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Abstract

The Expectation Maximization (EM) algorithm is the default algorithm for infer-
ence in latent variable models. As in any other field of machine learning, appli-
cations of latent variable models to very large datasets makes the use of advanced
parallel and distributed architectures mandatory. This paper introduces FedEM,
which is the first extension of the EM algorithm to the federated learning context.
FedEM is a new communication efficient method, which handles partial participa-
tion of local devices, and is robust to heterogeneous distributions of the datasets.
To alleviate the communication bottleneck, FedEM compresses appropriately de-
fined complete data sufficient statistics. We also develop and analyze an extension
of FedEM to further incorporate a variance reduction scheme. In all cases, we de-
rive finite-time complexity bounds for smooth non-convex problems. Numerical
results are presented to support our theoretical findings, as well as an application
to federated missing values imputation for biodiversity monitoring.

1 Introduction

The Expectation Maximization (EM) algorithm is the most popular approach for inference in latent
variable models. The EM algorithm, a special instance of the Majorize/Minimize algorithm [24],
was formalized by [8] and is without doubt one of the fundamental algorithms in machine learning.
Applications include among many others finite mixture analysis, latent factor models inference, and
missing data imputation; see [38, 29, 26, 13] and the references therein. As in any other field of
machine learning, training latent variable models on very large datasets make the use of advanced
parallel and distributed architectures mandatory. Federated Learning (FL) [22, 39], which exploits
the computation power of a large number of edge devices to perform distributed machine learning,
is a powerful framework to achieve this goal.

The conventional EM algorithm is not suitable for FL settings. We propose several new distributed
versions of the EM algorithm supporting compressed communication. More precisely, our objective
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is to minimize a non-convex finite-sum smooth objective function

Argming g F(6), Z Li( © CR?, (1)

where n is the number of workers/devices Wthh are connected to a central server, and the worker
#1 only has access to its local data; finally R is a penalty term which may be introduced to pro-
mote sparsity, regularity, etc. In latent variable models, £;(0) = —m™* Z;"Zl log p(y;j;6), where
{yij}7L, are the m observations available for worker #i, and p(y;0) is the incomplete likeli-
hood. p(y;0) is defined by marginalizing the complete-data likelihood p(y, z;6) defined as the
joint probability density function of the observation y and a non-observed latent variable z € Z, i.e.
p(y;0) = [, p(y, 2;0)u(dz) where Z is the latent space and p is a measure on Z. We focus in this
paper on the case where p(y, z; #) belongs to a curved exponential family, given by

p(y, 2;0) = ply, z) exp { (s(y, 2),$(0)) — ¥(0) } ; (2)
where s(y,z) € R? is the complete-data sufficient statistics, ¢ : © — R?and ¢ : © — R,
p Y x Z — RT are vector/scalar functions.

In absence of communication constraints, the EM algorithm is a popular method to solve (1). It
alternates between two steps: in the Expectation (E) step, using the current value of the iterate 0.,
it computes a majorizing function 6 — Q(0, 6., ) given up to an additive constant by

n

Q(0, bcurr) = — 5(Ocurr), #(0)) + 1 (0) + R(#) where 35(0) := %ZQ(G) ; 3)

i=1
and 5;(0) is the ith device conditional expectation of the complete-data sufficient statistics:

ZSU ) SU ) /ZS(yij7z)p(Z|yij;9)u(dZ) ) (4)

where p(z|yi;;6) = p(yij;, % 9)/p(yl], ). As for the M step, an updated value of 6., is computed
as a minimizer of 6 — Q(6, chrr) The majorizing function is then updated with the new 6., ; this
process is iterated until convergence. The EM algorithm is most useful when for any 0., € O,
the function 6 — Q(6, 6.u,r) is a convex function of the parameter 6 which is solvable in 6 either
explicitly or with little computational effort. A major advantage of the EM algorithm stems from
its invariance under homeomorphisms, contrary to classical first-order methods: the EM updates are
the same for any continuous invertible re-parametrization [23].

In the FL context, the vanilla EM algorithm is affected by three major problems: (1) the communi-
cation bottleneck, (2) data heterogeneity, and (3) partial participation (PP) of the workers.

When the number of workers is large, the cost of communication becomes overwhelming. A classi-
cal technique to alleviate this problem is to use communication compression. Most FL algorithms are
first order methods and compression is typically applied to stochastic gradients. Yet, these methods
are not appropriate to solve (1) since (i) they do not preserve the desirable homeomorphic invariance
property, and (ii) the full EM iteration is not distributed since the M step is performed by the central
server only. This calls for an extension of the EM algorithm to the FL setting.

Since workers are often user personal devices, the issue of data heterogeneity naturally arises. Our
model in Equations (1), (3) and (4) allows the local loss functions to depend on the worker ¢ €
{1,...,n} and the observations y;; to be independent but not necessarily identically distributed.
In addition, our theoretical results deal with specific behaviors for each worker ¢ € {1,...,n},
see e.g., A5, 7 and 8. In the FL-EM setting, heterogeneity manifests itself by the non-equality of
the local conditional expectations of the complete-data sufficient statistics s;’s; modifications to the
algorithms must be performed to ensure convergence at the central server.

Finally, a subset of users are potentially inactive in each learning round, being unavailable or unwill-
ing to participate. Thus, taking into account PP of the workers and its impact on the convergence of
algorithms, is a major issue.

* FedEM. The main contribution of our paper is a new method called FedEM, supporting commu-
nication compression, partial participation and data heterogeneity. In this algorithm, the workers
compute an estimate of the local complete-data sufficient statistics s; using a minibatch of data,
apply an unbiased compression operator to a noise compensated version (using a technique inspired
by [17, 15]) and send the result to the central server, which performs aggregation and the M-step
(i.e. the parameter update).



* VR-FedEM. We improve FedEM by adding a variance reduction method inspired by the SPIDER
framework [9] which has recently been extended to the EM framework [10]. For both FedEM and
VR-FedEl, the central server updates the expectations of the global complete-data sufficient statistics
through a Stochastic Approximation procedure [3, 4]. When compared to FedEM, VR-FedEM addi-
tionally performs variance reduction for each worker, progressively alleviating the variance brought
by the random oracles which provide approximations of the local complete-data sufficient statistics.
* Theoretical analysis. EM in the curved exponential family setting converges to the roots of a
function h (see e.g. Section 2). We introduce a unified theoretical framework which covers the
convergence of FedEM and VR-FedEM algorithms in the non-convex case and establish convergence
guarantees for finding an e-stationary point (see Theorem 1 and Theorem 3). In both cases, we
provide the number K (€) of optimization steps and the number K g (€) of computed conditional
expectations S;;’s required to reach e-stationarity. These results show that in the Stochastic Approx-
imation steps of VR-FedEM , the step sizes are independent of m, the number of observations per
server. Furthermore, the computational cost in terms of Kcg(€e) improves on earlier results. In this
respect, VR-FedEM has the same advantages as SPIDER [9] compared to SVRG [18] and SAGA [6], or
as SPIDER-EM [10] compared to sEM-vr [5] and FIEM [20, 11]. Lastly, our bounds demonstrate the
robustness of FedEM and VR-FedEM to data heterogeneity.

* Finally, seen as a root finding algorithm in a quantized FL setting, VR-FedEM can be compared
to VR-DIANA [17]: we show that VR-FedEM does not require the step sizes to decrease with m and
provides state of the art iteration complexity to reach a precision e.

Notations. For vectors a,b in R?, {(a, b) is the Euclidean scalar product, and || -|| denotes the asso-
ciated norm. For r > 1, ||al|, is the £,-norm of a vector a. The Hadamard product a ® b denotes
the entrywise product of the two vectors a,b. By convention, vectors are column-vectors. For a
matrix A, AT is its transpose and ||A|| is its Frobenius norm; for two matrices A, B, (A, B) :=
Trace(B T A). For a positive integer n, set [n]* := {1,--- ,n} and [n] := {0,--- ,n}. The set of
non-negative integers (resp. positive) is denoted by N (resp. N*). The minimum (resp. maximum)
of two real numbers a, b is denoted by a Ab (resp. aVVb). We will use the Bachmann-Landau notation
a(x) = O(b(z)) to characterize an upper bound of the growth rate of a(x) as being b(x).

2 FedEM: Expectation Maximization algorithms for federated learning

Recall the definition of the negative penalized (normalized) log-likelihood F'(6) from (1). Along the
entire paper, we make the following assumptions Al to A3,which define the model at hand.

Al. The parameter set © C R? is a convex open set. The functionsR : © — R, ¢ : © — RY,
¥ : 0O =R, and p(yij,-) : Z = Ry, s(yij,-) : Z = R for i € [n]* and j € [m]* are measurable
Sfunctions. For any 0 € © and i € [n|*, the log-likelihood is finite: —oo < L;(0) < oc.

A2. Forall 8 € © and i € [n]*, the conditional expectation 5;(0) is well-defined.

A3. Forany s € RY, the map s — Argmingcg {¥(0) + R(0) — (s, ¢(0))} exists and is unique;
the singleton is denoted by {T(s)}.

EM defines a sequence {0y, k > 0} that can be computed recursively as 01 = T o5(6y), where the
map T is defined in A3 and s is defined in (3). On the other hand, the EM algorithm can be defined
through a mapping in the complete-data sufficient statistics, referred to as the expectation space. In
this setting, the EM iteration defines a R%-valued sequence {Sj, k > 0} given by Sx11 =50 T(Sk).
Thus, we observe that the EM algorithm admits two equivalent representations:

(Parameter space) 0,1 = T 05(;); (Expectation space) §k+1 =5o0 T(§k) 5)

In this paper, we focus on the expectation space representation; see [23] for an interesting discussion
on the connection of EM and mirror descent. It has been shown in [7] that if s, is a fixed point to
the EM algorithm in the expectation space, then 6, := T(s,) is a fixed point of the EM algorithm in
the parameter space, i.e., 0, = T o 5(6,); note that the converse is also true. Define the functions h;
and h from R? to R? by h(s) := 25" | h;(s) with h;(s) :=5,0T(s) —s.

h(s) := % Z hi(s),  hi(s):=5,0T(s) —s. (6)

A key property is that the fixed points of EM in the expectation space are the roots of the mean
field s — h(s) (see (3) for the definition of s). Therefore, convergence of EM-based algorithms is



evaluated in terms of e-stationarity (see [14, 10]): for all € > 0, there exists a (possibly random)
termination time K s.t. E {Hh(gK)HQ} < € . Another key property of EM is that it is a monotonic

algorithm: each iteration leads to a decrease of the negative penalized log-likelihood i.e. F'(0fy1) <
F(0,) or, equivalently in the expectation space F'oT(S;4+1) < FoT(Sy) (for sequences {0y, k > 0}
and {Sk,k > 0} given by (5)). A4 assumes that the roots of the mean field h are the roots of the

gradient of F' o T (see [7] for the same assumption when studying Stochastic EM). A5 assumes
global Lipschitz properties of the functions h;’s.

Ad. The function W := F o T : R? — R is continuously differentiable on RY and its gradient is
globally Lipschitz with constant Ly;;. Furthermore, for any s € RY, V W(s) = —B(s)h(s) where
B(s) is a g x q positive definite matrix. In addition, there exist 0 < Vmin < Umax Such that for any
s € RY, the spectrum of B(S) is in [Umin, Umax|-

AS. For any i € [n]*, there exists L; > 0 such that for any s,s’ € RY,
[(SioT(s) —s) = (sioT(s") = &) < Lills = 5| -

hi(s) = hi(s)]| =

A Federated EM algorithm.

o Algorithm 1: FedEM with partial participation
Our first contribution, the novel al- g ° P P P

gorithm FedEM is described by algo- Data: Kyqx € N¥;fori € [n]*, Vo,i € RY;

rithm 1. The algorithm encompasses So € RY; a positive sequence

partial participation of the workers: {Vk+1,k € [kmax — 1]}; @ > 0; a coefficient
at iteration #(k + 1), only a subset p = E pgppp [card(A)]/n.

Ap41 of active workers participate to Result: The FedEM-PP sequence:

the training, see line 3. The averaged {§k7 k € [kmax)}

fraction of participating workersis de- 1 SetVy =n~! Z?: WVo.i

noted p. Each of the active workers #¢ 2 for k =0, ..., kmax — 1 do
computes an unbiased Aapproximation Sample A1 ~ Ppp
Sk+1,; (line 6) of 5,0 T (Sy); condition- fori € A1 do

ally to the past (see Appendix D.2 for (worker #1)

a rigorous dgﬁnition), these approxi- Sample Sy 1 4, an approximation of 5; o T(§k)
mations are independent. The work- 5
Set Agy1i = Skt1,i — Vi — Sk

ers then transmit to the central server
Set Vit1,: = Vis + a Quant(Agyq4).

a compressed information about the
new sufficient statistics. A naive so- | Send Quant(Ay1,5) to the central server

lution would be to compress and trans- 10 | for i ¢ A1 do

mit Sy 1,;— Sy, but data heterogeneity ! (worker 1)

between servers often prevents these 12 | [S€t Viy1,i = Vi,i (no update)

local differences from vanishing at the 13 | (the central server)

optimum, leading to large compres- 14 |Set

sion errors and impairing convergence Hpp1=Vi+(np)~ 1Y, Quant(Agi14)
of the algorithm. Following [28], a Ak 7
memory V,; (initialized to h;(Sp) at s _ 3
k = 0) is introduced; and the dif- get ‘5;’““ - “S;k + thllHk“ HA
ferences Apy1i = Spi1i — Sk — 16 et Viy1 = Vi +an ZieA,m Quant( k+1,71)
Vi, are compressed for i € Apy; R R
(line 7 and line 9). These memories 17 |Send Sj41 and T(Sk+1) to the n workers
are updated locally: Viy1,; = Vi + _
a Quant(Ag11,), at line 8, with a > 0 (typically set to 1/(1 + w) where w is defined in A6).
On its side, the central server releases an aggregated estimate Sy1 of the complete-data sufficient
statistics by averaging the quantized difference (np)~' 3", Aps, Quant(Ag1;) and by adding Vi,
(line 14 and line 15). Then, it updates Vj+1 = Vi + an™ ' >°"" | Quant(Aj41 ), see line 16. The

final step consists in solving the M-step of the EM algorithm, i.e. in computing T(§k+1) (see A3).

N-TNC-CREEN B L7 B

We finally state our assumption on the compression process. We consider a large class of unbiased
compression operators Quant satisfying a variance bound:

A6. There exists w>0 s.t. forany s € R?: E [Quant(s)] = s, and E [[|Quant(s)[|*] < (1+w)]|s|?.



Intuitively, the stronger the compression is, the larger w will be. Remark that if no compression is
used, or equivalently for all s € RY, Quant(s) = s, then A6 is satisfied with w = 0. An example
of quantization operator satisfying A6 is the random dithering that can be described as the random
operator Quant : R? — RY, Quant(z) = (1/5quant)||z]|» sign(z) ® | squans (|z|/||z]-) + £ ]| where
r > 1 is user-defined, £ is a uniform random variable on [0, 1]? and Squant € N* is the number of
levels of roundings; see [17, 2]. This operator satisfies A6 with w = sgulantO(ql/r + q1/2); see [17,
Example 1]. Another example, namely the block-p-quantization, is provided in the supplemental
(see Appendix B). More generally, this assumption is valid for many compression operators, for
example resulting in sparsification [see. e.g. 28].

The convergence analysis is under the following assumptions on the oracle Sy ;: for any i € [n]*,
the approximations Sy 1 ; are unbiased and their conditional variances are uniformly bounded in k.
For each k € N, denote by Fy, the o-algebra generated by {S;;, Ag; @ € [n]*, ¢ € [k]} and including
the randomness inherited from the quantization operator Quant up to iteration #k.

A7. For all k € N, conditional to Fy, {Sk+1,.:}i—, are independent. Moreover, for any
i € [n]*, E[Sk+14|Fr] = Si o T(Sk) and there exists o7 > 0 such that for any k > 0
E [HSkJrl,i —5i0 T(S\k)HQ’]:k} <o}

A7 covers both the finite-sum setting described in the introduction, and the online setting. In the
finite-sum setting, s; is of the form m~1 Z;nzl 5;;. In that case, S1,; can be the sum over a mini-

batch By ,; of size b sampled at random in [m]*, with or without replacement and independently of
the history of the algorithm: we have Sy 1; = b~! Zj63k+l,i S;j 0 T(Sk). In the online setting, the
oracles Sj41,; come from an online processing of streaming informations; in that case Sj41,; can

be computed from a minibatch of independent examples so that the conditional variance o2, which
will be inversely proportional to the size of the minibatch, can be made arbitrarily small.

Reduction of communication complexity for FL. Reducing the communication cost between
workers is a crucial aspect of the FL approach [19]. In gradient based optimization, four tech-
niques have been used to reduce the amount of communication: (i) increasing the minibatch size
and reducing the number of iterations, (ii) increasing the number of local steps between two com-
munication rounds, (iii) using compression, (iv) sampling clients at each step. Here, we provide a
tight analysis of strategies (i), (iii) and (iv) (sampling client is part of PP).

Regarding the interest of performing multiple iterations (ii), as analyzed for example in [21, 27] for
the classical gradient settings, we note that: first, from a theoretical standpoint, tradeoffs between
larger minibatch and more local iterations are unclear [37]. Secondly, performing local iterations is
not possible in the EM setting: one iteration of EM is the combination of two steps E and M and the
M step, which required the use of the map 7', is only performed by the central server; this remark is
a fundamental specificity of the EM framework (which is not shared by the gradient framework). In
applications, we usually do not want 7" to be available at each local node. However, our work allows
to perform multiple local iterations of the E step before communicating with the central server. In
algorithm 1, the local statistics Sj41,; are general enough to cover this case; see the comment above
on AT7.

Finally, as we do not perform local full EM iterations, we do not face the well-identified client-
drift challenge (in the presence of heterogeneity). Yet, we stress that combining compression and
heterogeneity results in other challenges: it is known in the Gradient Descent setting (see e.g. [28,
31]), that heterogeneity strongly hinders convergence in the presence of compression. To alleviate
the impact of heterogeneity, we introduce the V}, ;’s memory-variables.

Convergence analysis, full participation regime. In this paragraph, we focus on the full-
participation regime (p = 1): for all k € [kmyax]*, Ax = [n]*. We now present in Theorem 1 our
key result, from which complexity expressions are derived. The proof is postponed to Appendix C.
Theorem 1. Assume Al to A7 and set L? := n='>"" L2 0% :=n"'>" ol Let {Sk.k €
[kmax]} be given by algorithm 1, withw > 0, o := (1 + w) ™ and v = v € (0, Ymax] Where

Umin \/ﬁ
max ‘= N . 7
k 2Ly, 2V2L( + W)@ @




Denote by K the uniform random variable on [kyax—1]. Then, taking Vo ; = h; (§0) Soralli € [n]*:

oo (1723 ) E [InG)l?] < 2

Umin B ’Ykmax

1+ 50.)02 C®

(W(go) — minW) + Ly,

When there is no compression (w = 0 so that Quant(s) = s), we prove that the introduction of the
random variables V}, ;’s play no role whatever oo > 0 and the choice of the 1} ;’s, and we have for
any v € (0, 20min/ L) (see (29) in the supplemental)
(1— Ly )IE [||h(§ )||2} < (W(§)—minw)+ foa )
72Umin K - Vkmax 0 7 w n .
Optimizing the learning rate v, we derive the following corollary (see the proof in Appendix C).

(W(§0)7minw)n>1/2
kmaxLW(1+5w)02

Corollary 2 (of Theorem 1). Choose vy := ( A Ymax- We get

4 (\/(W(go) —min W) Ly, (1 4 5w)o? y (W(:S'\O) —minW)) .

Umin

E |Ih(Si)l?] <

nkmax '-Ymax kmax

Theorem 1 and Corollary 2 do not require any assumption regarding the distributional heterogeneity
of workers. These results remain thus valid when workers have access to data resulting from different
distributions — a widespread situation in FL frameworks. Crucially, without assumptions on the
heterogeneity of workers, the convergence of a “naive” implementation of compressed distributed
EM (i.e. an implementation without the variables V}, ;’s) would not converge.

Let us comment the complexity to reach an e-stationary point, and more precisely how the com-

plexity evaluated in terms of the number of optimization steps depend on w,n,o? and e. Since
2

Kopt(€) = kmax, from Corollary 2 we have that: Ko (€) = O((H“’)" ) Vv O( L ) )

ne? Ymax€

Maximal learning rate and compression. The comparison of Theorem 1 with the no compression
case (see (9)) shows that compression impacts ymax by a factor proportional to \/ﬁ/w3/ 2as w
increases (similar constraints were observed in the risk optimization literature, e.g. in [17, 32]).
This highlights two different regimes depending on the ratio /n/w?/?: if the number of workers
n scales at least as w3, the maximal learning rate is not impacted by compression; on the other
hand, for smaller numbers of workers n < w?, compression can degrade the maximal learning
rate. We highlight this conclusion with a small example in the case of scalar quantization for which
w ~ \/5/ Squant: for ¢ = 10% and Squant = 4 (obtaining a compression rate of a factor 16), the
maximal learning rate is almost unchanged if n > 16.

Dependency on e. The complexity Kop(€) is decomposed into two terms scaling respectively as
0%¢2 and 4,1 €71, the first term being dominant when ¢ — 0. This observation highlights two
different regimes: a high noise regime corresponding to Ymax(1 + w)o?/(ne~!) > 1 where the
complexity is of order 2¢~2, and a low noise regime where Ymax (1 + w)o?/(ne~1) < 1 and the

complexity is of order ;1 e~1. An extreme example of the low noise case is 0% = 0, occurring for
example in the finite-sum case (i.e., whens; = m ™! Z;nzl 5;;) with the oracle Sg41,; = 5; 0 T(Sk).

Impact of compression for e-stationarity. As mentioned above, the compression simulta-
neously impacts the maximal learning rate (as in (7)) and the complexity Copi(€). Conse-
quently, the impact of the compression depends on the balance between w,n,o? and €, and
we can distinguish four different “main” regimes. In the following tabular, for each of the
four situations, we summarize the increase in complexity Kopi(€) resulting from compression.

Complexity regime: (14w)o? 1
. . 2
(Dominating term in Kop (€)) e Ymax€
Ymax Tegime: Example situation High noise o2, Low o2 (e.g., large minibatch)
(Dominating term in (7)) small € larger €
v : 3 3/2
NI low ratio n/w Xw xw3/2 [\/n

Depending on the situation, the complexity can be multiplied by a factor ranging from 1 to
w V (w¥?/y/n) . Remark that the communication cost of each iteration is typically reduced by



compression of a factor at least w. Moreover, the benefit of compression is most significant in the
low noise regime and when the maximal learning rate is vmin /(2L (e.g., when n large enough).
We then improve the communication cost of each iteration without increasing the optimization com-
plexity, effectively reducing the communication budget “for free”.

Because of space constraints, the results in the PP regime are postponed to Appendix A.

3 VR-FedEM: Federated EM algorithm with variance reduction

A novel algorithm, called VR-FedEM and described by algorithm 2, is derived to additionally incor-
porate a variance reduction scheme in FedEM. It is described in the finite-sum setting when for all

i € [n]*, 5 =m! =1 8ij: at each iteration #(t, k + 1), the oracle on §; o T(§t7k) will use a
minibatch By j1,; of examples sampled at random (with or without replacement) in [m]*.

The algorithm is decomposed into Algorithm 2: VR-FedEM
kout outer loops (indexed by t), each — - —

of them having k;, inner loops (in- Data: EOU“ Kin, b € N*; for i € [n]*, V1,0, € RY;
dexed by k). At iteration #(k + Sinit € RY; a positive sequence

1) of the inner loops, each worker {“/t k+1,t € [kout] kelkn—1}a>0
##1 updates a local statistic St k41  Result: sequence: {St kst € [kout]s k € [kin]}
based on a minibatch By ;41 of its 1 51 0= Sl = Smlt, Vig=n -1 Zl Vi

own examples {S;;,j € Bikt1,i} , fori— 1,....,ndo
(see Line 8): starting from St 0 = 3 tsl 0 = Z;” /5ij © (Ainit)

m~! Z;n 150 OT(St ~1); St R 08 afort=1,... kou do

defined in such a way that 1/t\ approx- o I for k — 0,... ki —1do

imates 1m " > ie15ij 0 T(Sik) (see 6 | [fori = 1,...,n (worker #4, locally) do
Corollary 18). Then, the worker #i 7 Sample at random a batch B; 11 ; of size b in
sends to the central server a quan- [m]*

tization of A;y41, (see Line 12) g Set St kt+1,i = Stk +

which can be seen as an apfgoxima- _1 (*,, SN = 5 )
tion of o~ {h(8x) — hi(Sur 1)} b~ D e rs (57 © T(Se) —5ij © T(Sep—1)
upon noting that the variable V; 31 ; R
defined by Line 10 approximates 9 Set At 1, = Stok+1i — Stk — Vi
hz(§tk) (see Proposition 26). The 10 Set Vikr1,i = Vik,i +aQuant(Ag xi14).
central server learns the mean value 11 | | | Send Quant(Ay j+1,:) to the central server

V§,k+1 = n! Z?:l Vik+1,i (se€ 1a | | (the central server)

me: 15 and Lemma 21) 'a'nd, by 13 | |Set Hysr = Vi +0 0 27 Quant(Ay g1
adding the quantized quantities, de- ~7 ~ = T
fines a field H;j;4q which ap- 1 || Set Sy g1 = Spre + %’kﬁle{kH

proximates n ' >"" | h;(Sy k) (see 15 | |Set Vigsr = Vig +an > i Quant(A¢ i1,)
Proposition 24). Line 14 can be seen 16 | [Send Sy k41 and T(S¢ 1) to the n workers

as a Stochastic Approximation up- ,,
date, with learning rate ;41 and

St+1,0 = St1,—-1 = St ks
18 [ Vivi0=Vik,

mean field s > n™" 377 hi(s) (see 19 |fori = 1,...,ndo
(6) for the definition of h;). 20 | [Seir0s = 1 Z;n 150 T(Sis10)
The variance reduction is encoded in 21 | | Vi410, V; Keini

the definition of S ;41 ;, Line 8. We L
have St,k—i—l,z’ =b"! ZjeBt,k+l,i gij
T(§t,k) + Y4 k+1,i- The first term is the natural approximation of §; o T(§t, «) based on a minibatch
B¢ k+1,;- Conditionally to the past, T j1,; is correlated to the first term and biased, but its bias is
canceled at the beginning of each outer loop (see Line 20 and Appendix E.3.2): T ;1 1,; defines a
control variate. Such a variance reduction technique was first proposed in the stochastic gradient
setting [30, 9, 36] and then extended to the EM setting [10, 12]. At the end of each outer loop, the
local approximations S;1 0 ; are initialized to the full sum m~* Z:”:l 55 0 T(§t7 k., ) (see Line 20)
thus canceling the bias of S. ; (see Proposition 17).

(¢]



When there is a single worker and no compression is used (n = 1, w = 0), VR-FedEM reduces to
SPIDER-EM, which has been shown to be rate optimal for smooth, non-convex finite-sum optimiza-
tion [10]. Theorem 3 studies the FL setting (n > 1 and w > 0): it establishes a finite time control of
convergence in expectation for VR-FedEM . Assumptions A5 and A7 are replaced with AS.

A8. Forany i € [n]* and j € [m]*, the conditional expectations 3;;(0) are well defined for any
(SijoT(s) —s) = (Sij o T(s') = &) <

ij
Lijlls = s'|| -

Theorem 3. Assume Al to 3, A4, A6 and AS. Set L* := n~tm~" 331 | 350" | L2, Let (S t €
[Fout]®, k € [kin — 1]} be given by algorithm 2 run with « == 1/(1 4+ w), V19, := hi(§170)f0r any

i€n]*,b —fH‘; | and
Umin Umax 1+100J 1/2 -1
Ve =Y = 1+4v2 (1+ )( - ) ) (10)
! Ly ( Ly Vn 8 )
Let (1,K) be the uniform random variable on [kous|* X [kin — 1], independent of {S\t,k,t €
[kout|*, k € [kin]}. Then, it holds

2(E[W(S1,0)] — min W)

Umin’ykin kout

E [ Hr x+1]%] < , (11)

£ {108, 0l7] < 2(1+ DR [, ] (12)

The proof is postponed to Appendix E. This result is a consequence of the more general Proposi-
tion 25. We make the following comments:

1. Eq. (11) provides the convergence of E [||H- x+1]|?], and Eq. (12) ensures that the quantity

of interest E[|[h(S, i )||?] is controlled by E[||H, rc+1]|?]. We observe that 2(1 + VQM) is
uniformly bounded w.r.t. w as, by (10), 72 = O, 00 (w™3).

2. Up to our knowledge, this is the first result on Federated EM, that leverages advanced variance
reduction techniques, while being robust to distribution heterogeneity (the theorem is valid without
any assumption on heterogeneity) and while reducing the communication cost.

3. Without compression (w = 0) and in the single-worker case (n = 1), Fort et al. [10] use k;,, = b:
we recover this result as a particular case. When n > 1 and w > 0, the recommended batch size b
decreases as 1/(1 + w)?.

Convergence rate and optimization complexity. Our step-size 7 is chosen constant and inde-
pendent of ki, koyut. Indeed, contrary to Theorem 1, there is no Bias-Variance trade-off (as typi-
cally observed with variance reduced methods), and the optimal choice of v is the largest one to
ensure convergence. Consequently, since the number of optimization steps is koutkin, We have

Kopt(€) = O(5;).

ye

Impact of compression on the learning rate and e-stationarity. The compression constant w does
not directly appear in (11), but impacts the value of . Two different regimes appear:

. if 4\[”"““‘ —(1 + w) (w + 71"’;0‘“)
w? < n), then 7 =~ i has nearly the same value as without compression [10]. The complexity
W

is then similar to the one of SPIDER-EM [10], with a smaller communication cost. The gain from
compression is maximal in this regime.

2. if 4\[”"““‘ —(1 + w) (w + 1+10‘“)1/ > 1 (i.e. we focus on the large w, n asymptotics when

bz < 1 (i.e. we focus on the large w, n asymptotics when

Vmax Lw3/2
complexity is then higher to the one of SPIDER-EM' (by a factor proportional to w?®/2/,/n) with a
smaller communication cost (typically at least w times less bits exchanged per iteration). The overall
trade-off thus depends on the comparison between w and n.

w3 > n), theny = O (%) is strictly smaller than without compression. The optimization

'As a corollary of [10, Theorem 2], the