hi(Ŝk)‖2

∣∣∣Fk ]+ (1 + β2)E
[
‖hi(Ŝk)− hi(Ŝk+1)‖2

∣∣∣Fk ]
A5
≤ (1 + β−2)E

[
E
[
‖Vk+1,i − hi(Ŝk)‖2

∣∣∣Fk+1/2,i

]∣∣∣Fk ]+ (1 + β2)L2
i γ

2
k+1E[‖Hk+1‖2|Fk]

(19)
≤ (1 + β−2)

(
(1− α) ‖Vk,i − hi(Ŝk)‖2

+ αE[‖Sk+1,i − Ŝk − hi(Ŝk)‖2|Fk] + α (α(1 + ω)− 1)E
[
‖∆k+1,i‖2

∣∣Fk ])
+ (1 + β2)L2

i γ
2
k+1E

[
‖Hk+1‖2

∣∣Fk ] ,
where we have used (19) with s = hi(Ŝk) ∈ Fk ⊂ Fk+1/2,i. Choose β > 0 such that

β−2 :=

{ α
2(1−α) if α ≤ 2/3

1 if α ≥ 2/3

which implies that (1 + β−2)(1− α) ≤ 1− α/2; note also that 1 ≤ 1 + β−2 ≤ 2. By Corollary 9,
we have (remember that α(1 + ω)− 1 ≤ 0)

E
[
‖Vk+1,i − hi(Ŝk+1)‖2

∣∣∣Fk ]≤(1− α

2

)
‖Vk,i − hi(Ŝk)‖2

+ 2αE
[
‖Sk+1,i − s̄i ◦ T(Ŝk)‖2

∣∣∣Fk ]+ α (α(1 + ω)− 1)E
[
‖∆k+1,i‖2

∣∣Fk ]
+

2

α
L2
i γ

2
k+1

(
ω

n2

n∑
i=1

E
[
‖∆k+1,i‖2

∣∣Fk ]+ ‖h(Ŝk)‖2 +
σ2

n

)
.

Since α(1 + ω)− 1 ≤ 0, using A7 and finally Proposition 10, we get:

E
[
‖Vk+1,i − hi(Ŝk+1)‖2|Fk

]
≤
(

1− α

2

)
‖Vk,i − hi(Ŝk)‖2 + 2ασ2

i

+ 2γ2
k+1

L2
i

α

ω

n2

n∑
i=1

‖hi(Ŝk)− Vk,i‖2 + 2γ2
k+1

L2
i

α
‖h(Ŝk)‖2

+ 2γ2
k+1

L2
i

α

1 + ω

n
σ2 .

Overall, by averaging the previous inequality over all workers, we get:

E[Gk+1|Fk] ≤
(

1− α

2
+ 2γ2

k+1

L2

α

ω

n

)
Gk + 2γ2

k+1

L2

α
‖h(Ŝk)‖2

+ 2

(
α+ γ2

k+1

L2

α

1 + ω

n

)
σ2 .

C.4 Proof of Theorem 1

Equipped with the necessary results, we now provide the main proof of Theorem 1. We proceed
in three steps, as follows. First, for k ≥ 1, we compute an upper bound on the average decrement
E
[

W(Ŝk+1)
∣∣∣Fk ] −W(Ŝk) of the Lyapunov function W (defined in A4). Second, we introduce

the maximal value of the learning rate. Third and finally, we deduce the result of Theorem 1 by
computing the expectation w.r.t. a randomly chosen termination time K in [kmax − 1]; in this step,
we restrict the computations to the case the step sizes are constant (γk+1 = γ for any k ≥ 0).
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Step 1: Upper bound on the decrement. Let k ≥ 0; from A4, we have

W(Ŝk+1) ≤W(Ŝk) +
〈
∇W(Ŝk), Ŝk+1 − Ŝk

〉
+
LẆ

2
‖Ŝk+1 − Ŝk‖2

≤W(Ŝk)− γk+1

〈
B(Ŝk) h(Ŝk), Hk+1

〉
+
LẆ

2
γ2
k+1‖Hk+1‖2 . (20)

Since Ŝk ∈ Fk, by Proposition 8 and A4 we have

E
[〈
B(Ŝk) h(Ŝk), Hk+1

〉∣∣∣Fk ] =
〈
B(Ŝk) h(Ŝk), h(Ŝk)

〉
≥ vmin‖h(Ŝk)‖2. (21)

Hence, combining (20) and (21), we have

E
[

W(Ŝk+1)
∣∣∣Fk ] ≤W(Ŝk)− γk+1vmin‖h(Ŝk)‖2 + γ2

k+1

LẆ

2
E
[
‖Hk+1‖2

∣∣Fk ]
≤W(Ŝk)− γk+1vmin‖h(Ŝk)‖2 + γ2

k+1

LẆ

2
E
[
‖Hk+1 − E [Hk+1|Fk ] ‖2

∣∣Fk ]+ γ2
k+1

LẆ

2
‖h(Ŝk)‖2

≤W(Ŝk)− γk+1vmin

(
1− γk+1

LẆ

2vmin

)
‖h(Ŝk)‖2 + γ2

k+1

LẆ

2
E
[
‖Hk+1 − E [Hk+1|Fk ] ‖2

∣∣Fk ] .
Applying Proposition 8, we obtain that

E
[

W(Ŝk+1)
∣∣∣Fk ] ≤W(Ŝk)− γk+1vmin

(
1− γk+1

LẆ

2vmin

)
‖h(Ŝk)‖2

+ γ2
k+1

LẆ

2

ω

n

(
1

n

n∑
i=1

E
[
‖∆k+1,i‖2

∣∣Fk ])+ γ2
k+1

LẆ

2n
σ2 . (22)

Finally, using Proposition 10 and (22), we get:

E[W(Ŝk+1)|Fk] ≤W(Ŝk)− γk+1vmin

(
1− γk+1

LẆ

2vmin

)
‖h(Ŝk)‖2

+ γ2
k+1

LẆ

2

ω

n
Gk + γ2

k+1

LẆ

2n
(1 + ω)σ2 , (23)

where

Gk :=
1

n

n∑
i=1

‖Vk,i − hi(Ŝk)‖2 .

Step 2: Maximal learning rate γk+1 when ω 6= 0. From Proposition 11, for any non-increasing
positive sequence {γk, k ∈ [kmax − 1]} such that

γ2
k+1 ≤

α2

8L2

n

ω
,

and for any positive sequence {Ck, k ∈ [kmax − 1]}, it holds

Ck+1E [Gk+1|Fk] ≤ Ck+1

(
1− α

4

)
Gk

+ Ck+1γ
2
k+1

2

α
L2‖h(Ŝk)‖2 + 2Ck+1

(
α+ γ2

k+1

L2

α

1 + ω

n

)
σ2 . (24)

Combining equations (23) and (24), we thus have

E[W(Ŝk+1)|Fk] + Ck+1E [Gk+1|Fk] ≤W(Ŝk) + CkGk

− γk+1vmin

(
1− γk+1

LẆ

2vmin
− Ck+1

vmin
γk+1

2

α
L2

)
‖h(Ŝk)‖2

+

(
γ2
k+1

LẆ

2

ω

n
− Ck + Ck+1 − Ck+1

α

4

)
Gk

+

{
2αCk+1 + γ2

k+1

(1 + ω)

n

(
LẆ

2
+ 2Ck+1

L2

α

)}
σ2 .
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We choose the sequence {Ck} as follows:

Ck := γ2
k

2LẆ

α

ω

n
;

the sequence satisfies Ck+1 ≤ Ck (since γk+1 ≤ γk) and γ2
k+1LẆω/(2n) ≤ Ck+1α/4. By

convention, γ0 ∈ [γ1,+∞). Therefore

E[W(Ŝk+1)|Fk] + γ2
k+1

2LẆ

α

ω

n
E [Gk+1|Fk] ≤W(Ŝk) + γ2

k

2LẆ

α

ω

n
Gk (25)

− γk+1vmin

(
1− γk+1

LẆ

2vmin

{
1 + 8γ2

k+1

ω

α2n
L2
})
‖h(Ŝk)‖2 (26)

+ 4γ2
k+1LẆ

ω

n

{
1 +

(1 + ω)

8ω

(
1 + γ2

k+18
L2

α2

ω

n

)}
σ2 . (27)

Step 3: Computing the expectation. Let us apply the expectations, sum from k = 0 to k =
kmax − 1, and divide by kmax. This yields

vmin

kmax

kmax−1∑
k=0

γk+1

(
1− γk+1

LẆ

2vmin

{
1 + 8γ2

k+1

ω

α2n
L2
})
‖h(Ŝk)‖2

≤ k−1
max

{
W(Ŝ0) + γ2

0

2LẆ

α

ω

n
G0 − E

[
W(Ŝkmax

)
]
− γ2

kmax

2LẆ

α

ω

n
E [Gkmax

]

}
+ 4LẆ

ω

n

1

kmax

kmax−1∑
k=0

γ2
k+1

{
1 +

(1 + ω)

8ω

(
1 + γ2

k+18
L2

α2

ω

n

)}
σ2 .

We now focus on the case when γk+1 = γ for any k ≥ 0. Denote by K a uniform random variable
on [kmax − 1], independent of the path {Ŝk, k ∈ [kmax]}. Since γ2 ≤ α2n/(8L2ω), we have

1 + 8γ2 ω

α2n
L2 ≤ 2 .

This yields

vminγ

(
1− γ

LẆ

vmin

)
E
[
‖h(ŜK)‖2

]
≤ k−1

max

{
W(Ŝ0) + γ2 2LẆ

α

ω

n
G0 − E

[
W(Ŝkmax

)
]
− γ2 2LẆ

α

ω

n
E [Gkmax

]

}
+ 4LẆ

ω

n
γ2

{
1 +

(1 + ω)

4ω

}
σ2 . (28)

Note that 4(1 + (1 + ω)/(4ω)) = (5ω + 1)/ω.

Step 4. Conclusion (when ω 6= 0). By choosing V0,i = hi for any i ∈ [n]?, we have G0 = 0. The
roots of γ 7→ γ(1 − γLẆ/vmin) are 0 and vmin/LẆ and its maximum is reached at vmin/(2LẆ):
this function is increasing on (0, vmin/(2LẆ)]. We therefore choose γ ∈ (0, γmax(α)] where

γmax(α) := min

(
vmin

2LẆ

;
α

2
√

2L

√
n√
ω

)
Finally, since α ∈ (0, 1/(1 + ω)], we choose α = 1/(1 + ω). This yields

γmax := min

(
vmin

2LẆ

;
1

2
√

2L

√
n√

ω(1 + ω)

)
.

Case ω = 0. From (23), applying the expectation we have

γk+1vmin

(
1− γk+1

LẆ

2vmin

)
E
[
‖h(Ŝk)‖2

]
≤ E

[
W(Ŝk)

]
− E

[
W(Ŝk+1)

]
+ γ2

k+1

LẆσ
2

2n
.

We now sum from k = 0 to k = kmax − 1 and then divide by kmax. In the case γk+1 = γ, we have

γvmin

(
1− γ

LẆ

2vmin

)
E
[
‖h(ŜK)‖2

]
≤ k−1

max

(
E
[
W(Ŝ0)

]
−min W

)
+ γ2LẆσ

2

2n
. (29)
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Remark on the maximal learning rate. The condition γk+1 ≤ α
2
√

2L

√
n√
ω

is used twice in the
proof:

1. To ensure that
(

1− γk+1
LẆ

2vmin

{
1 + 8γ2

k+1
ω
α2nL

2
})
≥
(

1− γk+1
LẆ

vmin

)
in order to obtain

Equation (28).
2. To ensure that the process (Gk)k≥0 is “pseudo-contractive” (i.e., satisfies a recursion of the form
uk+1 ≤ ρuk + vk, with ρ < 1) in Proposition 11.

A more detailed analysis can get rid of this condition (and thus the dependency γ = Oω→∞(ω−3/2),
as we recall that α1 ∝ω→∞ ω) for the first point. Indeed, we ultimately only require(

1− γk+1
LẆ

2vmin

{
1 + 8γ2

k+1

ω

α2n
L2
})
≥ 1

2
(30)

to conclude the proof. This is for example satisfied if γk+1
LẆ

2vmin
≤ 1

4 and 8γ3
k+1

LẆ

2vmin

ω
α2nL

2 ≤ 1
4 .

This approach results in a better asymptotic dependency of the maximal learning rate w.r.t. ω to
obtain Equation (30): γ = Oω→∞(ω−1). However, the condition γk+1 ≤ α

2
√

2L

√
n√
ω

seems to be
necessary to obtain the second point and Proposition 11. The possibility of providing a similar result
to Proposition 11 without the ω−3/2 dependency, is an interesting open problem.

C.5 Proof of Corollary 2

In (8), the RHS is of the form A/γ + γB for some positive constants A,B: we have A/γ + γB ≥
2
√
AB with equality reached with γ? :=

√
A/B. Hence, we set

γ? :=
1

σ

n
(

W(Ŝ0)−min W
)

LẆ(1 + 5ω)

1/2

1√
kmax

.

If γ? ≤ γmax, then let us apply (8) with γ = γ? which yields a RHS given by 2
√
A/B i.e.

2σ

((
W(Ŝ0)−min W

)
LẆ

(1 + 5ω)

n

)1/2
1√
kmax

.

If γ? ≥ γmax, we write

A

γmax
+Bγmax ≤

A

γmax
+

A

γmax

γ2
maxB

A
=

A

γmax
+

A

γmax

γ2
max

γ2
?

≤ 2
A

γmax
.

and the RHS is upper bounded by

2
W(Ŝ0)−min W

γmaxkmax
.

Finally, in the LHS of (8), we have

1− γ
LẆ

vmin
≥ 1− γmax

LẆ

vmin
≥ 1− vmin

2LẆ

LẆ

vmin
=

1

2
.

This concludes the proof.

D Partial Participation case

In this section, we generalize the result of Theorem 1 to the partial participation case. This extra
scheme could be incorporated into the main proof, but we choose to present it separately to improve
the readability of the main proof in Appendix C. We first provide an equivalent description of algo-
rithm 1 in Appendix D.1; algorithm 4 will be used throughout this section. Then, we introduce a
new family of filtrations. In Appendix D.3, we first establish preliminary results and then give the
proof of Theorem 4 in Appendix D.4.

The assumptions A1 to A3 hold throughout this section.
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D.1 An equivalent algorithm

In this Section, we describe an equivalent algorithm, that outputs the same result as Algorithm 1,
and for which the analysis is conducted.

Algorithm 4: FedEM with partial participation

Data: kmax ∈ N?; for i ∈ [n]?, V0,i ∈ Rq; Ŝ0 ∈ Rq; a positive sequence
{γk+1, k ∈ [kmax − 1]}; α > 0; p ∈ (0, 1).

Result: The FedEM-PP sequence: {Ŝk, k ∈ [kmax]}
1 Set V0 = n−1

∑n
i=1 V0,i ;

2 for k = 0, . . . , kmax − 1 do
3 for i = 1, . . . , n do
4 (worker #i);
5 Sample Sk+1,i, an approximation of s̄i ◦ T(Ŝk) ;
6 Set ∆k+1,i = Sk+1,i − Vk,i − Ŝk ;
7 Sample a Bernoulli r.v. Bk+1,i with success probability p ;
8 Set Vk+1,i = Vk,i + αBk+1,iQuant(∆k+1,i). ;
9 Send Bk+1,iQuant(∆k+1,i) to the central server ;

10 (the central server) ;
11 Set Hk+1 = Vk + (np)−1

∑n
i=1Bk+1,iQuant(∆k+1,i) ;

12 Set Ŝk+1 = Ŝk + γk+1Hk+1 ;
13 Set Vk+1 = Vk + αn−1

∑n
i=1Bk+1,iQuant(∆k+1,i) ;

14 Send Ŝk+1 and T(Ŝk+1) to the n workers

D.2 Notations

Let us introduce a new sequence of filtrations. For any i ∈ [n]?, we set

F0,i = F+
0,i := σ

(
Ŝ0;V0,i

)
and F0 :=

n∨
i=1

F0,i .

Then, for all k ≥ 0,

(i) Fk+1/3,i := F+
k,i ∨ σ (Sk+1,i),

(ii) Fk+2/3,i := Fk+1/3,i ∨ σ (Quant(∆k+1,i)),

(iii) Fk+1,i := Fk+2/3,i ∨ σ (Bk+1,i),

(iv) Fk+1 :=
∨n
i=1 Fk+1,i,

(v) F+
k+1,i := Fk+1,i ∨ Fk+1.

Note that, with these notations, for k ≥ 0 and i ∈ [n]?, the random variables of the FedEM sequence
defined in algorithm 4 belong to the filtrations defined above as follows:

(i) Ŝk ∈ F+
k,i, Ŝk ∈ Fk,

(ii) Sk+1,i,∆k+1,i ∈ Fk+1/3,i,
(iii) Vk+1,i ∈ Fk+1,i,

(iv) Ŝk+1, Hk+1, Vk+1 ∈ Fk+1.

Note also that we have the following inclusions for filtrations: Fk ⊂ F+
k,i ⊂ Fk+1/3,i ⊂ Fk+2/3,i ⊂

Fk+1,i ⊂ Fk+1 for all i ∈ [n]?.

D.3 Preliminary results

In this section, we extend Proposition 7, Proposition 8 (that controls the random field Hk+1) and
Proposition 11 (that controls the memory term Vk,i). We start by verifying the simple following
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proposition, that ensures that the global variable Vk corresponds to the mean of the local control
variables (Vk,i)i∈[n]∗ .

Proposition 12. For any k ∈ [kmax],

Vk =
1

n

n∑
i=1

Vk,i .

Proof. By definition of V0, the property holds true when k = 0. Assume this holds true for k ∈
[kmax − 1]. We write

Vk+1 = Vk +
α

n

n∑
i=1

Bk+1,i Quant(∆k+1,i)

=
1

n

n∑
i=1

Vk,i +
1

n

n∑
i=1

(Vk+1,i − Vk,i)

=
1

n

n∑
i=1

Vk+1,i .

This concludes the induction.

We now prove that the unbiased character of Hk is preserved, and we provide a new control on
its second order moment. Proposition 13 is Proposition 8 with ω replaced with ωp. When p = 1,
Proposition 13 and Proposition 8 are the same.
Proposition 13. Assume A6, A7 and A9. Set σ2 := n−1

∑n
i=1 σ

2
i . For any k ∈ [kmax − 1], we have

E [Hk+1|Fk] = h(Ŝk) ,

and

E
[
‖Hk+1 − E [Hk+1|Fk] ‖2|Fk

]
≤ ωp

n

1

n

n∑
i=1

E
[
‖∆k+1,i‖2|Fk

]
+
σ2

n
,

where
ωp :=

1− p
p

(1 + ω) + ω . (31)

Proof. Let k ∈ [kmax − 1]. By definition, we have

Hk+1 = Vk +
1

np

n∑
i=1

Bk+1,iQuant(∆k+1,i)

where the Bernoulli random variables {Bk+1,i, i ∈ [n]?} are independent with the same success
probability p. By definition of the filtrations, we haveBk+1,i ∈ Fk+1,i, Quant(∆k+1,i) ∈ Fk+2/3,i,
Vk ∈ Fk and ∆k+1,i ∈ Fk+1/3,i; and the inclusions Fk ⊂ Fk+1/3,i ⊂ Fk+2/3,i ⊂ Fk+1,i.
Therefore,

E [Hk+1|Fk ] = Vk +
1

np

n∑
i=1

E
[
E
[
Bk+1,i

∣∣Fk+2/3,i

]
Quant(∆k+1,i)

∣∣Fk ]
= Vk +

1

n

n∑
i=1

E
[
E
[
Quant(∆k+1,i)

∣∣Fk+1/3,i

]∣∣Fk ] = Vk +
1

n

n∑
i=1

E [∆k+1,i|Fk ]

= Vk +
1

n

n∑
i=1

(
E [Sk+1,i|Fk ]− Ŝk − Vk,i

)
=

1

n

n∑
i=1

hi(Ŝk) = h(Ŝk) ,
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where we used E
[
Bk+1,i

∣∣Fk+2/3,i

]
= p (see A9), A6, A7 and Proposition 12. This concludes the

proof of the first statement of Proposition 13. For the second point, we write

Hk+1 − h(Ŝk) =
1

n

n∑
i=1

Ξk+1,i

Ξk+1,i := Sk+1,i − E
[
Sk+1,i

∣∣∣F+
k,i

]
+ Quant(∆k+1,i)− E

[
Quant(∆k+1,i)

∣∣Fk+1/3,i

]
+

1

p

(
Bk+1,i − E

[
Bk+1,i

∣∣Fk+2/3,i

])
Quant(∆k+1,i) ;

note indeed that hi(Ŝk) = E
[
Sk+1,i

∣∣∣F+
k,i

]
− Ŝk, E

[
Quant(∆k+1,i)

∣∣Fk+1/3,i

]
= ∆k+1,i,

∆k+1,i = Vk,i + Sk+1,i − Ŝk, Vk = n−1
∑n
i=1 Vk,i and p = E

[
Bk+1,i

∣∣Fk+2/3,i

]
. Write

Hk+1 − h(Ŝk) = 1
n

∑n
i=1 Ξk+1,i. Since the workers are independent, we have

E
[
‖Hk+1 − h(Ŝk)‖2

∣∣∣Fk ] =
1

n2

n∑
i=1

E
[
‖Ξk+1,i‖2

∣∣Fk ] .
Fix i ∈ [n]?. Ξk+1,i is the sum of three terms

∑3
`=1 Ξk+1,i,` and observe that for any ` 6= `′ we

have
E [ 〈Ξk+1,i,`,Ξk+1,i,`′〉|Fk ] = 0 .

Therefore E
[
‖Ξk+1,i‖2

∣∣Fk ] =
∑3
`=1 E

[
‖Ξk+1,i,`‖2

∣∣Fk ]. We have by A7

E
[
‖Sk+1,i − E

[
Sk+1,i

∣∣∣F+
k,i

]
‖2
∣∣∣Fk ] ≤ σ2

i ;

by A6,

E
[
‖Quant(∆k+1,i)− E

[
Quant(∆k+1,i)

∣∣Fk+1/3,i

]
‖2
∣∣Fk ] ≤ ωE [‖∆k+1,i‖2

∣∣Fk ] ;

and by A6 and A9

E
[

1

p2

(
Bk+1,i − E

[
Bk+1,i

∣∣Fk+2/3,i

])2 ‖Quant(∆k+1,i)‖2
∣∣∣∣Fk ]

≤ 1− p
p

E
[
‖Quant(∆k+1,i)‖2

∣∣Fk ]
≤ 1− p

p
(1 + ω)E

[
‖∆k+1,i‖2

∣∣Fk ] .
This concludes the proof.

Proposition 14. Assume A7 and set σ2 := n−1
∑n
i=1 σ

2
i . For any k ∈ [kmax − 1],

1

n

n∑
i=1

E
[
‖∆k+1,i‖2

∣∣Fk ] ≤ 1

n

n∑
i=1

‖Vk,i − hi(Ŝk)‖2 + σ2 .

The proof is on the same lines as the proof of Proposition 10 and is omitted.

Proposition 15 extends Proposition 11: the result is similar but with α replaced with αp and ω by
ωp.

Proposition 15. Assume A5, A6, A7 and A9; set L2 := n−1
∑n
i=1 L

2
i and σ2 := n−1

∑n
i=1 σ

2
i .

Choose α ∈ (0, 1/(1 + ω)]. For any k ≥ 0, define

Gk :=
1

n

n∑
i=1

‖Vk,i − hi(Ŝk)‖2 .

We have, for any k ∈ [kmax − 1]
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E [Gk+1|Fk ] ≤
(

1− αp

2
+ 2γ2

k+1

L2

αp

ωp
n

)
Gk + 2γ2

k+1

L2

αp
‖h(Ŝk)‖2

+ 2

(
αp+ γ2

k+1

L2

αp

ωp
n

)
σ2 ,

where ωp is defined in Proposition 13.

Proof. Let i ∈ [n]?. We follow the same line of the proof as Proposition 11: for any β > 0, using
that ‖a+ b‖2 ≤ (1 + β2)‖a‖2 + (1 + β−2)‖b‖2, we have

E
[
‖Vk+1,i − hi(Ŝk+1)‖2

∣∣∣Fk ]
≤ (1 + β−2)E

[
‖Vk+1,i − hi(Ŝk)‖2

∣∣∣Fk ]+ (1 + β2)E
[
‖hi(Ŝk)− hi(Ŝk+1)‖2

∣∣∣Fk ]
A5
≤ (1 + β−2)E

[
‖Vk+1,i − hi(Ŝk)‖2

∣∣∣Fk ]+ (1 + β2)L2
i γ

2
k+1E

[
‖Hk+1‖2

∣∣Fk ] .
We then provide a control for E

[
‖Vk+1,i − hi(Ŝk)‖2

∣∣∣Fk ]. Recall that:

Vk+1,i = Vk,i + αBk+1,iQuant(∆k+1;i).

We write f(Bk+1,i) = f(1)1Bk+1,i=1 + f(0)1Bk+1,i=0 for any measurable positive function f ; and
then use E

[
1Bk+1,i

∣∣Fk+2/3,i

]
= p (see A9), Quant(∆k+1,i), Ŝk, Vk,i ∈ Fk+2/3,i . We get

E
[
‖Vk+1,i − hi(Ŝk)‖2|Fk

]
= pE

[
‖Vk,i − hi(Ŝk)− αQuant(∆k+1,i)‖2

∣∣∣Fk ]+ (1− p)‖Vk,i − hi(Ŝk)‖2

(19)
= p(1− α) ‖Vk,i − hi(Ŝk)‖2 + αpE

[
‖Sk+1,i − Ŝk − hi(Ŝk)‖2

∣∣∣Fk ]
+ αp (α(1 + ω)− 1)E

[
‖∆k+1,i‖2

∣∣Fk ]+ (1− p) ‖Vk,i − hi(Ŝk)‖2

= (1− αp) ‖Vk,i − hi(Ŝk)‖2

+ αpE
[
‖Sk+1,i − Ŝk − hi(Ŝk)‖2

∣∣∣Fk ]+ αp (α(1 + ω)− 1)E
[
‖∆k+1,i‖2

∣∣Fk ] .
The end of the proof is identical to the proof of Proposition 11: we choose βp > 0 such that β−2

p = 1

if αp ≥ 2/3 and β−2
p = αp

2(1−αp) if αp ≤ 2/3. We have

(1− αp)(1 + β−2
p ) ≤ 1− αp

2
, (1 + β2

p) ≤ 2

αp
, 1 ≤ 1 + β−2

p ≤ 2 ;

and this yields

E
[
‖Vk+1,i − hi(Ŝk+1)‖2

∣∣∣Fk ]≤(1− αp

2

)
‖Vk,i − hi(Ŝk)‖2

+ 2αpE
[
‖Sk+1,i − s̄i ◦ T(Ŝk)‖2

∣∣∣Fk ]+ αp (α(1 + ω)− 1)E
[
‖∆k+1,i‖2

∣∣Fk ]
+

2

αp
L2
i γ

2
k+1E

[
‖Hk+1‖2

∣∣Fk ] .
By definition of the conditional expectation and Proposition 13 we have

E
[
‖Hk+1‖2

∣∣Fk ] = ‖E [Hk+1|Fk ] ‖2 + E
[
‖Hk+1 − E [Hk+1|Fk ] ‖2

∣∣Fk ]
= ‖h(Ŝk)‖2 + E

[
‖Hk+1 − h(Ŝk)‖2

∣∣∣Fk ] .
Since (α(1 + ω)− 1) ≤ 0, using A7 and Proposition 13 again, we get:

E [Gk+1|Fk ]≤
(

1− αp

2

)
Gk + 2αpσ2 +

2

αp
L2γ2

k+1

1

n

(
σ2 + ωp

1

n

n∑
i=1

E
[
‖∆k+1,i‖2

∣∣Fk ]) .
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Finally, from Proposition 14,

1

n

n∑
i=1

E
[
‖∆k+1,i‖2

∣∣Fk ] ≤ Gk + σ2 .

This concludes the proof.

D.4 Proof of Theorem 4

Throughout this proof, set

ωp :=
1− p
p

(1 + ω) + ω .

Step 1: Upper bound on the decrement. Let k ≥ 0. Following the same lines as in the proof of
Theorem 1, we have

E
[

W(Ŝk+1)
∣∣∣Fk ]

≤W(Ŝk)− γk+1vmin

(
1− γk+1

LẆ

2vmin

)
‖h(Ŝk)‖2 + γ2

k+1

LẆ

2
E
[
‖Hk+1 − E [Hk+1|Fk ] ‖2

∣∣Fk ] .
Applying Proposition 13 and Proposition 14, we obtain that

E
[

W(Ŝk+1)
∣∣∣Fk ] ≤W(Ŝk)− γk+1vmin

(
1− γk+1

LẆ

2vmin

)
‖h(Ŝk)‖2

+ γ2
k+1

LẆ

2

ωp
n
Gk + γ2

k+1

LẆ

2n
(1 + ωp)σ

2 , (32)

where

Gk :=
1

n

n∑
i=1

‖Vk,i − hi(Ŝk)‖2 .

Step 2: Maximal learning rate γk+1 when ω 6= 0. From Proposition 11, for any non-increasing
positive sequence {γk, k ∈ [kmax − 1]} such that

γ2
k+1 ≤

α2p2

8L2

n

ωp
,

and for any positive sequence {Ck, k ∈ [kmax − 1]}, it holds

Ck+1E [Gk+1|Fk] ≤ Ck+1

(
1− αp

4

)
Gk

+ Ck+1γ
2
k+1

2

αp
L2‖h(Ŝk)‖2 + 2Ck+1

(
αp+ γ2

k+1

L2

αp

1 + ωp
n

)
σ2 . (33)

Combining equations (32) and (33), we thus have

E[W(Ŝk+1)|Fk] + Ck+1E [Gk+1|Fk] ≤W(Ŝk) + CkGk

− γk+1vmin

(
1− γk+1

LẆ

2vmin
− Ck+1

vmin
γk+1

2

αp
L2

)
‖h(Ŝk)‖2

+

(
γ2
k+1

LẆ

2

ωp
n
− Ck + Ck+1 − Ck+1

αp

4

)
Gk

+

{
2αpCk+1 + γ2

k+1

(1 + ωp)

n

(
LẆ

2
+ 2Ck+1

L2

αp

)}
σ2 .

We choose the sequence {Ck} as follows:

Ck := γ2
k

2LẆ

αp

ωp
n

;
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the sequence satisfies Ck+1 ≤ Ck (since γk+1 ≤ γk) and γ2
k+1LẆωp/(2n) ≤ Ck+1αp/4. By

convention, γ0 ∈ [γ1,+∞). Therefore

E[W(Ŝk+1)|Fk] + γ2
k+1

2LẆ

αp

ωp
n
E [Gk+1|Fk] ≤W(Ŝk) + γ2

k

2LẆ

αp

ωp
n
Gk

− γk+1vmin

(
1− γk+1

LẆ

2vmin

{
1 + 8γ2

k+1

ωp
α2p2n

L2

})
‖h(Ŝk)‖2

+ 4γ2
k+1LẆ

ωp
n

{
1 +

(1 + ωp)

8ωp

(
1 + γ2

k+18
L2

α2p2

ωp
n

)}
σ2 .

Step 3: Computing the expectation. Let us apply the expectations, sum from k = 0 to k =
kmax − 1, and divide by kmax. This yields

vmin

kmax

kmax−1∑
k=0

γk+1

(
1− γk+1

LẆ

2vmin

{
1 + 8γ2

k+1

ωp
α2p2n

L2

})
‖h(Ŝk)‖2

≤ k−1
max

{
W(Ŝ0) + γ2

0

2LẆ

α

ωp
n
G0 − E

[
W(Ŝkmax)

]
− γ2

kmax

2LẆ

αp

ωp
n
E [Gkmax ]

}
+ 4LẆ

ωp
n

1

kmax

kmax−1∑
k=0

γ2
k+1

{
1 +

(1 + ωp)

8ω

(
1 + γ2

k+18
L2

α2p2

ωp
n

)}
σ2 .

We now focus on the case when γk+1 = γ for any k ≥ 0. Denote by K a uniform random variable
on [kmax − 1], independent of the path {Ŝk, k ∈ [kmax]}. Since γ2 ≤ α2p2n/(8L2ωp), we have

1 + 8γ2 ωp
α2p2n

L2 ≤ 2 .

This yields

vminγ

(
1− γ

LẆ

vmin

)
E
[
‖h(ŜK)‖2

]
≤ k−1

max

{
W(Ŝ0) + γ2 2LẆ

αp

ωp
n
G0 − E

[
W(Ŝkmax)

]
− γ2 2LẆ

αp

ωp
n
E [Gkmax ]

}
+ 4LẆ

ωp
n
γ2

{
1 +

(1 + ωp)

4ωp

}
σ2 .

Note that 4(1 + (1 + ωp)/(4ωp)) = (5ωp + 1)/ωp.

Step 4. Conclusion (when ω 6= 0) By choosing V0,i = hi for any i ∈ [n]?, we have G0 = 0. The
roots of γ 7→ γ(1 − γLẆ/vmin) are 0 and vmin/LẆ and its maximum is reached at vmin/(2LẆ):
this function is increasing on (0, vmin/(2LẆ)]. We therefore choose γ ∈ (0, γmax(α)] where

γmax(α) := min

(
vmin

2LẆ

;
αp

2
√

2L

√
n

√
ωp

)
Finally, since α ∈ (0, 1/(1 + ω)], we choose α = 1/(1 + ω). This yields

γmax := min

(
vmin

2LẆ

;
p

2
√

2L

√
n

√
ωp(1 + ω)

)
.

E Convergence Analysis of VR-FedEM

The assumptions A1 to A3 hold throughout this section. We will use the notations

L2
i := m−1

m∑
j=1

L2
ij , L2 := n−1

n∑
i=1

L2
i , (34)

where Lij is defined in A8, and

hi(s) :=
1

m

m∑
j=1

s̄ij ◦ T(s)− s , h(s) :=
1

n

n∑
i=1

hi(s) .
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E.1 Notations and elementary result

Let us define the following filtrations: for any i ∈ [n]? and t ∈ [kout]
?, k ∈ [kmax − 1], set

F1,0,i = F+
1,0,i := σ

(
Ŝinit;V1,0,i

)
, F1,0 :=

n∨
i=1

F1,0,i ,

Ft,k+1/2,i := F+
t,k,i ∨ σ (Bt,k+1,i) , Ft,k+1,i := Ft,k+1/2,i ∨ σ (Quant(∆t,k+1,i)) ,

Ft,k+1 :=

n∨
i=1

Ft,k+1,i , F+
t,k+1,i := Ft,k+1 .

With these notations, for t ∈ [kout]
?, k ∈ [kmax − 1] and i ∈ [n]?, Ŝt,k+1 ∈ F+

t,k+1,i, St,k+1,i ∈
Ft,k+1/2,i,∆t,k+1,i ∈ Ft,k+1/2,i, Vt,k+1,i ∈ Ft,k+1,i, Ŝt,k+1 ∈ Ft,k+1 Ht,k+1 ∈ Ft,k+1, and
Vt,k+1 ∈ Ft,k+1.

E.2 Computed conditional expectations complexity.

In this section, we provide a discussion on the computed conditional expectations complexity KCE

that was removed from the main text due to spaces constraints.

The number of calls to conditional expectations (i.e., computing s̄ij) to perform kout outer steps of
algorithm 2, each composed of kin inner iterations, with n workers and mini-batches of size b is

nmkout + n(2b)kinkout = nkinkout

(
m

kin
+ 2b

)
;

it corresponds to one full pass on the data at the beginning of each outer loop and two batches of
size b on each worker i ∈ [n]?, at each inner iteration. In oder to reach an accuracy ε, we need
(kinkoutγ)−1 = O(ε) with the parameter choices in Theorem 3 (esp. on b) we thus have

KCE(ε) = O

(
n

εγ

(
m

kin
+ 2

kin

(1 + ω)2

))
.

This complexity is minimized with kin = (1 + ω)
√
m/2. We then obtain an overall complexity

KCE of O
(√

m
εγ

n
(1+ω)

)
. We stress the following two points:

1. Dependency w.r.t. m: the complexity increases as
√
m. For n = 1, ω = 0, this yields a scaling

equal to
√
mε−1 that corresponds to the optimal KCE of SPIDER-EM [10];

2. Dependency w.r.t. ω. Again, the dependency on ω depends on the regime for γ. In the (worst
case regime), γ = O(

√
n/ω3/2), we get

KCE(ε) = O

(√
m
√
n
√
ω

ε

)
when ε → 0 and ω, n → ∞, which corresponds to a sublinear increase w.r.t. ω (that compares to a
linear increase in the cost of each communication).

E.3 Preliminary results

E.3.1 Results on the minibatch Bt,k+1

The proof of the following proposition is given in [10, Lemma 4]. It establishes the bias and the
variance of the sum along the random set of indices Bt,k+1 conditionally to the past.

Proposition 16. Let B be a minibatch of size b, sampled at random (with or without replacement)
from [m]?. It holds for any i ∈ [n]? and s ∈ Rq ,

E

1

b

∑
j∈B

s̄ij ◦ T(s)

 =
1

m

m∑
j=1

s̄ij ◦ T(s) ;
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and for any s, s′ ∈ Rq ,

E

∥∥∥1

b

∑
j∈B
{s̄ij ◦ T(s)− s)− (̄sij ◦ T(s′)− s′)}

− 1

m

m∑
j=1

{(s̄ij ◦ T(s)− s)− (̄sij ◦ T(s′)− s′)}
∥∥∥2

 ≤ L2
i

b
‖s− s′‖2 .

E.3.2 Results on the statistics St,k,i

Proposition 17 shows that for k ≥ 1, St,k+1,i is a biased approximation of m−1
∑m
j=1 s̄ij ◦T(Ŝt,k);

and this bias is canceled at the beginning of each outer loop since St,1,i = m−1
∑m
j=1 s̄ij ◦T(Ŝt,0).

Corollary 18 establishes an upper bound for the conditional variance and the mean squared error of
St,k+1,i.
Let us comment the definition of St,k+1,i. For any t ∈ [kout]

?, k ∈ [kin − 1] and i ∈ [n]?,

St,k+1,i =
1

b

∑
j∈Bt,k+1,i

s̄ij ◦T(Ŝt,k)+Υt,k+1,i , Υt,k+1,i := St,k,i−
1

b

∑
j∈Bt,k+1,i

s̄ij ◦T(Ŝt,k−1) .

It is easily seen that

Υt,k+1,i = Υt,k,i +
1

b

∑
j∈Bt,k,i

s̄ij ◦ T(Ŝt,k−1)− 1

b

∑
j∈Bt,k+1,i

s̄ij ◦ T(Ŝt,k−1) ,

and since Υt,1,i = St,0,i − b−1
∑
j∈Bt,1,i

s̄ij ◦ T(Ŝt,−1), we have by using Proposition 17,

Υt,k,i =

k∑
`=1

1

b

∑
j∈Bt,`,i

s̄ij ◦ T(Ŝt,`−1)− 1

b

∑
j∈Bt,`+1,i

s̄ij ◦ T(Ŝt,`−1)


+

1

m

m∑
j=1

s̄ij ◦ T(Ŝt,−1)− 1

b

∑
j∈Bt,1,i

s̄ij ◦ T(Ŝt,−1) .

We have E [Υt,k,i|Ft,0 ] = 0 but conditionally to the pastF+
t,k−1,i, the variable Υt,k,i is not centered.

Proposition 17. For any t ∈ [kout]
? and i ∈ [n]?,

St,1,i −
1

m

m∑
j=1

s̄ij ◦ T(Ŝt,0) = St,0,i −
1

m

m∑
j=1

s̄ij ◦ T(Ŝt,−1) = 0 .

For any t ∈ [kout]
?, k ∈ [kin − 1] and i ∈ [n]?, we have

E
[
St,k+1,i

∣∣∣F+
t,k,i

]
− 1

m

m∑
j=1

s̄ij ◦ T(Ŝt,k) = St,k,i −
1

m

m∑
j=1

s̄ij ◦ T(Ŝt,k−1) .

Proof. Let t ∈ [kout]
? and i ∈ [n]?. We have by definition of St,1,i and St,0,i

St,1,i = St,0,i + b−1
∑

j∈Bt,1,i

(
s̄ij ◦ T(Ŝt,0)− s̄ij ◦ T(Ŝt,−1)

)
= St,0,i =

1

m

m∑
j=1

s̄ij ◦ T(Ŝt,0)

where we used that Ŝt,0 = Ŝt,−1.

Let k ∈ [kin − 1]. By definition of St,k+1,i, we have

St,k+1,i − St,k,i = b−1
∑

j∈Bt,k+1,i

(
s̄ij ◦ T(Ŝt,k)− s̄ij ◦ T(Ŝt,k−1)

)
.
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Since Ŝt,k, Ŝt,k−1 ∈ F+
t,k,i, we have by Proposition 16

E

b−1
∑

j∈Bt,k+1,i

(
s̄ij ◦ T(Ŝt,k)− s̄ij ◦ T(Ŝt,k−1)

)∣∣∣∣∣∣F+
t,k,i


=

1

m

m∑
j=1

(
s̄ij ◦ T(Ŝt,k)− s̄ij ◦ T(Ŝt,k−1)

)
and the proof follows.

Corollary 18 (of Proposition 17). Assume A8. For any t ∈ [kout]
?, k ∈ [kin − 1] and i ∈ [n]?,

E
[
‖St,k+1,i − E [St,k+1,i|Ft,k,i ] ‖2

∣∣Ft,k ] ≤ L2
i

b
γ2
t,k‖Ht,k‖2 ,

E

‖St,k+1,i −
1

m

m∑
j=1

s̄ij ◦ T(Ŝt,k)‖2
∣∣∣∣∣∣Ft,0

 ≤ L2
i

b

k∑
`=1

γ2
t,`E

[
‖Ht,`‖2

∣∣Ft,0 ] .
By convention, Ht,0 = 0 and

∑0
`=1 a` = 0.

Proof. Note that Ŝt,k, Ŝt,k−1 ∈ Ft,k. By Proposition 17, we have

E
[
‖St,k+1,i − E

[
St,k+1,i

∣∣F+
t,k,i

]
‖2
∣∣Ft,k

]
= E

∥∥∥1

b

∑
j∈Bt,k+1,i

(
s̄ij ◦ T(Ŝt,k)− s̄ij ◦ T(Ŝt,k−1)

)
− 1

m

m∑
j=1

(
s̄ij ◦ T(Ŝt,k)− s̄ij ◦ T(Ŝt,k−1)

)∥∥∥2∣∣∣∣∣Ft,k

 .

By Proposition 16, it holds

E
[
‖St,k+1,i − E [St,k+1,i|Ft,k,i] ‖2|Ft,k

]
≤ L2

i

b
‖Ŝt,k − Ŝt,k−1‖2 =

L2
i

b
γ2
t,k‖Ht,k‖2 ;

with the convention that Ht,0 = 0 since Ŝt,0 = Ŝt,−1. The proof of the first statement is concluded.

For the second statement, by definition of the conditional expectation and since Ŝt,k ∈ Ft,k ⊂ F+
t,k,i,

it holds

E

‖St,k+1,i −
1

m

m∑
j=1

s̄ij ◦ T(Ŝt,k)‖2
∣∣∣∣∣∣Ft,k

 = E
[
‖St,k+1,i − E

[
St,k+1,i

∣∣∣F+
t,k,i

]
‖2
∣∣∣Ft,k ]

+ E

‖E [St,k+1,i

∣∣∣F+
t,k,i

]
− 1

m

m∑
j=1

s̄ij ◦ T(Ŝt,k)‖2
∣∣∣∣∣∣Ft,k

 .

By Proposition 17,∥∥∥∥∥E [St,k+1,i

∣∣∣F+
t,k,i

]
− 1

m

m∑
j=1

s̄ij ◦ T(Ŝt,k)

∥∥∥∥∥
2

=

∥∥∥∥∥St,k,i − 1

m

m∑
j=1

s̄ij ◦ T(Ŝt,k−1)

∥∥∥∥∥
2

.

Hence, by using St,1,i −m−1
∑m
j=1 s̄ij ◦ T(Ŝt,0) = 0 (see Proposition 17), we have

E

∥∥∥St,k+1,i −
1

m

m∑
j=1

s̄ij ◦ T(Ŝt,k)
∥∥∥2

∣∣∣∣∣∣Ft,0


≤ L2
i

b
γ2
t,kE

[
‖Ht,k‖2

∣∣Ft,0 ]+ E

∥∥∥St,k,i − 1

m

m∑
j=1

s̄ij ◦ T(Ŝt,k−1)
∥∥∥2

∣∣∣∣∣∣Ft,0


≤ L2
i

b

k∑
`=1

γ2
t,`E

[
‖Ht,`‖2

∣∣Ft,0 ] .
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E.3.3 Results on ∆t,k+1,i

Proposition 19 provides an upper bound for the mean value of the conditional variance of ∆t,k+1,·
and for its L2-moment. Proposition 20 prepares the control of the varianc of the random fieldHt,k+1

upon noting that

Ht,k+1 − E [Ht,k+1|Ft,k ] =
1

n

n∑
i=1

(Quant(∆t,k+1,i)− E [∆t,k+1,i|Ft,k ]) .

Proposition 19. Assume A8. For any t ∈ [kout]
? and k ∈ [kin − 1],

1

n

n∑
i=1

E
[
‖∆t,k+1,i‖2

∣∣Ft,0 ]
≤ 2

L2

b

k∑
`=1

γ2
t,`E

[
‖Ht,`‖2

∣∣Ft,0 ]+
2

n

n∑
i=1

E
[
‖hi(Ŝt,k)− Vt,k,i‖2

∣∣∣Ft,0 ] .
In addition,

1

n

n∑
i=1

E
[
‖∆t,k+1,i − E [∆t,k+1,i|Ft,k] ‖2

∣∣Ft,k ] ≤ L2

b
γ2
t,k‖Ht,k‖2 .

Proof. Let i ∈ [n]?, t ∈ [kout]
? and k ∈ [kin − 1]. We write

∆t,k+1,i = St,k+1,i −
1

m

m∑
j=1

s̄ij ◦ T(Ŝt,k) + hi(Ŝt,k)− Vt,k,i .

When k = 0, we have St,1,i − 1
m

∑m
j=1 s̄ij ◦ T(Ŝt,0) = 0 (see Proposition 17) so that ∆t,1,i =

hi(Ŝt,0)− Vt,0,i. For k ≥ 1, we write

E
[
‖∆t,k+1,i‖2

∣∣Ft,0 ] ≤ 2E

‖St,k+1,i −
1

m

m∑
j=1

s̄ij ◦ T(Ŝt,k)‖2
∣∣∣∣∣∣Ft,0


+ 2E

[
‖hi(Ŝt,k)− Vt,k,i‖2

∣∣∣Ft,0 ]
and the proof of the first statement is concluded by Corollary 18.

By definition of ∆t,k+1,i, it holds

∆t,k+1,i − E [∆t,k+1,i|Ft,k ] = St,k+1,i − E [St,k+1,i|Ft,k ] . (35)

The proof is concluded by (35) and Corollary 18.

Proposition 20. Assume A6 and A8. For any t ∈ [kout]
? and k ∈ [kin − 1],

1

n

n∑
i=1

E
[
‖Quant(∆t,k+1,i)− E [∆t,k+1,i|Ft,k ] ‖2

∣∣Ft,0 ] ≤ ω

n

n∑
i=1

E
[
‖∆t,k+1,i‖2

∣∣Ft,0 ]
+
L2

b
γ2
t,kE

[
‖Ht,k‖2

∣∣Ft,0 ] .
Proof. Let i ∈ [n]?, t ∈ [kout]

? and k ∈ [kin − 1]. We write

Quant(∆t,k+1,i)−E [∆t,k+1,i|Ft,k ] = Quant(∆t,k+1,i)−∆t,k+1,i+∆t,k+1,i−E [∆t,k+1,i|Ft,k ] ;

and use the property

E
[
‖Quant(∆t,k+1,i)− E [∆t,k+1,i|Ft,k ] ‖2

∣∣Ft,0 ] = E
[
‖Quant(∆t,k+1,i)−∆t,k+1,i‖2

∣∣Ft,0 ]
+ E

[
‖∆t,k+1,i − E [∆t,k+1,i|Ft,k ] ‖2

∣∣Ft,0 ] .
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By A6 and Ft,k ⊂ Ft,k+1/2,i, we have

E
[
‖Quant(∆t,k+1,i)−∆t,k+1,i‖2

∣∣Ft,0 ]
= E

[
E
[
‖Quant(∆t,k+1,i)−∆t,k+1,i‖2

∣∣Ft,k+1/2,i

]∣∣Ft,0 ] ≤ ωE [‖∆t,k+1,i‖2
∣∣Ft,0 ] ;

in addition, by Proposition 19,

n−1
n∑
i=1

E
[
‖∆t,k+1,i − E [∆t,k+1,i|Ft,k ] ‖2

∣∣Ft,0 ] ≤ L2

b
γ2
t,kE

[
‖Ht,k‖2

∣∣Ft,0 ] .
This concludes the proof.

E.3.4 Results on the memory terms Vt,k+1,i

Lemma 21 proves that the memory term Vt,k+1 computed by the central server is the mean value
of the local Vt,k+1,i computed by each worker #i. Proposition 22 establishes a contraction-like
inequality on the mean quantity n−1

∑n
i=1 ‖Vt,k+1,i − hi(Ŝt,k+1)‖2 thus providing the intuition

that Vt,k+1,i approximates hi(Ŝt,k+1).

Lemma 21. For any t ∈ [kout]
? and k ∈ [kin − 1],

Vt,k+1 =
1

n

n∑
i=1

Vt,k+1,i , Vt,0 =
1

n

n∑
i=1

Vt,0,i .

Proof. The proof is by induction on t and k. Consider the case t = 1. When k = 0, the property
holds true by Line 1 in algorithm 2. Assume that the property holds for k ≤ kin − 2. Then by
definition of V1,k+1 and by the induction assumption:

V1,k+1 = V1,k + α
1

n

n∑
i=1

Quant(∆1,k+1,i) =
1

n

n∑
i=1

(V1,k,i + αQuant(∆1,k+1,i))

=
1

n

n∑
i=1

V1,k+1,i .

By Lines 18 and 21 in algorithm 2 and by the induction on k, we obtain

V2,0 = V1,kin =
1

n

n∑
i=1

V1,kin,i =
1

n

n∑
i=1

V2,0,i .

Assume that for t ∈ [kout − 1]? we have Vt,0 = n−1
∑n
i=1 Vt,0,i. As in the case t = 1, we prove by

induction on k that for any k ∈ [kin − 1], Vt,k+1 = n−1
∑n
i=1 Vt,k+1,i (details are omitted). This

implies, by using Lines 18 and 21 of algorithm 2, that

Vt+1,0 = Vt,kin =
1

n

n∑
i=1

Vt,kin,i =
1

n

n∑
i=1

Vt+1,0,i .

This concludes the induction.

Proposition 22. Assume A6 and A8. Let α ∈
(
0, (1 + ω)−1

]
. For any t ∈ [kout]

?, k ∈ [kin− 1] and
i ∈ [n]?, it holds

E
[
Vt,k+1,i

∣∣Ft,k+1/2,i

]
= (1− α)Vt,k,i + α

(
St,k+1,i − Ŝt,k

)
,

Define for t ∈ [kout]
? and k ∈ [kin]

Gt,k :=
1

n

n∑
i=1

‖Vt,k,i − hi(Ŝt,k)‖2 .
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We have

E [Gt,k+1|Ft,0 ] ≤ (1− α/2)E [Gt,k|Ft,0 ]

+
2

α
L2γ2

t,k+1E
[
‖Ht,k+1‖2

∣∣Ft,0 ]+ 2α
L2

b

k∑
`=1

γ2
t,`E

[
‖Ht,`‖2

∣∣Ft,0 ]
+ α (α(1 + ω)− 1)

1

n

n∑
i=1

E
[
‖∆t,k+1,i‖2

∣∣Ft,0 ] .
Proof. Let t ∈ [kout]

?, k ∈ [kin − 1] and i ∈ [n]?. By definition of Vt,k+1,i, ∆t,k+1,i and by A6, it
holds

E
[
Vt,k+1,i

∣∣Ft,k+1/2,i

]
= Vt,k,i + αE

[
Quant(∆t,k+1,i)

∣∣Ft,k+1/2,i

]
= Vt,k,i + α

(
St,k+1,i − Ŝt,k − Vt,k,i

)
.

This concludes the proof of the first statement. For the second statement, we write for any β > 0:

‖Vt,k+1,i − hi(Ŝt,k+1)‖2 ≤ (1 + β2)‖hi(Ŝt,k+1)− hi(Ŝt,k)‖2 + (1 + β−2)‖Vt,k+1,i − hi(Ŝt,k)‖2

≤ (1 + β2)L2
i γ

2
t,k+1‖Ht,k+1‖2 + (1 + β−2)‖Vt,k+1,i − hi(Ŝt,k)‖2 ,

(36)

where we used A8 and the definition of Ŝt,k+1 in the last inequality. For any s ∈ Rq

E
[
‖Vt,k+1,i − s‖2

∣∣Ft,k+1/2,i

]
= E

[
‖Vt,k+1,i − E

[
Vt,k+1,i

∣∣Ft,k+1/2,i

]
‖2
∣∣Ft,k+1/2,i

]
+ ‖E

[
Vt,k+1,i − s

∣∣Ft,k+1/2,i

]
‖2 . (37)

On one hand,

‖Vt,k+1,i−E
[
Vt,k+1,i

∣∣Ft,k+1/2,i

]
‖2 = α2‖Quant(∆t,k+1,i)−E

[
Quant(∆t,k+1,i)

∣∣Ft,k+1/2,i

]
‖2

and by A6,

E
[
‖Vt,k+1,i − E

[
Vt,k+1,i

∣∣Ft,k+1/2,i

]
‖2
∣∣Ft,k+1/2,i

]
≤ α2ω‖∆t,k+1,i‖2 . (38)

On the other hand, for any s ∈ Rq , and using Lemma 6

‖E
[
Vt,k+1,i − s

∣∣Ft,k+1/2,i

]
‖2 = ‖(1− α) (Vt,k,i − s) + α (St,k+1,i − Ŝt,k − s)‖2

= (1− α) ‖Vt,k,i − s‖2 + α‖St,k+1,i − Ŝt,k − s‖2 − α(1− α)‖Vt,k,i − St,k+1,i + Ŝt,k‖2

= (1− α) ‖Vt,k,i − s‖2 + α‖St,k+1,i − Ŝt,k − s‖2 − α(1− α)‖∆t,k+1,i‖2 . (39)

Let us combine (36) to (39), the last one being applied with s ← hi(Ŝt,k) ∈ F+
t,k,i ⊆ Ft,k+1/2,i.

Since

‖St,k+1,i − Ŝt,k − hi(Ŝt,k)‖2 = ‖St,k+1,i −
1

m

m∑
j=1

s̄ij ◦ T(Ŝt,k)‖2 ,

we write

E
[
‖Vt,k+1,i − hi(Ŝt,k+1)‖2

∣∣∣Ft,k ] ≤ (1 + β2)L2
i γ

2
t,k+1E

[
‖Ht,k+1‖2

∣∣Ft,k ]
+ (1 + β−2)

{
α2ωE

[
‖∆t,k+1,i‖2

∣∣Ft,k ]+ (1− α)‖Vt,k,i − hi(Ŝt,k)‖2

+αE

‖St,k+1,i −
1

m

m∑
j=1

s̄ij ◦ T(Ŝt,k)‖2
∣∣∣∣∣∣Ft,k

− α(1− α)E
[
‖∆t,k+1,i‖2

∣∣Ft,k ]
 .

Choose β2 > 0 such that

β−2 :=

{
1 if α ≥ 2/3
α

2(1−α) if α ≤ 2/3
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This implies that

(1 + β−2)(1− α) ≤ 1− α

2
, 1 + β2 ≤ 2

α
, 1 + β−2 ≤ 2 .

Hence,

E
[
‖Vt,k+1,i − hi(Ŝt,k+1)‖2

∣∣∣Ft,k ] ≤ (1− α/2)‖Vt,k,i − hi(Ŝt,k)‖2

+
2

α
L2
i γ

2
t,k+1E

[
‖Ht,k+1‖2

∣∣Ft,k ]+ 2αE

‖St,k+1,i −
1

m

m∑
j=1

s̄ij ◦ T(Ŝt,k)‖2
∣∣∣∣∣∣Ft,k


+ α (αω − 1 + α)E

[
‖∆t,k+1,i‖2

∣∣Ft,k ] ;

(in the last equality, we use 1 + β−2 ≥ 1 since αω− 1 +α ≤ 0). Finally, by using Corollary 18, we
have

E
[
‖Vt,k+1,i − hi(Ŝt,k+1)‖2

∣∣∣Ft,0 ] ≤ (1− α/2)E
[
‖Vt,k,i − hi(Ŝt,k)‖2

∣∣∣Ft,0 ]
+

2

α
L2
i γ

2
t,k+1E

[
‖Ht,k+1‖2

∣∣Ft,0 ]+ 2α
L2
i

b

k∑
`=1

γ2
t,`E

[
‖Ht,`‖2

∣∣Ft,0 ]
+ α (αω − 1 + α)E

[
‖∆t,k+1,i‖2

∣∣Ft,0 ] .
The proof is concluded.

E.3.5 Results on the random field Ht,k+1

Proposition 23 shows that the random field Ht,k+1 is a biased approximation of the field h(Ŝt,k),
and this bias is canceled at the beginning of each outer loop. Observe also that the bias exists even
when there is no compression: when ω = 0 (so that Quant(u) = u) we have

E [Ht,k+1|Ft,k ]− h(Ŝt,k) = Ht,k − h(Ŝt,k−1) ,

and the bias is again canceled at the beginning of each outer loop. Proposition 24 provides an upper
bound for the variance and the mean squared error of the random field Ht,k+1. In the case of no
compression (ω = 0) and of a single worker (n = 1) so that VR-FedEM is SPIDER-EM, Proposition 24
retrieves the variance and the mean squared error of the random fieldHt,k+1 in SPIDER-EM (see [10,
Proposition 13]).

Proposition 23. Assume A6. For any t ∈ [kout]
?, E [Ht,2|Ft,0 ] − h(Ŝt,1) = E [Ht,1|Ft,0 ] −

h(Ŝt,0) = 0 and for any k ∈ [kin − 1]?,

E [Ht,k+1|Ft,k ]− h(Ŝt,k) = Ht,k − h(Ŝt,k−1)− n−1
n∑
i=1

(Quant(∆t,k,i)−∆t,k,i)

= n−1
n∑
i=1

E [St,k+1,i|Ft,k ]−m−1
m∑
j=1

s̄ij ◦ T(Ŝt,k)

 .

Proof. Let t ∈ [kout]
?.

• By definition of Ht,1 and ∆t,1,i, by A6 and by Lemma 21, we have

E [Ht,1|Ft,0 ] = Vt,0 + n−1
n∑
i=1

E [Quant(∆t,1,i)|Ft,0 ] = Vt,0 + n−1
n∑
i=1

E [∆t,1,i|Ft,0 ]

= Vt,0 + n−1
n∑
i=1

(
E [St,1,i|Ft,0 ]− Ŝt,0 − Vt,0,i

)
= n−1

n∑
i=1

E [St,1,i|Ft,0 ]− Ŝt,0 .
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By Proposition 17 n−1
∑n
i=1 E [St,1,i|Ft,0 ]− Ŝt,0 = h(Ŝt,0).

• Consider the case k = 1. We have by definition of Ht,2

E [Ht,2|Ft,1 ]− h(Ŝt,1) =
1

n

n∑
i=1

E [St,2,i|Ft,1 ]−m−1
m∑
j=1

s̄ij ◦ T(Ŝt,1)

 ;

Proposition 17 concludes the proof.

• Let k ≥ 2. As in the case k = 0, we have

E [Ht,k+1|Ft,k ] = Vt,k + n−1
n∑
i=1

E [Quant(∆t,k+1,i)|Ft,k ] = Vt,k + n−1
n∑
i=1

E [∆t,k+1,i|Ft,k ]

= Vt,k + n−1
n∑
i=1

(
E [St,k+1,i|Ft,k ]− Ŝt,k − Vt,k,i

)
= n−1

n∑
i=1

E [St,k+1,i|Ft,k ]− Ŝt,k ,

so that

E [Ht,k+1|Ft,k ]− h(Ŝt,k) = n−1
n∑
i=1

E [St,k+1,i|Ft,k ]−m−1
m∑
j=1

s̄ij ◦ T(Ŝt,k)

 . (40)

By Proposition 17, upon noting that Ft,k ⊂ F+
t,k,i and St,k,i, Ŝt,k−1 ∈ Ft,k, we have

n−1
n∑
i=1

E [St,k+1,i|Ft,k ]−m−1
m∑
j=1

s̄ij◦T(Ŝt,k) = n−1
n∑
i=1

St,k,i −m−1
m∑
j=1

s̄ij ◦ T(Ŝt,k−1)

 .

(41)
On the other hand, observe that

Ht,k = Vt,k−1 + n−1
n∑
i=1

Quant(∆t,k,i)

= Vt,k−1 + n−1
n∑
i=1

St,k,i − Ŝt,k−1 − n−1
n∑
i=1

Vt,k−1,i + n−1
n∑
i=1

(Quant(∆t,k,i)−∆t,k,i)

= n−1
n∑
i=1

St,k,i − Ŝt,k−1 + n−1
n∑
i=1

(Quant(∆t,k,i)−∆t,k,i) ,

where we used Lemma 21. This yields

Ht,k − h(Ŝt,k−1)

= n−1
n∑
i=1

St,k,i −m−1
m∑
j=1

s̄ij ◦ T(Ŝt,k−1)

+ n−1
n∑
i=1

(Quant(∆t,k,i)−∆t,k,i) . (42)

The proof is concluded by combining (40), (41) and (42).

Proposition 24. Assume A6 and A8. For any t ∈ [kout]
?,

E
[
‖Ht,1 − h(Ŝt,0)‖2

∣∣∣Ft,0 ] ≤ ω

n

(
1

n

n∑
i=1

‖Vt,0,i − hi(Ŝt,0)‖2
)
,

and for any k ∈ [kin − 1]?,

E
[
‖Ht,k+1 − h(Ŝt,k)‖2

∣∣∣Ft,0 ] ≤ ω

n

1

n

n∑
i=1

E
[
‖∆t,k+1,i‖2

∣∣Ft,0 ]+
L2

nb

k∑
`=1

γ2
t,`E

[
‖Ht,`‖2

∣∣Ft,0 ] ,
E
[
‖E [Ht,k+1|Ft,k ]− h(Ŝt,k)‖2

∣∣∣Ft,0 ] ≤ L2

nb

k−1∑
`=1

γ2
t,`E

[
‖Ht,`‖2

∣∣Ft,0 ] .
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Proof. • Case k = 1. From Proposition 23 and the definition of Ht,1, we have

Ht,1 − h(Ŝt,0) = Ht,1 − E [ [Ht,1|Ft,0 ] = n−1
n∑
i=1

(Quant(∆t,1,i)− E [Quant(∆t,1,i)|Ft,0 ])

= n−1
n∑
i=1

(Quant(∆t,1,i)− E [∆t,1,i|Ft,0 ]) ,

where we used E
[
Quant(∆t,1,i)

∣∣Ft,1/2,i ] = ∆t,1,i and Ft,0 ⊂ Ft,1/2,i in the last equality. In
addition, since Ŝt,0 = Ŝt,−1, we have (see Proposition 17)

St,1,i = St,0,i = hi(Ŝt,0) + Ŝt,0 .

Hence,
∆t,1,i = St,1,i − Ŝt,0 − Vt,0,i = hi(Ŝt,0)− Vt,0,i .

Therefore, E [∆t,1,i|Ft,0 ] = ∆t,1,i = hi(Ŝt,0)−Vt,0,i. Since the workers are independent, we write

E
[
‖Ht,1 − h(Ŝt,0)‖2

∣∣∣Ft,0 ] =
1

n2

n∑
i=1

E
[
‖Quant(hi(Ŝt,0)− Vt,0,i)−

(
hi(Ŝt,0)− Vt,0,i

)
‖2
∣∣∣Ft,0 ] .

By A6, this yields

E
[
‖Ht,1 − h(Ŝt,0)‖2

∣∣∣Ft,0 ] ≤ ω

n

1

n

n∑
i=1

‖hi(Ŝt,0)− Vt,0,i‖2 .

• Case k ≥ 1. Let t ∈ [kout]
? and k ∈ [kin − 1]?. We write

E
[
‖Ht,k+1 − h(Ŝt,k)‖2

∣∣∣Ft,0 ] = E
[
‖Ht,k+1 − E [Ht,k+1|Ft,k ] ‖2

∣∣Ft,0 ]
+ E

[
‖E [Ht,k+1|Ft,k ]− h(Ŝt,k)‖2

∣∣∣Ft,0 ] . (43)

Let us first consider the bias term. From Proposition 17, Proposition 23 and the definition of St,k+1,i

(remember that St,k,i, Ŝt,k and Ŝt,k−1 are in F+
t,k,i ⊃ Ft,k), it holds

E
[∥∥∥E [Ht,k+1|Ft,k ]− h(Ŝt,k)

∥∥∥2
∣∣∣∣Ft,0 ]

= E

∥∥∥n−1
n∑
i=1

(E [St,k+1,i|Ft,k ]−m−1
m∑
j=1

s̄ij ◦ T(Ŝt,k))
∥∥∥2

∣∣∣∣∣∣Ft,0


≤ E

∥∥∥n−1
n∑
i=1

(St,k,i −m−1
m∑
j=1

s̄ij ◦ T(Ŝt,k−1))
∥∥∥2

∣∣∣∣∣∣Ft,0
 .

By Proposition 17 again, the RHS is zero when k = 1; when k ≥ 2, by Corollary 18 and the
independence of the workers, we have yields

E
[
‖E [Ht,k+1|Ft,k ]− h(Ŝt,k)‖2

∣∣∣Ft,0 ] ≤ L2

nb

k−1∑
`=1

γ2
t,`E

[
‖Ht,`‖2

∣∣Ft,0 ] . (44)

Let us now consider the variance term. We have from the definition of Ht,k+1 and A6

Ht,k+1 − E [Ht,k+1|Ft,k ] =
1

n

n∑
i=1

(Quant(∆t,k+1,i)− E [∆t,k+1,i|Ft,k ])

and here again, by the independence of the workers

E
[
‖Ht,k+1 − E [Ht,k+1|Ft,k ] ‖2

∣∣Ft,0 ]
≤ 1

n2

n∑
i=1

E
[
‖Quant(∆t,k+1,i)− E [∆t,k+1,i|Ft,k ] ‖2

∣∣Ft,0 ] . (45)

The proof follows from (43) to (45) and Proposition 20.
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E.4 Proof of Theorem 3

Theorem 3 is a corollary of the more general following proposition.

Proposition 25. Assume A1 to 3, A4, A6 and A8. Set L2 := n−1m−1
∑n
i=1

∑m
j=1 L

2
ij . Let

{Ŝt,k, t ∈ [kout]
?, k ∈ [kin − 1]} be given by algorithm 2 run with any α ≤ 1/(1 + ω), and

b ≥ 1, with V1,0,i = hi(Ŝ1,0) for any i ∈ [n]?. Let (τ,K) be a uniform random variable on
[kout]

? × [kin − 1], independent of {Ŝt,k, t ∈ [kout]
?, k ∈ [kin − 1]}. Then, it holds

vmin (1− γΛ?)E
[
‖Hτ,K+1‖2

]
≤ γ−1k−1

in k−1
out

(
E
[
W(Ŝ1,0)

]
−min W

)
,

where

Λ? :=
LẆ

2vmin
+ 2
√

2
vmax

vmin

L√
nα

(
ω +

kinα
2

8b
(1 + 10ω)

)1/2

.

The proof of Theorem 3 from Proposition 25 (which corresponds to particular choices of b, α, etc.
is detailed in Appendix E.5).

E.4.1 Control of Hτ,K

Let t ∈ [kout]
? and k ∈ [kin − 1]. By A4, we have

W(Ŝt,k+1) ≤W(Ŝt,k) +
〈
∇W(Ŝt,k), Ŝt,k+1 − Ŝt,k

〉
+
LẆ

2
‖Ŝt,k+1 − Ŝt,k‖2 .

Since Ŝt,k+1 − Ŝt,k = γt,k+1Ht,k+1, we have using again A4

W(Ŝt,k+1) ≤W(Ŝt,k)− γt,k+1

〈
B(Ŝt,k)h(Ŝt,k), Ht,k+1

〉
+
LẆ

2
γ2
t,k+1‖Ht,k+1‖2 .

We have the inequality, for any β > 0:

−〈Bh,H〉 ≤ − 〈BH,H〉 − 〈B(h−H), H〉 ≤ − 〈BH,H〉+
β2

2
‖H‖2 +

1

2β2
‖B(H − h)‖2 .

By A4 again, this inequality yields for any βt,k+1 > 0 after applying the conditional expectation

E
[

W(Ŝt,k+1)
∣∣∣Ft,0 ] ≤ E

[
W(Ŝt,k)

∣∣∣Ft,0 ]− γt,k+1vminΛt,k+1E
[
‖Ht,k+1‖2

∣∣Ft,0 ]
+

γt,k+1

2β2
t,k+1

v2
maxE

[
‖Ht,k+1 − h(Ŝt,k)‖2

∣∣∣Ft,0 ] , (46)

where

Λt,k+1 := 1− γt,k+1
LẆ

2vmin
−
β2
t,k+1

2vmin
.

By (46) and Proposition 24, it holds

E
[
W(Ŝt,k+1)|Ft,0

]
≤ E

[
W(Ŝt,k)|Ft,0

]
− γt,k+1vminΛt,k+1E

[
‖Ht,k+1‖2|Ft,0

]
+

γt,k+1

2β2
t,k+1

v2
max

L2

nb

k∑
`=1

γ2
t,`E

[
‖Ht,`‖2|Ft,0

]
+

γt,k+1

2β2
t,k+1

v2
max

ω

n

1

n

n∑
i=1

E
[
‖∆t,k+1,i‖2|Ft,0

]
. (47)

Set

Gt,k :=
1

n

n∑
i=1

‖Vt,k,i − hi(Ŝt,k)‖2 .

41



From Proposition 19, we obtain

E
[
W(Ŝt,k+1)|Ft,0

]
≤ E

[
W(Ŝt,k)|Ft,0

]
− γt,k+1vminΛt,k+1E

[
‖Ht,k+1‖2|Ft,0

]
+

γt,k+1

2β2
t,k+1

v2
max

L2

nb
(1 + 2ω)

k∑
`=1

γ2
t,`E

[
‖Ht,`‖2|Ft,0

]
+
γt,k+1

β2
t,k+1

v2
max

ω

n
E [Gt,k|Ft,0 ] . (48)

Assume that k 7→ γt,k+1/β
2
t,k+1 is a non-increasing sequence and set

Ct,k+1 :=
2ω

αn
v2

max

γt,k+1

β2
t,k+1

. (49)

From Proposition 22, since α ∈ (0, 1/(1 + ω)], we have

Ct,k+1E [Gt,k+1|Ft,0 ] ≤ (1−α/2)Ct,k+1E [Gt,k|Ft,0 ]+
2

α
L2γ2

t,k+1Ct,k+1E
[
‖Ht,k+1‖2

∣∣Ft,0 ]
+ 2α

L2

b
Ct,k+1

k∑
`=1

γ2
t,`E

[
‖Ht,`‖2

∣∣Ft,0 ] . (50)

Upon noting that by definition of Ct,k+1 we have (remember that Ct,k+1 ≤ Ct,k)

(1− α/2)Ct,k+1 − Ct,k +
γt,k+1

β2
t,k+1

v2
max

ω

n
≤ 0 ,

this yields from (48) and (50)

E
[
W(Ŝt,k+1)|Ft,0

]
+ Ct,k+1E [Gt,k+1|Ft,0 ] ≤ E

[
W(Ŝt,k)|Ft,0

]
+ Ct,kE [Gt,k|Ft,0 ]

−
(
γt,k+1vminΛt,k+1 −

2

α
L2γ2

t,k+1Ct,k+1

)
E
[
‖Ht,k+1‖2|Ft,0

]
+

(
γt,k+1

2β2
t,k+1

v2
max

L2

nb
(1 + 2ω) + 2α

L2

b
Ct,k+1

)
k∑
`=1

γ2
t,`E

[
‖Ht,`‖2|Ft,0

]
.

Let us restrict the computations to the case γt,k = γ, βt,k = β (which implies Ct,k+1 = Ct,k =: C);
we obtain

γvmin

(
1− γ

LẆ

2vmin
− β2

2vmin
− γ2

β2

4v2
max

vmin
L2 ω

α2n

)
E
[
‖Ht,k+1‖2|Ft,0

]
≤ E

[
W(Ŝt,k)|Ft,0

]
+ CE [Gt,k|Ft,0 ]− E

[
W(Ŝt,k+1)|Ft,0

]
− CE [Gt,k+1|Ft,0 ]

+
γ3

2β2
v2

max

L2

nb
(1 + 10ω)

k∑
`=1

E
[
‖Ht,`‖2|Ft,0

]
.

We now sum from k = 0 to k = kin − 1 and divide by kin:

γvmin

(
1− γ

LẆ

2vmin
− β2

2vmin
− γ2

β2

4v2
max

vmin
L2 ω

α2n

)
1

kin

kin∑
k=1

E
[
‖Ht,k‖2|Ft,0

]
≤ k−1

in E
[
W(Ŝt,0)|Ft,0

]
+

C

kin
E [Gt,0|Ft,0 ]

− k−1
in E

[
W(Ŝt,kin)|Ft,0

]
− C

kin
E [Gt,kin |Ft,0 ]

+
γ3

2β2
v2

max

L2

nb
(1 + 10ω)

kin∑
k=1

E
[
‖Ht,k‖2|Ft,0

]
.
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As a conclusion, we have

γvmin

(
1− γ

LẆ

2vmin
− γΛ̄

)
1

kin

kin−1∑
k=0

E
[
‖Ht,k+1‖2|Ft,0

]
≤ k−1

in E
[
W(Ŝt,0)|Ft,0

]
+

C

kin
E [Gt,0|Ft,0 ]

− k−1
in E

[
W(Ŝt,kin)|Ft,0

]
− C

kin
E [Gt,kin |Ft,0 ] .

where

Λ̄ :=
β2

2vminγ
+

γ

β2

4v2
max

vmin
L2 ω

α2n
+

γ

2β2

v2
max

vmin

L2kin

nb
(1 + 10ω) .

Next, we sum from t = 1 to t = kout, divide by kout.

γvmin

(
1− γ

LẆ

2vmin
− γΛ̄

)
1

koutkin

kout∑
k=1

kin∑
k=1

E
[
‖Ht,k+1‖2

]
≤ k−1

in k−1
out

(
E
[
W(Ŝ1,0)

]
−min W

)
+

C

kinkout
E [G1,0] . (51)

Finally, we apply the expectation, with (τ,K) a uniform random variable on [kout]
? × [kin − 1],

independent of {Ŝt,k, t ∈ [kout]
?, k ∈ [kin − 1]}, upon noting that Gt,kin = Gt+1,0 and Ŝt,kin =

Ŝt+1,0, this yields

γvmin

(
1− γ

LẆ

2vmin
− γΛ̄

)
E
[
‖Hτ,K+1‖2

]
≤ k−1

in k−1
out

(
E
[
W(Ŝ1,0)

]
−min W

)
+

C

kinkout
E [G1,0] . (52)

Impact of initialization. With V1,0,i = hi(Ŝ1,0) for any i ∈ [n]?, we have G1,0 = 0.

Choice of β. The latter inequality is true for all parameter β2 > 0 (coming from Young’s inequal-
ity). We can thus optimize the value of β2 to minimize the value of Λ̄. We here discuss this choice.
First, to ensure that Λ̄ is independent of γ, we introduce a, and set β2 = aγ so that

Λ̄ =
a

2vmin
+

1

a

4v2
max

vmin
L2 ω

α2n
+

1

2a

v2
max

vmin

L2kin

nb
(1 + 10ω)

=
a

2vmin
+

4

a

v2
max

vmin

L2

nα2

(
ω +

kinα
2

8b
(1 + 10ω)

)
.

Next, we optimize the value of a.2 Upon noting that a 7→ Aa+B/a (forA,B > 0) is lower bounded
by 2
√
AB and its minimizer is a? :=

√
B/A, we choose

a? := 2
√

2vmax
L√
nα

(
ω +

kinα
2

8b
(1 + 10ω)

)1/2

.

and obtain

Λ̄ = 2
√

2
vmax

vmin

L√
nα

(
ω +

kinα
2

8b
(1 + 10ω)

)1/2

. (53)

Combining Equation (53) and Equation (52), we obtain

vmin (1− γΛ?)E
[
‖Hτ,K+1‖2

]
≤ γ−1k−1

in k−1
out

(
E
[
W(Ŝ1,0)

]
−min W

)
,

where

Λ? :=
LẆ

2vmin
+ 2
√

2
vmax

vmin

L√
nα

(
ω +

kinα
2

8b
(1 + 10ω)

)1/2

, (54)

which is the result of Proposition 25.
2Remark that this optimization step is crucial to optimize the dependency of Λ̄ w.r.t. ω: this ensures that

Λ̄ ∝ ω3/2.
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E.5 Proof of Theorem 3 (Equation (11)) from Proposition 25

We apply Proposition 25 with: b := d kin
(1+ω)2 e and the largest possible learning rate α = (1 + ω)−1:

this gives in Equation (54)

Λ? =
LẆ

2vmin
+ 2
√

2
vmax

vmin

L√
n

(1 + ω)

(
ω +

1 + 10ω

8

)1/2

=
LẆ

2vmin

(
1 + 4

√
2
vmax

LẆ

L√
n

(1 + ω)

(
ω +

1 + 10ω

8

)1/2
)
.

Next, we choose γ to be the largest possible value to ensure (1− γΛ?) ≥ 1
2 . For all t, k,

γt,k = γ :=
1

2Λ?
=
vmin

LẆ

(
1 + 4

√
2
vmax

LẆ

L√
n

(1 + ω)

(
ω +

1 + 10ω

8

)1/2
)−1

.

This gives the first result of Theorem 3, namely Equation (11). We give the proof of the second
result, Equation (12) in the following subsection.

E.6 Proof of Theorem 3 (Equation (12)): control on h(Ŝτ,K)

We now establish (12) for γt,k = γ. Let t ∈ [kout]
? and k ∈ [kin − 1]. We have

‖h(Ŝt,k)‖2 ≤ 2‖E [Ht,k+1|Ft,k] ‖2 + 2‖h(Ŝt,k)− E [Ht,k+1|Ft,k] ‖2 . (55)

Let us consider the first term in (55). By Jensen’s inequality and the tower property of conditional
expectations

E
[
‖E [Ht,k+1|Ft,k] ‖2|Ft,0

]
≤ E

[
E
[
‖Ht,k+1‖2|Ft,k

]
|Ft,0

]
= E

[
‖Ht,k+1‖2|Ft,0

]
.

Let us now consider the second term in (55). By Proposition 23 and Proposition 24, we have

E
[
‖E [Ht,k+1|Ft,k]− h(Ŝt,k)‖2|Ft,0

]
≤
{
γ2 L2

nb

∑k−1
`=1 E

[
‖Ht,`‖2|Ft,0

]
when k ≥ 2

0 when k ∈ {0, 1} .

Therefore, we write

E
[
‖h(Ŝt,k)‖2

]
≤ 2E

[
‖Ht,k+1‖2

]
+ 2γ2L

2

nb

k−1∑
`=1

E
[
‖Ht,`‖2

]
We now sum from k = 0 to k = kin − 1, then from t = 1 to t = kout, and finally we divide by
kinkout. This yields

E
[
‖h(Ŝτ,K)‖2

]
≤ 2E

[
‖Hτ,K+1‖2

]
+ 2γ2L

2

nb

1

kinkout

kout∑
t=1

kin−1∑
k=2

k−1∑
`=1

E
[
‖Ht,`‖2

]
≤ 2E

[
‖Hτ,K+1‖2

]
+ 2γ2L

2

nb

1

kout

kout∑
t=1

kin−2∑
k=1

E
[
‖Ht,k‖2

]
≤ 2E

[
‖Hτ,K+1‖2

]
+ 2γ2L

2

n

kin

b
E
[
‖Hτ,K+1‖2

]
≤ 2

(
1 + γ2L

2

n

kin

b

)
E
[
‖Hτ,K+1‖2

]
.

E.7 On the convergence of the Vt,k,i’s

In this subsection, we provide a complementary result, to support the assertion made in the text,
that the variable Vt,k,i approximates hi(Ŝt,k). Recall that for t ∈ [kout]

? and k ∈ [kin], Gt,k :=
1
n

∑n
i=1 ‖Vt,k,i − hi(Ŝt,k)‖2 .
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Proposition 26. When running algorithm 2 with a constant step size γ equal to

γ :=
vmin

LẆ

(
1 + 4

√
2
vmax

LẆ

L√
n

(1 + ω)

(
ω +

1 + 10ω

8

)1/2
)−1

,

with b := d kin
(1+ω)2 e and α := 1/(ω + 1), we have

1

koutkin

kout∑
t=1

kin∑
k=1

E[Gt,k] ≤ 2(1 + ω)

kinkout
E[G1,0] + 16

γ

kinkout

(1 + ω)2L2

vmin

(
E
[
W(Ŝ1,0)

]
−min W

)
.

In words, the Cesaro average 1
koutkin

∑kout
t=1

∑kin
k=1 E[Gt,k] decreases proportionally to the number

of iterations kinkout. Consequently, the average squared distance between Vt,k,i and hi(Ŝt,k) (i.e.,
Gt,k), converges to 0 in the sense of Cesaro.

Proof. From Proposition 22, we have that, t ∈ [kout]
? and k ∈ [kin], and any α ≤ (ω + 1)−1:

E [Gt,k+1|Ft,0 ] ≤ (1− α/2)E [Gt,k|Ft,0 ]

+
2

α
L2γ2

t,k+1E
[
‖Ht,k+1‖2

∣∣Ft,0 ]+ 2α
L2

b

k∑
`=1

γ2
t,`E

[
‖Ht,`‖2

∣∣Ft,0 ] .
Equivalently:

α/2E [Gt,k|Ft,0 ] ≤ E [Gt,k|Ft,0 ]− E [Gt,k+1|Ft,0 ]

+
2

α
L2γ2

t,k+1E
[
‖Ht,k+1‖2

∣∣Ft,0 ]+ 2α
L2

b

k∑
`=1

γ2
t,`E

[
‖Ht,`‖2

∣∣Ft,0 ] .
Summing from k = 0 to k = kin − 1, we get, with γ2

t,k+1 = γ:

α

2

kin−1∑
k=0

E [Gt,k|Ft,0 ] ≤ E [Gt,0|Ft,0 ]− E [Gt,kin |Ft,0 ]

+
2

α
L2γ2

kin∑
k=1

E
[
‖Ht,k‖2

∣∣Ft,0 ]+ 2α
L2

b

kin−1∑
k=1

k∑
`=1

γ2E
[
‖Ht,`‖2

∣∣Ft,0 ]
≤ E [Gt,0|Ft,0 ]− E [Gt,kin |Ft,0 ]

+
2

α
L2γ2

kin∑
k=1

E
[
‖Ht,k‖2

∣∣Ft,0 ]+ 2α
L2kin

b

kin∑
k=1

γ2E
[
‖Ht,k‖2

∣∣Ft,0 ]
≤ E [Gt,0|Ft,0 ]− E [Gt,kin |Ft,0 ]

+
2

α
L2γ2

(
1 +

α2kin

b

) kin∑
k=1

E
[
‖Ht,k‖2

∣∣Ft,0 ] .
Summing from t = 1 to t = kout, dividing by koutkin, and taking expectation we get:

1

koutkin

kout∑
t=1

kin−1∑
k=0

E[Gt,k] ≤ 2

αkoutkin
E[G1,0]

+
4

α2koutkin
L2γ2

(
1 +

α2kin

b

) kout∑
t=1

kin∑
k=1

E[‖Ht,k‖2] .

We used that Gt,kin = Gt+1,0. By denoting (τ,K) a uniform random variable on [kout]
?× [kin− 1]

– independent of the path {Ŝt,k, t ∈ [kout]
?, k ∈ [kin]}, we have

E[Gτ,K ] ≤ 2

αkoutkin
E[G1,0] +

4

α2
L2γ2

(
1 +

α2kin

b

)
E[‖Hτ,K+1‖2] .
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From Theorem 3, this yields (note that α = (1 + ω)−1 and b ≥ kin/(1 + ω)2)

E[Gτ,K ] ≤ 2(1 + ω)

koutkin
E[G1,0] + γ

16(1 + ω)2L2

vminkinkout

(
W(Ŝ1,0)−min W

)
.

F Supplement to the numerical section

This section gathers additional details concerning the models used in our numerical experiments.
Namely, Appendix F.1 presents the full derivations for the FedEM algorithm for finite Gaussian Mix-
ture Models, and Appendix F.2 provides the detailed pseudo-code for the FedMissEM algorithm for
federated missing values imputation introduced in Section 4 and provides the necessary information
to request access to the data we used on the eBird platform [1].

F.1 Gaussian Mixture Model

Let y1, . . . , yN be N Rp-valued observations; they are modeled as the realization of a vector
(Y1, . . . , YN ) with distribution defined as follows:

• conditionally to a {1, . . . , L}-valued vector of random variables (Z1, . . . , ZN ),
(Y1, . . . , YN ) are independent; and the conditional distribution of Yi is Np(µZi

,Σ).

• the r.v. (Z1, . . . , Zn) are i.i.d. with multinomial distribution of size 1 and with probabilities
π1, . . . , πL.

Equivalently, the random variables (Y1, . . . , YN ) are independent with distribution∑L
`=1 π`Np(µ`,Σ). For 1 ≤ i ≤ N , the negative log-likelihood of the observation Yi is

given up to an additive constant term by

θ 7→ 1

2
ln detΣ +

1

2

〈
YiY

>
i ,Σ

−1
〉
− ln

L∑
z=1

exp (〈s(Yi, z), φ(θ)〉)

where, denoting 1{l}(z) the indicator function equal to 1 if z = l and 0 otherwise:

s(y, z) :=



1{1}(z)
...

1{L}(z)
y1{1}(z)

...
y1{L}(z)


, φ(θ) :=



log(π1)− 1
2µ
>
1 Σ−1µ1

...
log(πL)− 1

2µ
>
LΣ−1µL

Σ−1µ1

...
Σ−1µL


. (56)

The goal is to estimate the parameter θ := (π1, . . . , πL, µ1, . . . , µL,Σ) by minimizing the normal-
ized negative log-likelihood:

F (θ) :=
1

2
ln detΣ +

1

2

〈
1

N

N∑
i=1

YiY
>
i ,Σ

−1

〉
− 1

N

N∑
i=1

ln

∫
exp (〈s(Yi, z), φ(θ)〉) ν(dz) (57)

where ν is the counting measure on {1, . . . L}.

Classical EM algorithm We use the EM algorithm: in the Expectation (E) step, using the current
value of the iterate θcurr, we compute a majorizing function θ 7→ Q(θ, θcurr) given up to an additive
constant by

Q(θ, θcurr) = −〈̄s(θcurr), φ(θ)〉+ ψ(θ),

where

ψ(θ) :=
1

2
ln detΣ +

1

2

〈
1

N

N∑
i=1

YiY
>
i ,Σ

−1

〉
,
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s̄(θcurr) := 1
N

∑N
i=1 s̄i(θ), and for any i ∈ [N ]?, s̄i(θ) is the conditional expectation of the complete

data sufficient statistics:

s̄i(θ) =



ρ̄i,1(θ)
...

ρ̄i,L(θ)
Yiρ̄i,1(θ)

...
Yiρ̄i,L(θ)


, where for ` ∈ [L]?, ρ̄i,l(θ) :=

π` Np(µ`,Σ)[Yi]∑L
u=1 πu Np(µu,Σ)[Yi]

. (58)

In (58), Np(µ,Σ)[y] is the density function of the distribution Np(µ,Σ) evaluated at y.

In the optimization step (M-step), a new value of θcurr is computed as a minimizer of θ 7→ Q(θ, θcurr).
Let us now detail this step.

Algorithm 5: Classical EM algorithm for mixture of Gaussians

1: Input: kmax ∈ N, X , Ŝ0, θ̂0

2: Output: The sequence of statistics: {Ŝk, k ∈ [kmax]}; the sequence of parameters
{θ̂k, k ∈ [kmax]}

3: for k = 0, . . . , kmax − 1 do
4: Expectation step: compute conditional expectations given current parameter θ̂k: Set

Ŝk+1 = 1
N

∑N
i=1 s̄i(θ̂

k)

5: Maximization step: update parameter θ̂k+1 based on current statistics Ŝk+1 according to
update rule (60)

6: end for

The M step: the map T. Let

s = (s(1), s(2)) = (s(1),1, . . . , s(1),L, s(2),1, . . . , s(2),L) ∈ RL × RpL ;

we write 〈s, φ(θ)〉 =
∑2
j=1

〈
s(j), φ(j)(θ)

〉
where the functions φ(j) are defined by

φ(1)(θ) :=

 log(π1)− 1
2µ
>
1 Σ−1µ1

...
log(πL)− 1

2µ
>
LΣ−1µL

 , φ(2)(θ) :=

 Σ−1µ1

...
Σ−1µL

 . (59)

By definition, T(s) = argminθ∈Θ − 〈s, φ(θ)〉+ψ(θ). Here, this optimum is unique and defined by
T(s) = {π`(s), µ`(s), ` = 1, . . . , L; Σ} with

π`(s) :=
s(1),`∑L
u=1 s

(1),u
, (60)

µ`(s) :=
s(2),`

s(1),`
, (61)

Σ(s) :=
1

N

N∑
i=1

YiY
>
i −

L∑
`=1

s(1),`µ`(s)µ
>
` (s) . (62)

The expressions of π`(s) and µ`(s) are easily obtained. We provide details for the covariance matrix.
We have for any symmetric matrix H

ln
det(Γ +H)

det(Γ)
= ln det(I + Γ−1H) = ln(1 + Tr(Γ−1H) + o(‖H‖))

= Tr(Γ−1H) + o(‖H‖) =
〈
H,Γ−1

〉
+ o(‖H‖)

thus showing that the derivative of Γ 7→ ln detΓ is Γ−1. T(s) depends on Σ−1 through the function

Σ−1 7→ −1

2
ln det(Σ−1)+

1

2

〈
Σ−1,

1

N

N∑
i=1

YiY
>
i

〉
+

〈
Σ−1,

1

2

L∑
`=1

s(1),`µ`µ
>
` −

L∑
`=1

µ` (s(2),`)>

〉
.
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The optimum solves

Σ =
1

N

N∑
i=1

YiY
>
i +

L∑
`=1

s(1),`µ`µ
>
` − 2

L∑
`=1

µ` (s(2),`)>

Hence, Σ(s) is this solution when µ` ← µ`(s) which yields the expression since s(2),` =
s(1),`µ`(s).

In the federated setting. In the federated setting, the data is distributed across n local servers. For
all c ∈ [n]?, the c-th server possesses a local data set of size Nc; Nc ≥ 1 and

∑n
c=1Nc = N . We

write
N⋃
i=1

{Yi} =

n⋃
c=1

Nc⋃
j=1

{Ycj} ,

thus meaning that each local worker #c processes the data set {Yc1, . . . , YcNc}.
The computation of the map T requires the knowledge of a statistic of the full data set, namely
N−1

∑N
i=1 YiY

>
i . For this reason, we want the map T to be available at the central server only.

Since
N∑
i=1

Yi =

n∑
c=1

Nc∑
j=1

Ycj

this full sum can be computed during the initialization of the algorithm by the central server, by
using the n local summaries

∑Nc

j=1 Ycj sent by the local workers.

In the FL setting, we write the objective function as follows

θ 7→ ψ(θ)− 1

N

n∑
c=1

Nc∑
j=1

ln

∫
exp (〈s(Ycj , z), φ(θ)〉) ν(dz)

= − 1

N

n∑
c=1

ln

Nc∏
j=1

∫
exp

(
〈s(Ycj , z), φ(θ)〉 − N

nNc
ψ(θ)

)
ν(dz)

∝ − 1

n

n∑
c=1

ln

Nc∏
j=1

∫
exp

(
〈s(Ycj , z), φ(θ)〉 − N

nNc
ψ(θ)

)
ν(dz) .

It is of the form (1) with R(θ) = 0 and

Lc(θ) := − ln

Nc∏
j=1

∫
exp

(
〈s(Ycj , z), φ(θ)〉 − N

nNc
ψ(θ)

)
ν(dz) .

In the case nNc = N for any c ∈ [n]?, we have

Lc(θ) = −
N/n∑
j=1

ln p(Ycj ; θ) ,

with

p(y; θ) :=

∫
p(y, z; θ) ν(dz) p(y, z; θ) := exp (〈s(y, z), φ(θ)〉 − ψ(θ)) ν(dz) .

p(y, z; θ) is of the form (2); this yields

s̄cj(θ) :=

L∑
z=1

s(Ycj , z)ρ̄cj,z(θ) , s̄c(θ) :=
n

N

N/n∑
j=1

s̄cj ,

where ρ̄cj,z(θ) is defined by (58).

The pseudo code for the FedEM algorithm is given in Algorithm 6.
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Algorithm 6: Federated EM algorithm for distributed GMM without compression

1: Input: kmax ∈ N; for c ∈ [n]?, V0,c ∈ RL+pL; Ŝ0 ∈ RL+pL; θ̂0 ∈ RL × (Rp)L × Rp×p; a
positive sequence {γk+1, k ∈ [kmax − 1]}; α

2: Output: The FedEMsequence: {Ŝk, k ∈ [kmax]}
3: for k = 0, . . . , kmax − 1 do
4: for c = 1, . . . , n do
5: (agent #i, locally)
6: Sample a batch Ik,c ⊂ [Nc]

7: Set Sk+1,c = 1
|Ik,c|

∑
i∈Ik,c

s̄i(θ̂k), where s̄i is defined in (58)

8: Set ∆k+1,c = Sk+1,c − Ŝk − Vk,c
9: Update Vk+1,c = Vk,c + αQuant(∆k+1,c)

10: Send Quant(∆k+1,c) to the controller
11: end for
12: (the controller)
13: Compute Hk+1 = Vk + 1

n

∑n
c=1 Quant(∆k+1,c)

14: Set Ŝk+1 = Ŝk + γk+1Hk+1

15: Set Vk+1 = Vk + αn−1
∑n
c=1 Quant(∆k+1,c).

16: Send Ŝk+1 and θ̂k+1 = T(Ŝk+1) to the agents, where T(Ŝk+1) is given by the update
rule (60)

17: end for

F.2 Federated missing values imputation

• Model and the FedMissEM algorithm. I observers participate in the programme, there are J
ecological sites and L time stamps. Each observer #i provides a J × L matrix Xi and a subset of
indices Ωi ⊆ [J ]? × [L]?. For j ∈ [J ]? and ` ∈ [L]?, the variable Xi

j` encodes the observation
that would be collected by observer #i if the site #j were visited at time stamp #`; since there
are unvisited sites, we denote by Y i := {Xi

j`, (j, `) ∈ Ωi} the set of observed values and Zi :=

{Xi
j`, (j, `) /∈ Ωi} the set of unobserved values. The statistical model is parameterized by a matrix

θ ∈ RJ×L, where θj` is a scalar parameter characterizing the distribution of species individuals at
site j and time stamp `. For instance, θj` is the log-intensity of a Poisson distribution when the
observations are count data or the log-odd of a binomial model when the observations are presence-
absence data. This model could be extended to the case observers #i and #i′ count different number
of specimens on average at the same location and time stamp, because they do not have access to
the same material or do not have the same level of expertise: heterogeneity between observers could
be modeled by using different parameters for each individual #i say θi ∈ RJ×L. Here, we consider
the case when θij` = θj` for all (j, `) ∈ [J ]? × [L]? and i ∈ [I]?.

We further assume that the entries {Xi
j`, i ∈ [I]?, j ∈ [J ]?, ` ∈ [L]?} are independent

with a distribution from an exponential family with respect to some reference measure ν on
R of the form: x 7→ ρ(x) exp{xθj` − ψ(θj`)}. The function ψ is for instance defined by
ψ(τ) = − 1

2τ
2 for a Gaussian model with expectation τ and variance 1, ψ(τ) = log(1 +

eτ ) for a Bernoulli model with success probability τ , and ψ(τ) = eτ for a Poisson model
with intensity τ . Therefore, the joint distribution of (Y i, Zi) is given by pi(y

i, zi; θ) :=(∏
(j,`)∈Ωi ρ(yij`)

) (∏
(j,`)/∈Ωi ρ(zij`)

)
exp

( 〈
si(y

i, zi), θ
〉
−
∑
j` ψ(θj`)

)
; where si(Y i, Zi) is

a J × L matrix with entry #(j, `) given by Y ij` if (j, `) ∈ Ωi and Zij,` otherwise.

In order to estimate the unknown matrix θ ∈ RJ×L, we assume that θ is low-rank; we use
the parameterization θ = UV >, where U ∈ RJ×r and V ∈ RL×r with rank(θ) = r and
r < min(J, L). The estimator is defined as a minimizer of the negative penalized log-likelihood:
minU∈RJ×r,V ∈RL×r F (U, V ), with F (U, V ) := 1

n

∑n
i=1 Li(UV >) + λ

2

(
‖U‖2F + ‖V ‖2F

)
, where

for θ ∈ RJ×L, Li(θ) := − log
∫
pi(Y

i, zi; θ)
∏

(j,`)/∈Ωi ν(dzij`).
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FedMissEM algorithm. Algorithm 7 provides the pseudo-code for the Federated EM algorithm
for mising values imputation.

Algorithm 7: Federated EM algorithm for distributed missing data imputation

1: Input: kmax ∈ N; for c ∈ [n]?, V c0 ∈ RI×J ; Ŝ0 ∈ RI×J ; a positive sequence
{γk+1, k ∈ [kmax − 1]}; α; the quantization function Quant

2: Output: The FedEM sequence: {Ŝk, k ∈ [kmax]}
3: for k = 0, . . . , kmax − 1 do
4: for c = 1, . . . , n do
5: (agent #i, locally)
6: Initialize Sk+1,c = 0 and ∆k+1,c = 0 everywhere.
7: Sample a minibatch (Ick,J ck ) ⊂ [I]? × [J ]?

8: for i ∈ Ick do
9: for j ∈ J ck do

10: Set (Sck+1)i,j = 1i,j∈ΩcY ci,j + (1− 1i,j∈Ωc)(θ̂k)i,j

11: Set (∆c
k+1)i,j = (Sck+1)i,j − Ŝi,j − (V ck )i,j

12: end for
13: end for
14: Update V ck+1 = V ck + αQuant(∆k+1,c)
15: Send Quant(∆c

k+1) to the controller
16: end for
17: (the controller)
18: Compute Hk+1 = Vk + n−1

∑n
c=1 Quant(∆c

k+1)

19: Set Ŝk+1 = Ŝk + γk+1Hk+1

20: Set Vk+1 = Vk + αn−1
∑n
c=1 Quant(∆c

k+1).
21: Send Ŝk+1 and θ̂k+1 = T(Ŝk+1) to the agents
22: (Note: thresholded SVD for Gaussian model or computed iteratively for a general

exponential family model)
23: end for

eBird data information. In our experiments, we used a sample of the eBird data set [1], provided
upon request by the Cornell Lab of Ornithology. We are not allowed to disclose the data itself,
but we provide here the details to reproduce our experiments on the same data set, after requesting
acess on the eBird platform (https://ebird.org/data/request). We selected the counts recorded any-
where in France, between January 2000 and September 2020, for two different species: the Mallard
and the Common Buzzard. These two species were analyzed independently (see Section 4); the
corresponding code is also available as supplementary material.
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