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OPTIMISM: Optimal Placement of Intrusion Detection Sensors to Identify Multi-Stage Attacks in Software Defined Networks

A major threat to network security is multi-stage attacks, where an attacker compromises an external-facing server and then penetrates into the servers deeper in the network one by one by using the elevated access privilege at each compromised node. She advances through these steps till she gains access to protected information present in the crown jewel of the network. Intrusion detection sensors (IDS) can detect such attacks, but limited available resources constrain the number of IDS that can be deployed. Software defined networking (SDN) provides network flexibility, and combined with network function virtualization (NFV), it enables agile IDS placement optimizations. We present OPTIMISM, a novel system for placing IDS to maximize network protection or benefit and minimize total deployment costs. The overall aim of OPTIMISM is to select an IDS placement configuration such that the probability of attacker reaching the crown jewel is reduced and the corresponding deployment cost is within the network administrator's budget. A Genetic Algorithm (GA) is used for optimizing the IDS placement that yields the maximum benefit subject to a cost constraint. OPTIMISM provides an option to determine the placement configuration that has the maximum return on investment and also dynamically reconfigures the placement of IDS using NFV depending on runtime alerts. Using a simulation, we show that OPTIMISM selects IDS placement configurations that have either maximum benefit given a budget or maximum return on investment. Using our system, network administrators can maximize network protection and reduce the overall costs of protecting their systems from multi-stage attacks.

I. INTRODUCTION

Multi-stage attacks (MSA) [START_REF] Clark | The problem isn't attribution: it's multi-stage attacks[END_REF] are attacks where the attacker compromises an outward facing server and uses that to gain access to subsequent servers, many of which are not directly accessible from outside the network, until reaching the target server or crown jewel deep inside the network. These threats are especially difficult to defend against because they require placing network security appliances, such as intrusion detection sensors (IDS) [START_REF] Liao | Intrusion detection system: A comprehensive review[END_REF], at points throughout the network instead of just at the edges of a system. Only network administrators with unlimited budgets can afford to place IDS at every location in a network, leaving the majority of defenders with a challenging placement problem. In this paper, we provide a budget-conscious approach for placing IDS in a network to optimize their effectiveness at stopping multi-stage attacks while meeting budget constraints.

The naïve approach for placing IDS to protect against MSA is to place an IDS in every server, providing the maximum probability of attacker detection. However, this is impractical in large networks as each IDS would consume substantial amounts of computing and network resources and in turn significantly i ncrease t otal p rotection c osts. Administrators need to optimize the placement of IDS in the face of MSA, and since each IDS placement point has a different cost and impact on the quality of the defense, there is ample opportunity to improve efficiency. F or e xample, a n I DS t hat i s n ot on a path to the crown jewel provides no value, while an IDS on a highly utilized network link may require very expensive processing hardware to avoid adding latency. Through models and simulations, the number of IDS deployed and on which servers they are deployed can be carefully controlled to minimize deployment costs and maximize attacker detection [START_REF] Abu Sharkh | Resource allocation in a network-based cloud computing environment: design challenges[END_REF], [START_REF] Modelo-Howard | Secure configuration of intrusion detection sensors for dynamic enterprise-class distributed systems[END_REF].

Several existing methods have tried to solve the problem of optimizing IDS placement within a traditional network. Noel et. al [START_REF] Noel | Optimal ids sensor placement and alert prioritization using attack graphs[END_REF] and Modelo-Howard [START_REF] Modelo-Howard | Determining placement of intrusion detectors for a distributed application through bayesian network modeling[END_REF][START_REF] Qian | Information assurance: dependability and security in networked systems[END_REF] use attack graphs to predict network vulnerabilities and perform alert inferencing to decide on IDS placements. In practice, however, it is difficult t o g enerate a ttack g raphs a nd t o k eep them updated as the networks and applications are dynamically changing with new vulnerabilities and attack opportunities. Our system OPTIMISM (OPTIMal Intrusion SysteM) operates without relying on attack graphs and instead continuously monitors the network traffic to dynamically decide on the IDS placements in response to both alerts and changing network topologies and traffic. A nother s ystem d esigned t o optimize the location of IDS to stop Denial of Service (DoS) attacks is BroFlow [START_REF] Lopez | An elastic intrusion detection system for software networks[END_REF], which places IDS to maximize network coverage but only for DoS. Hasan and Mouftah [START_REF] Md | Optimal trust system placement in smart grid scada networks[END_REF] proposed an IDS placement system that uses network segmenting within the larger network and places IDS at the segment border nodes. If a multi-stage attack penetrates the border nodes, however, then there is no way to detect the attacker inside these segments. Our solution is focused on protecting specific a ssets i n the 1 system rather than general network segments, allowing the network administrator to focus resources on targets of interest rather than entire network segments.

Software defined networks (SDN) [START_REF] Kim | Improving network management with software defined networking[END_REF] are becoming increasingly common, and OPTIMISM specifically leverages SDN's ability to optimize the IDS placement problem for MSA. The centralized SDN controller oversees the network, and it allows flexibility in routing thus simplifying network reconfiguration [START_REF] Kreutz | Software-defined networking: A comprehensive survey[END_REF]. Similarly, through network function virtualization (NFV) [START_REF] Han | Network function virtualization: Challenges and opportunities for innovations[END_REF] techniques, network functions such as IDS can be virtualized, liberating them from being pinned to specific hardware and thus enabling flexible deployment in response to network changes. Using a combination of NFV and SDN, IDS can be dynamically deployed, either by moving an IDS to a new virtual machine or by re-routing traffic to the desired virtual machine using the SDN controller. The solution presented in this paper is the first step in developing a dynamic IDS deployment system where placements can evolve over time.

In this work, we develop an algorithm that minimizes the cost of deploying IDS in SDN while maximizing their effectiveness at mitigating multi-stage attacks by scoring and balancing the benefits and deployment costs for a network. The benefit and deployment cost are calculated for each configuration by analyzing all the potential attack paths in the network, and the configuration which produces the highest benefit for a cost constraint is sought in an iterative manner either by using the genetic algorithm or through exhaustive search. Additionally, OPTIMISM provides a best value optimization to find the configuration for which the benefit-tocost ratio is maximized. In order to stop new attacks through newly discovered attack paths, OPTIMISM runs a dynamic version of the algorithm in response to alerts or updated attacker information to dynamically move the IDS, using the functionality of NFV, to maximize protection.

OPTIMISM utilizes a directed acyclic graph to represent all of the server instances (nodes) and network connections (edges) in a protected network. A set of edge nodes connects the attacker and the legitimate traffic to the modeled network, and each edge gets two kinds of weights. The first weight represents the probability that an attacker is able to travel over the link (after penetrating the source server), and the second weight represents the amount of legitimate network traffic that traverses on that edge. We define the benefit as the probability that an attacker reaches a protected asset, a known protected node, and the deployment cost as a numerical function of installation and processing costs. From this information, each IDS placement, i.e., a mapping of a sensor being placed (or not) on a specific node, is scored in both benefit and cost. The optimizer in OPTIMISM is responsible for selecting a placement that maximizes benefit while either meeting a cost constraint or maximizing the return on investment through a multi-objective function. Once a placement is known, it can be dynamically improved by updating the information about the traffic or attacker paths in the system. We model alerts as increasing the probability an attacker is on a particular path and dynamically update IDS placements so that the attacker can be found more quickly.

First we compare our runtime-optimized results to an exhaustive search technique. For networks with more than 5 servers, our system consistently maintains over 85% of the maximum benefit, which corresponds to placement of an IDS on every node, while keeping costs as low as 30% of the naïve complete-coverage cost. The error in the performance of the configuration found by the genetic algorithm is less than 5% when compared to exhaustive search techniques; and for networks larger than 10 servers, the genetic algorithm running time is less than a third of the exhaustive search running time. Our dynamic adaptation further improves the static placement by an average of 38.2% by incorporating alert information into the system model and re-distributing the IDS placements.

In this paper, we make the following novel contributions: 1) OPTIMISM optimizes IDS placement for multi-stage attacks without relying on attack graphs by giving higher priority to placements deeper in the network, both in large and small networks. 2) OPTIMISM accounts for network structure and traffic to accommodate distributed applications. Thus, its IDS placement strategy incorporates both IDS quality and traffic processing costs. 3) OPTIMISM solves two rigorous optimization problems, which provide a choice between maximum performance given a budget (cost constraint optimization) or maximum return on investment (best value optimization). 4) OPTIMISM generates nearly optimal solutions for IDS deployment using genetic algorithms with faster run time than exhaustive search. It also provides dynamic IDS deployments to stop emergent attacks.

II. SYSTEM DESIGN

OPTIMISM is a system that provides optimal IDS placement decisions over time. For example, if there are 10 servers where an IDS can be placed, then OPTIMISM will provide a vector of 10 entries indicating whether or not an IDS should be located at each server. In order to select the best placement, a cost and benefit model for the protected network must be developed, and it is described in this section.

A. Protected System Model

OPTIMISM is designed to protect software defined enterprise networks against MSA. Such attacks are executed on distributed systems where multiple independent server instances separate the attacker from the target server or crown jewel. Fig. 1 shows such a system where a potential attacker must compromise a web, database, and reporting server prior to having direct access to compromise the file server with the crown jewel. We assume that all the servers are connected by an open flow switch [START_REF] Mckeown | Openflow: enabling innovation in campus networks[END_REF] and controlled by a centralized SDN controller [START_REF] Berde | Onos: towards an open, distributed sdn os[END_REF] as shown in Fig. 1 as this allows both knowledge of the network topology and control of routes through IDS placements. We further assume each server is a virtual machine which supports NFV and thus allows local IDS Each IDS has a high computational requirement, and since the network uses SDN and NFV, a the set of high-powered IDS-capable physical machines can be re-purposed to other layers in the distributed system and re-connected to the architecture with the flexible SDN routes. We assume that the network administrator has a finite budget for these IDS-capable machines.

B. Attacker Model

The attacker we seek to detect is a multi-stage attacker who exhibits abnormal behavior such as brute force attacks or known-exploits attempts, and such activities trigger alerts if they occur on an IDS-protected server. In Fig. 1, the attacker first compromises any one of the web servers at stage 1 and then proceeds further to rest of the stages by leveraging elevated access privileges that she gained at the previous stages. OPTIMISM assumes that the attacker repeats the attack through the same attack path again until exhausting all attack opportunity as she has the advantage of some already compromised servers in previous tries. Consequently, the attacks are repeated along the same path until a certain number of trials are reached and then a new path is selected.

The attacker model is initialized as having a uniformly random chance to take each path from the edge to the crown jewel. Expert knowledge can refine this assumption or it can be refined based upon prior alerts, as we do in OPTIMISM.

C. IDS Quality Value

IDS quality values represent the probability that the IDS at a particular server generates a strong alert for an attacker, stopping her particular attack attempt. We model the IDS quality as higher if it is located further inside the network since it will signal fewer but stronger alerts. The traffic is less erratic and cleaner deeper in the system since it interacts between known, controlled applications, and thus it is easier to detect abnormal activity. The IDS quality values can be provided by the network administrator based on prior observations of the IDS performance at each server in the system [START_REF] Pietraszek | Using adaptive alert classification to reduce false positives in intrusion detection[END_REF] or based on the self-reported quality and frequency of alerts in off-theshelf systems such as Snort [15].

D. Network Traffic Distribution

OPTIMISM penalizes the IDS placement based on the amount of network traffic that must be processed by each IDS, thus dictating cost. In the context of SDN, open flow switches [16] have default counters to keep track of the number of packets received at each port. OPTIMISM can generate a traffic distribution model by observing the counters for certain period of time. Alternatively, the model can be updated by the network administrator who has application-layer knowledge of the inter-server traffic models. In OPTIMISM, the traffic distribution is modeled using weights that represent the amount of legitimate network traffic flowing through the particular edge or network link. The amount of traffic is then calculated against a penalty function with a ceiling to capture the computational limits of a single IDS.

E. Cost and Benefit

OPTIMISM maximizes benefit while minimizing costs to provide optimal IDS placements. The cost comes directly from the placement count and the amount of traffic at each placement, including the cost to install and operate the IDS. The benefit comes from the reduction in attacker's success or the probability that the attacker is able to penetrate the crown jewel. Since costs can be elastic, we provide two models for optimization: cost constrained (CCO) and best value (BVO) where CCO maximizes the benefit subject to a binary constraint that the costs do not exceed a budget and BVO maximizes the return on investment or the benefit-to-cost ratio.

F. Dynamic Updates

Each IDS placement in OPTIMISM is selected based upon the current network conditions and attacker model. As time progresses, the network model and attacker model evolve so that the optimal placement changes. In OPTIMISM, we provide a method to both update the attacker model by incorporating alerts into path or edge weighting and a method to quickly incorporate such information into new optimal placements that can be leveraged by the NFV/SDN system to improve detection.

III. METHODS

The goal of OPTIMISM is to reduce the costs of protecting a network against MSA by limiting the number of IDS deployed while maximizing the protection provided by them. The algorithm we have developed takes as inputs (i) the network graph, (ii) the total incoming network traffic, (iii) information about the security value of IDS, (iv) cost information, including IDS installation costs and running costs, and (v) the objective function selection (CCO vs BVO). The output of OPTIMISM is a particular placement of IDS in the network, and this section describes how the placement is found.

A. The Network Graph and Problem Statement

OPTIMISM models the network by using a directed acyclic graph that represents the potential flows (directed edges) between servers (nodes) in the protected system. The graph has two sets of special nodes: the edge servers (ES) and the crown jewel (CJ) with |CJ| = 1 for our simplifying assumption. The attacker progresses from one of the edge servers toward the crown jewel unimpeded unless an IDS is present on a particular server, which we define as a binary vector I P of length N -|CJ| where I P (i) = 1 indicates IDS presence at server i and N is the number of protect-able servers in the system, excluding the crown jewel.

We define two abstract functions that will be fully defined in the later sections to formulate the problem: f B (I P , I Q , G, EW A , CJ, ES) is the benefit or protection quality provided by a placement I P for IDS's of a particular quality (I Q ) on a particular network graph (G) with knowledge of the attackers paths (EW A ), and f C (I P , I C , G, EW C , ES) is the numerical cost for the placement for cost factors I C and traffic information in EW C . From these functions, we define two problems to optimize. Cost constrained:

arg max I P f B (I P , I Q , G, EW A , CJ, ES) (1) 
subject to

f C (I P , I C , G, EW C , ES) < B ( 2 
)
where B is the cost constraining budget. This definition is called the Cost Constrained Optimization (CCO) problem. The secondary form of this problem combines these objectives into a single equation:

arg max I P (1 -α) • f B (I P , ...) -α • f C (I P , ...) (3) 
where α (weight) controls the relative importance of each function such that high alpha values favor cost over protection and low values favor protection over budget reductions. This definition is called the Best Value Optimization (BVO) because it finds the maximum benefit-to-cost ratio.

B. Benefit Calculation

We wish to calculate the benefit of a particular placement f B (I P , ..) of IDS inside a network. First, we define the benefit in terms of the probability that an attacker is successful:

benefit = 1 -P (AS) (4) 
where the attacker being successful (P (AS = 1)) means that she has reached the crown jewel.

For each node in the graph, we define two probabilities: P I (i), the probability an attacker reaches the input of node i and P O (i), the probability an attacker leaves the node. These parameters are related by:

P O (i) = I P (i) • (1 -I Q (i)) • P I (i) + (1 -I P (i)) • P I (i) (5)
where I Q (i) is the quality of the IDS (∈ [0, 1]), I P (i) indicates placement, P I (i) is the input probability, and P O (i) is the output probability. If an IDS is placed, then the probability is Output attacker probability P T (i, j) Attacker's probability to take edge i, j P (AS)

Probability of attacker's success reduced by the IDS quality, and if it is not, then the probability passes through the node (P O (i) = P I (i)). Each node has a set of predecessors Preds(i) and successors Succ(i) (the input and output arcs), and the input probabilities are calculated as follows:

P I (i) = j ∈ Preds(i) P T (i, j) (6) 
where P T (i, j) is the attacker's probability to follow a path from node i to j:

P T (i, j) = P O (j) • EW A (j, i) k ∈ Succ(j) EW A (j, k) (7) 
For nodes with |Preds(i)| = 0, they have P I (i) = 0:

P I (i) = 0 ∀ i / ∈ (ES ∪ {i : |Preds(i)| ≥ 0}) (8) 
For nodes in the edge server set ES, they are initialized with:

P I (i) = 1 |ES| ∀ i ∈ ES (9) 
For a particular placement I P the probabilities P I /P O are calculated algorithmically:

1) Initialize all P I (i) = -1 ∀ i 2) Apply Eq. ( 8) , ( 9) 3) Repeat Eq. ( 6) , (5), skipping any nodes i that have (∃ j s.t. P O (j) == -1 ∧ j ∈ Preds(i)), until P I (i) ≥ 0 ∀ i From this calculation, we can directly calculate the attacker's success:

P (AS) = P I (CJ) (10) 
thus f B = 1 -P I (CJ), the benefit for placement I P .

C. Cost Calculation

The cost for each placement is the sum of the installation costs and running costs for servers which have IDS (I P (i) is 1). For notational simplicity, I C contains multiple cost parameters:

• Installation Cost (I I C ): The cost that is incurred to install an IDS in a virtual machine. It includes the IDS licensing cost.

• Running Cost (I R C ): The amount of processing power spent by the VM where an IDS is deployed in order to analysis the traffic flowing in. The processing cost varies depending on the location where an ids is deployed and the amount of traffic it has to process. The parameter is defined in terms of KP , a parameter that allows a trafficto-CPU core mapping. Each IDS process a certain number of packets per second (T (i)), and each IDS placed node has the following cost:

C T (i) = I P (i) • ( I R C (i)•T (i) KP ) + I I C (i) T (i) KP < I M C (i) I P (i) • inf T (i) KP > I M C (i) (11 
) where I M C (i) is the cost representing the maximum traffic that an IDS at node i can process and T (i) is the traffic into a particular node which we define as:

T (i) = P I (i) • T E for I P (i) = 0 ∀ i (12) 
where T E is the total input traffic to the edge nodes ES in the system, and I P (i) = 0 ∀ i is the probability calculation for a system with no IDS placed. Whenever this calculation is run, the term EW A is replaced by EW C in Eq. [START_REF] Lopez | An elastic intrusion detection system for software networks[END_REF].

Then the final function f C :

f C = i∈N C T (i) (13) 
where the parameters I P , I C , G, EW C , ES are passed to their respective equations from the prior section.

D. Placement Optimization

Two optimization problems were presented in Eq. ( 1) and (3) for placing IDS, e.g., optimizing I P . Practically, I P grows at 2 N placement options, so exhaustively finding the best solution is impractical, especially at runtime. To solve these optimization problems, the genetic algorithm (GA) is used, and it is validated for small networks with an exhaustive search method in our experimental results.

1) Genetic Algorithm Optimization: The GA was chosen as the optimization method because of its ability to quickly determine a nearly optimal solution in our large binary search space. Prior work [START_REF] Hao Chen | A multi-objective optimisation approach to ids sensor placement[END_REF] has also used the GA to determine IDS placement, though not in a multi-stage attack scenario. Given the large number of configuration options for even a mediumsized network, it would take far too long to perform an exhaustive search. Likewise, a linear programming approach would not work because the objective function is not a linear function of the IDS placement.

The GA is based on the process of natural selection, and it starts with an arbitrarily chosen IDS placement vector and evaluates the objective function [START_REF] Goldberg | Genetic Algorithms in Search, Optimization and Machine Learning[END_REF], which is the benefit equation (given by eq. 1 or eq. 3) for the cost-constrained problem. After each generation, the algorithm selects parents which have the best outcomes of the objective function. Crossing and mutating the parent vectors leads to the generation of new offspring vectors [START_REF] Deep | A real coded genetic algorithm for solving integer and mixed integer optimization problems[END_REF], for which the objective function is again calculated. This leads to a nearly optimal solution. It is not necessarily the best possible solution because the GA only evaluates the objective function for a limited number of placement vectors until it cannot make any improvement by performing crossovers or mutations, but it is very close to the best possible solution.

In this constrained problem, each iteration of the objective function calculation also includes the calculation of the cost. If the cost exceeds the budget constraint (B), the solution is discarded and will not be used in subsequent crossovers or mutations. However, if the solution is valid, it will be taken as a possible solution and used in crossovers and mutations. The specific parameters of the GA are described in Section IV-A1.

2) Exhaustive Search Optimization: To validate the placement given by the CCO-GA, we also use an cost constraint exhaustive search (CCO-ES) for small networks. The exhaustive search method calculates the benefit for all possible IDS placements, discards those which have a cost that exceeds the budget, and then chooses the placement with the maximum budget.

While the exhaustive search does yield the optimal solution, it is only practical for small networks with fewer than 15 servers due to the large number of placement options. Thus, it can be used to validate the GA optimization for small networks, but the GA is necessary for finding the nearly optimal placement for large networks.

E. Dynamic Adaption

The model parameter EW A is expected to be time-varying as attackers enter and leave the system. For a static analysis without any external information, EW A (i, j) = 1 ∀ i, j in the edge set of G, thus a uniform distribution is utilized for attacker probability calculations. This is a good defense setup when the attacker's path is not known in advance or if the attacker has no information about the system and simply makes random choices when attacking. Practically, however, the attacker will stick to a particular path until it cannot be exploited anymore (depth first search) because of the sunk costs of exploiting servers in the path to the crown jewel. Since the attacker maintains a constant path, we can utilize alerts generated by the IDS during each attack trial to adjust the EW A parameters:

EW A (i, j) = EW A (i, j) + 1 ∀ (i, j) ∈ AP ( 14 
)
where AP is the set of all edges in the potential alert path. This path is calculated by backtracking from the predecessors of the node in the graph that generated an alert. One additional modification is made to the original problem. The distribution in Eq. ( 9) is modified by adding an additional node n a to the graph to represent the attacker. This node is added to represent the attacker's choice of which edge server to attack, thus modifying the equation to:

P I (i) = EW A (n a , i) j ∈ ES EW A (n a , j) ∀ i ∈ ES (15) 
where n a is the attacker's virtual node in the graph. With this modification, the EW A values will grow along any candidate path to the alert that is being generated and bias the placements toward that path. Whenever the attacker is found, this weighting is reset back to the static case.

Runtime Adaptation: At runtime, the optimal placements can be varied by updating EW A and re-calculating the benefit f B . Whenever the optimal placement vector I P changes, then the NFV/SDN component can move resources to implement the new placement. As alerts come in from the IDS, the EW A vector is updated and the placements are re-calculated.

IV. EXPERIMENTATION

In this section, first we discuss the simulation setup used for OPTIMISM and then discuss the experiments that evaluate the performance of the OPTIMISM.

A. Experimental Setup

For the experiments in this section, unless mentioned, the parameter values used are in Table II and the graph in Fig. 2 is used for the network. For the I Q term, we approximate depth-based improvements for the servers as follows:

I Q (i) = IDS B + IDS C • max (dist(j, i) ∀ j ∈ ES) (16)
where dist(j, i) is the distance from node j to node i in the graph with each edge counted as 1. This gives slight benefits to IDS placed deeper in the system where both the source and destination are controlled by the network administrator.

1) Genetic Algorithm Settings: We utilize an integer version of a genetic algorithm1 with a population size of 200 that is initially chosen at random to form I P . For the selection function, a stochastic remainder is used that makes discrete choices using a roulette function. The elite count is 5% of the population, and the adaptive feasible mutation function is used for the CCO problems that stochastically mutates within the binary bound of the placement problem. The crossover function uses intermediate values that are selected stochastically but weighted by the performance of the population. The GA is run with 8 stall generations and it terminates whenever the average variance in the objective function (BVO or CCO) is less than 1e-4 between stall generations.

B. Evaluation Metrics

In addition to the benefit (f B ) defined in Eq. ( 4), two additional metrics are utilized:

Performance:

f B (I P ) f B (I P M ) (17) 
where

I P M (i) = 1 ∀ i ∈ G.
For this metric, a value of 1 means that it is performing the same as the full-coverage case. % Max Cost or Relative Cost:

f C (I P ) f C (I P M ) (18) 
with the same I P M from above. This captures a percent reduction in a relative scale to measure the improved efficiency of OPTIMISM.

C. Experiment 1: Performance of OPTIMISM vs naive approach

This experiment demonstrates the improvement in performance of OPTIMISM's CCO-GA over naively placing IDS. The naive placement approach is simulated by considering all the possible placements of IDS and selecting a mean and worst case performance. At each relative cost or user's budget (B from Eq. ( 2)), the minimum and mean performance for all possible combinations is calculated and then compared with the performance of the CCO-GA optimizer. Since the budgets do not align directly, they are clustered into 20 bins on the x-axis.

As shown in the figure 3, the CCO-GA consistently has a higher performance than both the mean and minimum performance of naive placement. The CCO-GA gives the optimal solution with a maximum performance at a deployment cost of 50% of the maximum cost. In other words, OPTIMISM deploys IDS only at 3 servers (in particular at node 7,9 and 10) out of 11 servers to get maximum path coverage to the crown jewel. For relative costs of 20-50%, the GA outperforms the naive placement by 5-20%, and it can outperform the minimum performance of the naive placement by up to 38%. Thus, OPTIMISM optimizes IDS placements by giving higher priority to nodes that are deeper in the network.

D. Experiment 2: Running Time of OPTIMISM's Genetic Algorithm vs. Exhaustive Search

This experiment validates our choice of a GA for solving our optimization problems. For the CCO, a series of 10 tests were run for each network size of a randomly generated network, starting at 5 servers and increasing by 2 until reaching 15 servers. The average runtimes were calculated for each network size and as shown in Fig. 4, the exhaustive search runtime varies exponentially with respect to the number of servers, while the GA runtime is linear. This shows that for large networks, it is much more practical to use the GA.

This experiment also measured the error of the GA with respect to the exhaustive search, calculated by the difference in the performance of the final placements. For 82% of the tests, where both network size and budget were varied, no difference was found between the two solutions; the error was 0%. Thus the median error was 0%, but the standard deviation was 6% due to a few trials with a maximum error of 49%. Despite this variation, the GA was concluded to be sufficiently accurate for placing IDS in a network of a large size. Thus OPTIMISM determines nearly optimal IDS placements by accounting for the network structure all in linear run time. This experiment evaluates the behavior of CCO vs BVO. Fig. 5 shows the variation in performance and relative deployment cost for a defined budget or cost constraint. As expected, the relative cost of the actual deployment has an almost linear relationship with the budget; any deviation from this is due to the cost being a discrete function of the number of servers.

The performance has a rapid increase at first, reflecting the added benefit of the initial IDS. However, at a budget of approximately 25%, the slope suddenly changes. This is due to the fact that placing more IDS means that there is a smaller chance for a subsequent IDS to detect the attacker. At some point, the benefit of adding another IDS approaches 0 because the existing IDS sufficiently cover the network.

The points on the graph which correspond to the various αvalues indicate the performance of the best value optimization. The points chosen by the BVO are the points in their local areas at which there is the greatest distance between the performance and relative cost. This is a direct result of the bestvalue behavior. Additionally, when α is lower, less emphasis is placed on the cost, and therefore the performance is better. When more emphasis is placed on the cost, the performance is lower. In this case, the performance has such a steep slope that a slight variation in α to emphasize cost causes no IDS to be placed.

The constrained optimization clearly shows a decreasing marginal performance as the cost increases. To a network administrator, this corresponds to having a lower-value security system. The best value optimization allows the network administrator to find the placement that yields the maximum return on investment by adjusting the weight (α) placed on the cost.

F. Experiment 4: Performance of Dynamic IDS Placements

This experiment evaluates the effectiveness of dynamically updating attacker edge weights (EW A ) on alert generation to determine new placements. We evaluate this approach by selecting 10 static paths at random from the edge nodes to the crown jewel. These paths are a set of edges which the attacker always tries to attack, and this is repeated 50 times. For each trial, a stochastic sample is taken for each node along the path as rand() > P O (i) where rand is the uniform random distribution between 0 and 1. If the value of the sample is 0, then the attacker is stopped, an alert generated (thus updating EW A ) and the trial is repeated. If the value is 1 then the attacker proceeds to the next server in the system. If the node i == CJ then the attacker is successful.

In this scenario, we use the BVO-GA approach because it allows a certain amount of dynamism with the cost in the system. Since α remains fixed, as the EW A increases, the benefit of particular placements becomes more significant than their costs. This allows for more than simple relocation as it enables additional IDS to be brought online in an elastic manner.

For this experiment, we measure the benefit via sampling so that in a set of 50 trials, if 25 reach the crown jewel, the benefit is 0.5. Fig. 6 shows the performance improvement of the dynamic system over the static allocation of IDS. The average improvement is 38.2%, significantly boosting the effectiveness of the defense.

V. CONCLUSION

OPTIMISM provides the network administrators with a costeffective method for protecting against multi-stage attacks. By considering the traffic distribution through each server, network structure and IDS quality, OPTIMISM optimizes the benefit function for each configuration iteratively to select the optimal IDS placement. Our method improves upon naive placement by up to 38% and reduces costs up to 70% when compared to the naive full-coverage solution. Due to the speed at which the genetic algorithm is able to solve the optimization problem, a new configuration can be generated and deployed whenever significant changes in the network occur. This is particularly useful in SDN, and by deploying the IDS using NFV, the placement can be quickly adjusted. This method of placing IDS is a novel approach to network defense, and it provides a strategy to effectively protect a network from multistage attacks in cases where information about the attacker is limited and costs must be minimized. We further provide a dynamic adaptation module that incorporates alert information to better defend against attacks by relocating IDS using NFV.
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 1 Fig.1. An example distributed enterprise system that OPTIMISM optimizes.
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 2 Fig. 2. Network Graph for the sample distributed system given in Fig. 1, with the edge values P T shown.
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 3 Fig. 3. The performance of OPTIMISM's cost constrained optimization with genetic algorithm (CCO-GA) is shown with respect to a naive IDS placement approach.
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 4 Fig.[START_REF] Modelo-Howard | Secure configuration of intrusion detection sensors for dynamic enterprise-class distributed systems[END_REF]. The exhaustive search runtime increases exponentially with respect to the number of servers, while the genetic algorithm runtime increases linearly.
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 85 Fig.5. Multi-objective optimization choses the points on the cost-constrained curve for which there is the most difference between performance and relative cost.
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 6 Fig. 6. The benefit (1 -P (AS)) is shown for 10 different random paths in the test network for 50 attack trials utilizing BVO-GA in a static and dynamic deployment. The dynamic case has a 38.2% improvement on average.
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