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Introduction

In their 2018 pioneering work, Alvarez et al. [START_REF] Alvarez | ω, c)-periodic functions and mild solutions to abstract fractional integro-differential equations[END_REF] introduced the class of (ω, c)periodic functions which contains the spaces of periodic, antiperiodic and Bloch periodic functions among others. It is motived by the so-called Mathieu's equation [START_REF] Alvarez | ω, c)-asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells[END_REF] y (t) + [a -2q cos (2t)] y (t) = 0, arising in seasonally forced population dynamics modelling. The solution is of the form y(t + ω) = cy(t) where c is a complex number. The theory has rapidly attracted several authors including Abadias et al. [START_REF] Abadias | Periodic mild solutions to non-autonomous abstract differential equations[END_REF], Alvarez et al. [START_REF] Alvarez | ω, c)-asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells[END_REF], Mophou and N'Guérékata [START_REF] Mophou | An existence result of (ω, c)-periodic mild solutions to some fractional differential equations[END_REF], Kéré et al. [START_REF] Kéré | An existence result of (ω, c)-almost periodic mild solution to some fractional differential equations[END_REF], Li et et al. [START_REF] Li | Periodic solutions for impulsive differential systems[END_REF], Khalladi al. [START_REF] Khalladi | Almost periodic functions and applications[END_REF][START_REF] Khalladi | ω, c)-Almost periodic generalized functions[END_REF].

In their paper [START_REF] Alvarez | ω, c)-asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells[END_REF], Alvarez, Castillo and Pinto extended the concept to the one of asymptotically (ω, c)-periodic functions, that is functions which can be decomposed uniquely as the sum of a (ω, c)-periodic function and a function that vanishes at infinity.

The aim of this paper is to keep on investigating properties of (ω, c)-periodic and asymptotically (ω, c)-periodic functions and their applications to the following equations: [START_REF] Mophou | An existence result of (ω, c)-periodic mild solutions to some fractional differential equations[END_REF] c D α t u(t) = Au(t)

+ c D α-1 t f (t, u(t)), 1 < α < 2 , t ∈ R, u(0) = 0 and (5) c D α t u(t) = Au(t) + c D α-1 t f (t, u(t -h)), 1 < α < 2 , t, h ∈ R + , u(0) = 0
were c D α t (•) (1 < α < 2) stands for the Caputo derivative and A is a linear densely defined operator of sectorial type on a complex Banach space X, and the function f (t, x) is (ω, c)-periodic or asymptotically (ω, c)-periodic with respect to the first variable. Our main results are Theorems 2.2, 2.5 and 2. [START_REF] Khalladi | Almost periodic functions and applications[END_REF].

In order to illustrate our main results, we propose an application to Mainardi's concept of fractional diffusion-wave equations (see [START_REF] Mainardi | Fractional relaxation-oscillation and fractional diffusion-wave phenomena[END_REF][START_REF] Mainardi | The fundamental solutions for the Fractional diffusion-wave equation[END_REF][START_REF] Mainardi | Fractional diffusive waves[END_REF] for more details). Mainardi and Paradisi have shown in [START_REF] Mainardi | Fractional diffusive waves[END_REF] that this class of fractional equations with (1 < α < 2) is that which governs the propagation of stress waves in viscoelastic media which, by exhibiting a power law creep, are of relevance in acoustics and seismology since their quality factor turns out to be independent of frequency.

Preliminaries

Throughout this work, we assume that (X, • ) is a complex Banach space and we will denote by C(R, X) the collection of all continuous functions from R into X, and BC(R, X) the collection of all bounded continuous functions from R into X. The space BC(R, X) equipped with the sup norm defined by f ∞ := sup t∈R f is a Banach space. The notation B(X) stands for the space of bounded linear operators from X into itself endowed with the uniform operator topology.

First, we recall some definitions and properties about sectorial linear operators and their associated solution operators. Definition 2.1. A closed and linear operator A is said to be of sectorial type ω and angle θ, if there exists (θ, M, ω) ∈ 0, π 2 × R + × R such that both following assertions holds true :

(1) its resolvent exists outside the sector

ω+S θ := {ω + λ, λ ∈ C, | arg(-λ)| < θ}. ( 2 
) (λ -A) -1 ≤ M |λ-ω| , λ / ∈ ω + S θ . Definition 2.2. Let α ∈ (1, 2)
and A be a closed and linear operator with domain D(A) defined on X. The operator A is called a generator of a solution operator if there exists ω ∈ R and a strongly continuous function

S α : R + → B(X) such that {λ α , Re(λ) > ω} ⊆ ρ(A) and λ α-1 (λ α -A) -1 x = ∞ 0 e -λt S α (t)x dt, Re(λ) > ω, x ∈ X.
In this case, S α (t) is called the solution operator generated by A.

Definition 2.3 ( [12]). A family {S α (t)} t≥0 ⊂ B(X) is said to be uniformly inte- grable if ∞ 0 S α (t) dt < ∞ (ω, c)-PERIODIC AND ASYMPTOTICALLY (ω, c)-PERIODIC MILD SOLUTIONS TO FRACTIONAL CAUCHY PROBLEMS. 3
We note that, if A is a sectorial type of ω with θ ∈ 0, π(1 -α 2 ) then A is the generator of a solution operator given by

S α (t) := 1 2iπ ξ e λt λ α-1 (λ α -A) -1 dλ
where ξ is a suitable path lying outside the sector ω + S θ .

Lemma 2.4 ( [START_REF] Cuesta | Asymptotic behavior of the solutions of fractional integro-differential equations and some time discretizations[END_REF]). Let A : D(A) ⊂ X → X be a sectorial operator of type ω < 0 and angle θ in a complex Banach space X, then there exists C α,θ > 0 depending solely on α and θ such that : [START_REF] Abbas | Topics in fractional differential equations[END_REF][START_REF] Podlubny | Fractional differential equations[END_REF]). The derivative of order α of a function f : R + → R in the sense of Caputo is defined as

S α (t) B(X) ≤ C α,θ M 1 + |ω|t α , t ≥ 0 Definition 2.5 ( [
c D α t f (t) = 1 Γ(n -α) t 0 (t -s) n-α-1 f (n) (s)ds for n -1 ≤ α < n, n ∈ N. If 1 < α < 2, then c D α t f (t) = 1 Γ(2 -α) t 0 (t -s) 1-α f (2) (s)ds
In the following sections, we will recall some properties of both (ω, c)-periodic and asymptotically (ω, c)-periodic functions.

2.1. On (ω, c)-periodicity. We first recall this fundamental definition :

Definition 2.6 ( [1]). Let ω > 0 and c a non-zero complex number. A function f ∈ C(R, X) is said to be (ω, c)-periodic if f (t + ω) = cf (t), ∀t ∈ R.
In this case ω is called a c-period of the function f . We denote by P ω,c (R, X) the set of all (ω, c)-periodic functions from R to X. When c = 1, we write P ω (R, X) instead of P ω,1 (R, X) and we say that f is ωperiodic. Using the principal branch of the complex Logarithm, c t ω is defined as c t ω := exp( t ω Log(c)) = c ∧ (t) and we will use the notation |c|

∧ (t) := |c ∧ (t)| = |c| t ω .
In [START_REF] Alvarez | ω, c)-periodic functions and mild solutions to abstract fractional integro-differential equations[END_REF], Alvarez et al. gave a useful description of the space P ω,c (R, X). That is P ω,c (R, X) is a translation-invariant subspace over C of C(R, X). Then for any fixed h > 0 and

u ∈ P ω,c (R, X), we have u h (•) := u(• -h) ∈ P ω,c (R, X). Proposition 2.7 ( [1]). Let f ∈ C(R, X). Then, f ∈ P ω,c (R, X) if and only if f (t) = c t ω u(t), u(t) ∈ P ω (R, X). Theorem 2.8 ( [4]). Let f ∈ P ω,c (R, X) and A ∈ B(X). Then Af ∈ P ω,c (R, X).
We state and prove this basic property which follows naturally from the (ω, c)periodicity definition. It will be very useful in the sequel. Lemma 2.9. Let f ∈ P ω,c (R, X). Then, f ∈ P -ω,c -1 (R, X).

Proof. Let f ∈ P ω,c (R, X). According to Proposition (2.7), f (t) = c t ω u(t) with u(t) ∈ P ω (R, X). Then, we have f (t -ω) = c t-ω ω u(t -ω) = c -1 c t ω u(t) = c -1 f (t). So f ∈ P -ω,c -1 (R, X).
Now we establish the following theorem :

Theorem 2.10. Let f ∈ P ω,c (R, X). Then, c D α t f (t) / ∈ P ω,c (R, X).
Proof. We have

c D α t f (t + ω) = 1 Γ(n -α) t+ω 0 (t + ω -s) n-α-1 f (n) (s)ds = c( c D α t f (t)) + c Γ(n -α) 0 -ω (t -s) n-α-1 f (n) (s)ds = c( c D α t f (t)) + 1 Γ(n -α) ω 0 (t + ω -s) n-α-1 f (n) (s)ds Keeping in mind that f ∈ P ω,c (R, X) we know that f is not constant. It comes that ω 0 (t + ω -s) n-α-1 f (n) (s)ds = 0. Finally, c D α t f (t) / ∈ P ω,c (R, X). Theorem 2.11 ( [1]). P ω,c (R, X) is a Banach space with the norm f ω,c := sup t∈[0,ω] |c| ∧ (-t)f (t) .
We note that if f ∈ P ω,c (R, X), then f ω,c < ∞ and we say that f is c-bounded. The use of f ω,c instead of f ∞ will allow us to handle the (ω, c)-periodicity properties of f (see [START_REF] Alvarez | ω, c)-periodic functions and mild solutions to abstract fractional integro-differential equations[END_REF] for more details).

We now prove the following:

Proposition 2.12. Let A : D(A) ⊂ X → X be a sectorial operator of type ω < 0 and angle θ in a complex Banach space X, then there exists C α,θ > 0 depending solely on α and θ such that :

S α (t) ω,c ≤ C α,θ M 1 + |ω|t α γ 1 , t ≥ 0 where γ 1 = max{1, |c| -1 }.
Proof. Using Lemma 2.4, we have

S α (t) ω,c = sup t∈[0;ω] |c| ∧ (-t)S α (t) ≤ S α (t) B(X) • sup t∈[0;ω] |c| ∧ (-t) ≤ C α,θ M 1 + |ω|t α • sup t∈[0;ω] |c| ∧ (-t) , t ≥ 0 ≤ C α,θ M 1 + |ω|t α • max{1, |c| -1 } , t ≥ 0
Now we will investigate some more general features of (ω, c)-periodic functions linked with their integration. Proposition 2.13. Let f ∈ P ω,c (R, X). Then for all x 1 , x 2 ∈ R, Proof. Let f ∈ P ω,c (R, X). We have

x1+ω x1 f (s)ds = x2+( x 1 -x 2 ω +{ x 1 -x 2 ω })ω+ω x2+( x 1 -x 2 ω +{ x 1 -x 2 ω })ω f (s)ds = x2+{ x 1 -x 2 ω }ω+ω x2+{ x 1 -x 2 ω }ω f (s + x 1 -x 2 ω ω)ds = c x 1 -x 2 ω x2+{ x 1 -x 2 ω }ω+ω x2+{ x 1 -x 2 ω }ω f (s)ds Theorem 2.14. Let (b, b) ∈ [0, ∞) × [0, ∞] and Λ b , Λ b sup , Λ b inf define as : Λ b sup (t) = t+b t f (s)ds , Λ b inf (t) = t t-b f (s)ds and Λ b (t) = (Λ b sup + Λ b inf )(t) = t+b t-b f (s)ds Then Λ b , Λ b sup , Λ b inf are (ω, c)-periodic functions if and only if f ∈ P ω,c (R, X).
Proof. We have that :

Λ b (t + ω) = t+ω+b t+ω-b f (s)ds = t+b t-b cf (s)ds = cΛ b (t)
The proof is similar for Λ b sup and Λ b inf case.

One can note that Λ ∞ sup = ∞ t f (s)ds is well defined when |c| < 1 and Λ ∞ inf = t -∞ f (s)ds
is well defined when |c| > 1 and both are in P ω,c (R, X) whenever f ∈ P ω,c (R, X).

In [START_REF] Alvarez | ω, c)-asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells[END_REF], authors gave following proposition :

Proposition 2.15 ( [3]). Assume that f is a (ω, c)-periodic function and b ∈ [-∞, ∞). Then F (t) = t b f (s)ds is a (ω, c)-periodic function if and only if F (b + ω) = 0.
We offer a more precise version of the latter for all b ∈ R because the case b = -∞ is already treated in Theorem (2.14).

Theorem 2.16.

Let f ∈ P ω,c (R, X) and b ∈ (-∞, ∞). Then F (t) = t b f (s)ds is a (ω, c)-periodic function if and only if c = 1 and f := u(t), with u(t) ω 2 -antiperiodic. Proof. Let f ∈ P ω,c (R, X). According to Proposition 2.7, we have f = c t ω u(t), u ∈ P ω (R, X). If c = 1 and f := u(t), with u(t) ω
2 -antiperiodic, we have that

F (t + ω) = t+ω b f (s)ds = b+ω b f (s)ds + t+ω b+ω f (s)ds = b+ ω 2 b f (s)ds - b+ ω 2 b f (s)ds + cF (t) = cF (t)
Now, if we have

F (t) ∈ P ω,c (R, X). According to Proposition (2.15), for b ∈ (-∞, ∞), we have (6) F (b + ω) = 0 Using 2.13, it comes that b+ω b f (s)ds = c ξt t+{ξt}ω+ω t+{ξt}ω f (s)ds, for each t ∈ R,
where

ξ t = b-t ω . Then for all t ∈ R : b+ω b f (s)ds = c ξt t+{ξt}ω+ω t+{ξt}ω f (s)ds = c ξt b+ω t+{ξt}ω f (s)ds + c ξt t+{ξt}ω+ω b+ω f (s)ds = -c ξt -1 t+{ξt}ω+ω b f (s)ds + c ξt +1 t+{ξt}ω b f (s)ds = -c ξt -1 F (t + {ξ t }ω + ω) + c ξt +1 F (t + {ξ t }ω)
But by hypothesis,

F ∈ P ω,c (R, X) then F (t+{ξ t }ω+ω) = cF (t+{ξ t }ω). Therefore, for all t ∈ R -c ξt F (t + {ξ t }ω) + c ξt +1 F (t + {ξ t }ω) = 0 ⇐⇒ c = 1
Finally, (6) implies that

b+ ω 2 b f (s) + f (s + ω 2 )ds = 0 ⇐⇒ b+ ω 2 b u(s) + u(s + ω 2 )ds = 0. It follows that c = 1 and f (t) = u(t) with u(t) ω 2 -antiperiodic. Corollary 2.17. Let f ∈ P ω,c (R, X) with |c| = 1 and b ∈ (-∞, ∞). Then F (t) = t b f (s)ds is not (ω, c)-periodic.

Let us denote the Nemytskii's operator associated with

f ∈ BC(R, X) by N (ϕ)(•) := f (•, ϕ(•)).
Then we recall the following composition theorem :

Theorem 2.18 ( [4]). Let f ∈ C(R, X).
Then the following assertions are equivalent :

(1) For every

ϕ ∈ P ω,c (R, X), N (ϕ)(•) ∈ P ω,c (R, X), (2) For all (t, u) ∈ R × X, f (t + ω, cu) = cf (t, u).
We end this section with the new following convolution result:

Theorem 2.19. Let {S α (t)} t≥0 ⊂ B(X) be a uniformly integrable and strongly continuous family. If f ∈ P ω,c (R, X) then the function (S α f ) given by is also in P ω,c (R, X).

(S α f )(t) = t -∞ S α (t -s)f (s)ds
Proof. We have

(S α f )(t+ω) = t+ω -∞ S α (t + ω -s)f (s)ds = t -∞ S α (t -s)f (ω + s)ds = c(S α f )(t)
The proof is complete 2.2. On asymptotically (ω, c)-periodicity.

We first define the following spaces of functions vanishing at infinity:

C 0 (X) := h ∈ C(R + , X) such that lim t→∞ h(t) = 0 and C 0 (Ω, X) := h ∈ C(R + × Ω, X) such that lim t→∞ h(t, u) = 0 for all u in any compact subset of Ω. Definition 2.20 ( [3]). Let ω > 0 and c a complex number. A function f ∈ C(R, X) is said to be c-asymptotic if c ∧ (-t)h(t) ∈ C 0 (X), that is lim t→∞ c ∧ (-t)f (t) = 0
And we denote by C 0,c (X) this collection of function. Analogously, a function

g ∈ C(R × Ω, X) is said to be c-asymptotic if c ∧ (-t)g(t, u) ∈ C 0 (Ω, X), that is lim t→∞ c ∧ (-t)g(t, u) = 0
for all u in any compact subset of Ω. The collection of all such functions will be denoted by C 0,c (Ω, X).

Definition 2.21 ( [3]

). A function f ∈ C(R, X) is said to be asymptotically (ω, c)periodic if f = g + h where g ∈ P ω,c (R, X) and h ∈ C 0,c (X).

We denote by AP ω,c (X) the collection of all those functions (with the same c-period ω for the first component). Reader should note that the previous decomposition is unique, that is we have AP ω,c (X) = P ω,c (R, X) C 0,c (X).

Similarly to the previous section, we have these fundamentals results :

Proposition 2.22 ( [3]). Let f ∈ C(R, X). Then f is asymptotically (ω, c)-periodic if and only if f (t) = c t ω u(t) , u(t) ∈ AP ω,1 (X) Lemma 2.23 ( [3]
). Following assertions holds true :

(1)

(f + g) ∈ AP ω,c (X) whenever f, g ∈ AP ω,c (X). (2) Let g ∈ P ω,c (R, X) and h ∈ C 0,c (X) such that g, h ∈ C 1 (R, X). Then the derivative of f = g + h ∈ AP ω,c (X) belongs to AP ω,c (X).
Now we state and prove following theorems :

Theorem 2.24. Let f ∈ AP ω,c (X). Then if A ∈ B(X), Af ∈ AP ω,c (X).
Proof. Let f = g + h where g ∈ P ω,c (R + , X) and h ∈ C 0,c (X). We have that Af (t) = Ag(t) + Ah(t). According to Theorem (2.8), Ag ∈ P ω,c (R + , X).

Also we have lim

t→∞ c ∧ (-t)Ah(t) ≤ A B(X) lim t→∞ c ∧ (-t)h(t) = 0
So lim t→∞ c ∧ (-t)Ah(t) = 0, which proves that Ah(t) ∈ C 0,c (X). The proof is complete.

As in [START_REF] Alvarez | ω, c)-periodic functions and mild solutions to abstract fractional integro-differential equations[END_REF] with Theorem 2.11, Alvarez et al. prove that there exists a norm suitable for the study of asymptotically (ω, c)-periodic functions with the proposition which follows.

Theorem 2.25 ( [3]). AP ω,c ([d, ∞) × X, X) is a Banach space with the norm f aω,c := sup t≥d |c| ∧ (-t)f (t) .
In the following, we will focus on the case t ∈ R + . Consequently, we will use f aω,c as f aω,c := sup t≥0 |c| ∧ (-t)f (t) . We propose the two following results : Proposition 2.26. Let A : D(A) ⊂ X → X be a sectorial operator of type ω < 0 and angle θ in a complex Banach space X. If |c| ≥ 1, then there exists C α,θ > 0 depending solely on α and θ such that :

S α (t) aω,c ≤ C α,θ M 1 + |ω|t α , t ≥ 0.
Proof. Using Lemma 2.4, we have

S α (t) aω,c = sup t≥0 |c| ∧ (-t)S α (t) ≤ S α (t) B(X) • sup t≥0 |c| ∧ (-t) ≤ C α,θ M 1 + |ω|t α • sup t≥0 |c| ∧ (-t) , t ≥ 0 ≤ C α,θ M 1 + |ω|t α , t ≥ 0
Theorem 2.27. Assume that A is sectorial of type ω < 0. If f : R + → X is an asymptotically (ω, c)-periodic function and (S α f )(t) is given by

(S α f )(t) = t 0 S α (t -s)f (s)ds, t ≥ 0. Then (S α f ) ∈ AP ω,c (X).
Proof. If f = g + h, where g ∈ P ω,c (R, X) and h ∈ C 0,c (X), then we have that

(S α f )(t) = (S α g)(t) + (S α h -g )(t)
where

(S α g)(t) = t -∞ S α (t -s)f (s)ds, t ≥ 0 and (S α h -g )(t) = t 0 S α (t -s)h(s)ds - 0 -∞ S α (t -s)g(s)ds, t ≥ 0
By Theorem (2.19), (S α g) ∈ P ω,c (R, X). Now, let us show that (S α h -g ) ∈ C 0,c (X). Since h ∈ C 0,c (X), for each ε > 0 there exists m > 0 such that h(s) aω,c ≤ ε for all s ≥ m. Then for all t ≥ 2m, we deduce

c ∧ (-t)(S α h -g )(t) = c ∧ (-t) t 2 0 h(s)C α,θ M 1 + |ω|(t -s) α ds + t t 2 h(s)C α,θ M 1 + |ω|(t -s) α ds - 0 -∞ g(s)C α,θ M 1 + |ω|(t -s) α ds ≤ C α,θ M h aω,c t 2 0 1 1 + |ω|(t -s) α ds + ε t t 2 1 1 + |ω|(t -s) α ds + g ω,c 0 -∞ 1 1 + |ω|(t -s) α ds ≤ C α,θ M ∞ t h aω,c + g ω,c 1 + |ω|s α ds + εC α,θ M |ω| -1 α π α sin( π 2 ) It comes that c ∧ (-t)(S α h -g )(t) ≤ C α,θ M h aω,c + g ω,c ∞ t 1 1 + |ω|s α ds+ εC α,θ M π α|ω| 1 α sin( π α ) Therefore, lim t→∞ c ∧ (-t)(S α h -g )(t) = 0, that is, (S α h -g ) ∈ C 0,c ( 
X). This completes the proof.

Now we recall this composition theorem

Theorem 2.28 ( [START_REF] Alvarez | ω, c)-asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells[END_REF]). Let f (t, x) = g(t, x) + h(t, x) where g(t + ω, cx) = cg(t, x) and h ∈ C 0,c (X, X). Assume that (1) h t (z) = c ∧ (-t)h(t, c ∧ (-t)z) is uniformly continuous for z in any bounded subset of X uniformly for t ≥ 0, and h t (z) → 0 as t → ∞ uniformly in z.

(2) There exists ν ∈ BC(R + , R + ) such that

f (t, u 1 ) -f (t, u 2 ) ≤ ν(t) u 1 -u 2 , ∀u 1 , u 2 ∈ X, ∀t ∈ R + If ϕ ∈ AP ω,c (X), then f (•, ϕ(•)) ∈ AP ω,c (X).
In the sequel, we need the following results : Let h : R + → [1; ∞) be a continuous function such that h (t) ≥ 1 for all t ∈ R + and h (t) → ∞ as t → ∞. Initially we set C h (R + , X) for the space consisting of continuous functions u : R + → X such that u h = sup

t∈R+ u aω,c h (t) < ∞. endowed with the norm u h = sup t∈R+ u aω,c h (t)
. It turns out to be a Banach space.

We also denote

C 0 h (R + , X) = u ∈ C h (R + , X) : lim t→∞ u aω,c h (t) = 0
Here we adapt with the norm • aω,c and prove an existing lemma in [START_REF] Cuevas | Solutions of second order abstract retarded functional differential equations on the line[END_REF] .

Lemma 2.29. A subset R ⊆ C 0 h (R + , X) is a relatively compact set if it verifies the following conditions :

(1) The set R b = {u | [0,b] : u ∈ R} is relatively compact in C([0, b], X), ∀b ∈ R + .
(2) lim t→∞ u aω,c h (t) = 0, uniformly for u ∈ R.

Proof. First note that C 0 h (R + , X) is isometrically isomorphic to the space C 0 (X) of functions vanishing at infinity. Now, let us consider the set

R b = {u | [0,b] : u ∈ R} ⊂ C 0 h ([0, b], X). Then, since for all b ∈ R + , C 0 h ([0, b], X) is isometrically isomorphic to the space C 0 ([0, b], X)
, the set R b is isomorphic to a subset of the latter space. Keeping in mind assumption (1), we have that ∀b

∈ R + , R b is relatively compact in C([0, b], X) ⊃ C 0 ([0, b], X) which leads to the fact that R b is relatively compact in C 0 ([0, b], X). Then, for any fixed b ∈ R + , R b admits a finite ε-net {η 1 , η 2 , ..., η p }, in C 0 h ([0, b], X)
. This result allows us to exhibit a finite ε-net for R ⊂ C 0 h (R + , X) as follows : {η k (t)} k∈{1,...,p} for all t ∈ R + . Hence, according to (2) and latter result, for any u ∈ R there is a k ∈ {1, ..., p} such that

u(t) -η k (t) h = sup t∈R+ u(t) -η k (t) aω,c h (t) ≤ ε Since ε > 0 is arbitrary, this last relation proves that R is relatively compact in C 0 h (R + , X).

Main results

Because of the estimate on S α (t) B(X) , we can make the following assumptions : (H1) : The operator A is sectorial operator of type ω < 0 and angle θ ∈ 0, π(1 -α 2 ) . (H2) : Let (S α (t)) t≥0 ⊂ B(X) be a strongly continuous family of linear operators. (H3) : f ∈ C(R × X, X) such that for all (t, u) ∈ R × X, f (t + ω, cu) = cf (t, u), and there exist δ ∈ (0, 1] such that we have

f (t, u 1 ) -f (t, u 2 ) ≤ δ u 1 -u 2 , ∀u 1 , u 2 ∈ X, (H3 Bis) : f ∈ C(R × X, X) such that for all (t, u) ∈ R × X, f (t + ω, cu) = cf (t, u),
and there exist κ ∈ (0, 1] such that we have f (t, u h (t)) ≤ κ u h (t) , ∀u ∈ X, ∀t, h ∈ R + With all of this in mind, we can have the following results.

3.1. (ω, c)-periodic case. In this section, we mainly deal with the existence and uniqueness result of (ω, c)-periodic mild solutions to the following fractional Cauchy problem :

(7) c D α t u(t) = Au(t) + c D α-1 t f (t, u(t)), 1 < α < 2 , t ∈ R, u(0) = 0 Definition 3.1.
Assume that A is of sectorial type ω < 0 and angle θ ∈ 0, π(1 -α 2 ) . A function continuous function u : R → X is called a mild solution to Equation [START_REF] Khalladi | Almost periodic functions and applications[END_REF] on R, if the function s → S α (t -s)f (s, u(s)) is integrable on [0, t) for each t ∈ R and

u(t) = t -∞
S α (t -s)f (s, u(s)) ds, for any t ∈ R.

(ω, c)-PERIODIC AND ASYMPTOTICALLY (ω, c)-PERIODIC MILD SOLUTIONS TO FRACTIONAL CAUCHY PROBLEMS. 11 Theorem 3.2. Under previous assumptions, if we assume that (H1) -(H3) hold, then there exist a unique (ω, c)-periodic mild solution to Equation [START_REF] Khalladi | Almost periodic functions and applications[END_REF], provided that there is a constant η α,θ,δ ∈ (0, 1)

such that η α,θ ≥ C α,θ M γ 1 δ|ω| -1 α π α sin( π α )
where

γ p = max{1, |c| -p }, ∀p ∈ (0, ∞).
Proof. Consider the operator Γ : P ω,c (R + , X) → P ω,c (R + , X) such that :

(Γu)(t) := t -∞ S α (t -s)f (s, u(s))ds , t ≥ 0
then Γ is well defined. In fact, let u ∈ P ω,c (R, X) using Theorem (2.18), s → f (s, u(s)) belong to P ω,c (R, X). Then by theorem (2.19) with f ∈ P ω,c (R, X), we have Γu ∈ P ω,c (R, X). Thus we infer that Γ maps P ω,c (R, X) into itself. For u, v ∈ P ω,c (R, X), we get

Γu(t) -Γv(t) ω,c = t -∞ S α (t -s) [f (s, u(s)) -f (s, v(s))] ds ω,c ≤ sup t∈[0,ω] t -∞ |c| ∧ (-(t -s))S α (t -s) • δ • |c| ∧ (-s) u(s) -v(s) ds ≤ δ sup t∈[0,ω] t -∞ |c| ∧ (-(t -s))S α (t -s) ds v -u ω,c ≤ δ sup t∈[0,ω] t -∞ S α (t -s) ω,c ds v -u ω,c ≤ C α,θ M γ 1 δ sup t∈[0,ω] t -∞ 1 1 + |ω|(t -s) α ds v -u ω,c ≤ C α,θ M γ 1 δ sup t∈[0,ω] ∞ 0 1 1 + |ω|s α ds v -u ω,c ≤ C α,θ M γ 1 δ sup t∈[0,ω] |ω| -1 α π α sin( π α ) v -u ω,c ≤ C α,θ M γ 1 δ|ω| -1 α π α sin( π α ) v -u ω,c ≤ η α,θ,δ v -u ω,c
Finally, Γ is a contraction. So by using the Banach fixed point theorem, there is u ∈ P ω,c (R + , X) which is the unique mild solution to Equation ( 7). The proof is complete.

We need the following theorems for the sequel:

Theorem 3.3. (Arzela-Ascoli) Let X be compact metric space and Y be a metric space. Then A ⊂ C(X, Y ) is relatively compact if and only if both conditions are satisfied

(1) A(x) := {f (x), f ∈ A} is relatively compact in Y for all x ∈ X, (2) 
A is equicontinuous. Let us assume that :

(H4) : f (t, u) is of Caratheodory ; that is, for any t ∈ R, f (t, u) is continuous with respect to u ∈ X, and for any u ∈ X, f (t, u) is strongly measurable with respect to t ∈ R. Now, we state and prove this additional existence theorem :

Theorem 3.5. Assume that (H1), (H2), (H3 Bis) and (H4) hold. Then Equation ( 7) has at least one (ω, c)-periodic mild solution on R + .

Proof.

Let τ = |ω| -1 α π α sin( π α )
. We recall that sup

t∈[0,ω] t -∞ 1 1 + |ω|(t -s) α ds ≤ τ . Now, choose r ≥ 2C α,θ M γ 1 τ κ u ω,c
and consider B r = {u ∈ P ω,c (R + , X), u ω,c ≤ r}. Define the operator N on B r by :

(8) (N u)(t) = t -∞ S α (t -s)f (s, u(s)) ds
Let us observe that if u ∈ B r then N u ∈ B r . Indeed, we have

(N u)(t) ω,c = t -∞ S α (t -s)f (s, u(s)) ds ω,c ≤ sup t∈[0,ω] t -∞ |c| ∧ (-(t -s))S α (t -s) • κ • |c| ∧ (-s)u(s) ds ≤ κ sup t∈[0,ω] t -∞ S α (t -s) ω,c u ω,c ds ≤ C α,θ M γ 1 κ sup t∈[0,ω] t -∞ 1 1 + |ω|(t -s) α ds u ω,c ≤ C α,θ M γ 1 τ κ u ω,c ≤ r
Now let us prove that N is continuous and relatively compact. We show the continuity first. Let (u n ) n∈N be a sequence in B r such that u n → u in B r . According to (H4) f is continuous on R × X. It comes that f (s, u n (s)) → f (s, u(s)) whenever n → ∞ that is for ε > 0, there exist N ∈ N such that for all n ≥ N , (ω, c)-PERIODIC AND ASYMPTOTICALLY (ω, c)-PERIODIC MILD SOLUTIONS TO FRACTIONAL CAUCHY PROBLEMS. 13 f (s, u n (s)) -f (s, u(s)) < ε. Then, for any t ∈ R, we have

(N u n )(t) -(N u)(t) ω,c ≤ sup t∈[0,ω] t -∞ S α (t -s) B(X) |c| ∧ (-s)f (s, u n (s)) -f (s, u(s)) ds ≤ C α,θ M γ 1 ε sup t∈[0,ω] t -∞ 1 1 + |ω|(t -s) α ds ≤ (C α,θ M γ 1 τ )ε
Now, we show the compactness of N , using Ascoli's theorem. First, we prove

(N u)(t) : u ∈ B r is uniformly bounded. (N u)(t) ω,c ≤ sup t∈[0,ω] t -∞ S α (t -s) B(X) |c| ∧ (-s)f (s, u(s)) ds ≤ C α,θ M τ κ u ω,c So, (N u)(t) ω,c < ∞ and it is proved. Now, let us prove that N (B r ) is equicon- tinuous. Let t ∈ (-∞, b], b ∈ R. For t 1 , t 2 ∈ (-∞, b] such that t 2 < t 1 , we have : (N u)(t 1 ) -(N u)(t 2 ) ω,c = t1 -∞ S α (t 1 -s)f (s, u(s)) ds - t2 -∞ S α (t 2 -s)f (s, u(s)) ds ω,c = t2 -∞ S α (t 1 -s)f (s, u(s)) ds + t1 t2 S α (t 1 -s)f (s, u(s)) ds - t2 -∞ S α (t 2 -s) f (s, u(s)) ds ω,c ≤ κ t2 -∞ S α (t 1 -s) -S α (t 2 -s) B(X) u ω,c ds + t1 t2 S α (t 1 -s) B(X) u ω,c ds ≤ κ t2 -∞ S α (t 1 -s) -S α (t 2 -s) B(X) u ω,c ds + t1 t2 S α (t 1 -s) B(X) u ω,c ds Let I 1 := t2 -∞ S α (t 1 -s) -S α (t 2 -s) B(X) u ω,c ds and I 2 := t1 t2 S α (t 1 -s) B(X) u ω,c ds.
Actually, both I 1 and I 2 tend to 0 independently of u ∈ B r when t 2 → t 1 . Therefore the continuity of the function t → S α (t) B(X) for t ∈ (-∞, b] allows us to conclude that lim t2→t1 I 1 = 0. In the other hand, we have :

I 2 = t1 t2 S α (t 1 -s) B(X) u ω,c ds ≤ C α,θ M u ω,c τ |t 1 -t 2 |
And consequently, it comes that lim t2→t1 I 2 = 0.

So, using Theorem 3.3 we have proved that N (B r ) is relatively compact for t ∈ (-∞, b] for all b ∈ R. Then N u : u ∈ B r is a family of equicontinuous functions. Then Schauder's theorem (see theorem 3.4) allows us to conclude that (7) has at least one (ω, c)-periodic mild solution on R.

3.2.

(ω, c)-asymptotically periodic case. In this section, we mainly deal with the existence and uniqueness result of asymptotically (ω, c)-periodic mild solutions to the following fractional Cauchy problem with delay :

(9) c D α t u(t) = Au(t) + c D α-1 t f (t, u(t -h)), 1 < α < 2 , t, h ∈ R + , u(0) = 0
Note that in the following we will write u h (•) as u(• -h). Now let us assume that : (H5) : f is satisfying Theorem 2.28. Definition 3.6. Assume that A is sectorial type of ω < 0 and angle θ ∈ 0, π(1 -α 2 ) . A function continuous function u : R + → X is called a mild solution to Equation ( 9) on R + , if the function s → S α (t -s)f (s, u h (s)) is integrable on [0, t) for each t, h ∈ R + and

u(t) = t 0 S α (t -s)f (s, u h (s)) ds, for any t, h ∈ R + .
Theorem 3.7. Under previous assumptions, if we assume that |c| > 1, (H1)-(H3) and (H5) hold, then there exists a unique asymptotically (ω, c)-periodic mild solution to Equation ( 9), provided that there is a constant η α,θ ∈ (0, 1) such that

η α,θ ≥ C α,θ M δ sup t∈R+ t 0 1 1 + |ω|(t -s) α ds .
Proof. Consider the operator Π : AP ω,c (X) → AP ω,c (X) such that (Πu)(t) := t 0 S α (t -s)f (s, u h (s))ds , t ≥ 0, and h ≥ 0 (fixed).

One can easily see that Π is well defined and continuous. It follows from (H5) that f ∈ AP ω,c (X). By Theorem (2.27), it comes that t 0 S α (t -s)f (s, u h (s))ds, ∈ AP ω,c (X) Thus we infer Π maps AP ω,c (X) into itself. For u, v ∈ AP ω,c (X), we get

Πu(t) -Πv(t) aω,c = t 0 S α (t -s) [f (s, u h (s)) -f (s, v h (s))] ds aω,c ≤ sup t∈R+ |c| ∧ (-t) t 0 S α (t -s) [f (s, u h (s)) -f (s, v h (s))] ds ≤ δ|c| ∧ (-h) sup t∈R+ t 0 S α (t -s) aω,c ds v -u aω,c ≤ C α,θ M δ sup t∈R+ t 0 1 1 + |ω|(t -s) α ds v -u aω,c ≤ η α,θ v -u aω,c
Finally, Π is a contraction. So by using the Banach fixed point theorem, there is a unique mild solution u ∈ AP ω,c (X).

We give the following assumptions : (H6) : f (t, u) is uniformly continuous on any bounded subset Ω ∈ X uniformly in t ∈ R + and for every bounded subset Ω ∈ X, {f (•, u) : u ∈ Ω} is bounded in AP ω,c (Ω, X). (H7) : There exists a continuous nondecreasing function Ψ : R + → R + such that for all t ∈ R + and u ∈ X, f (t, u) aω,c ≤ Ψ( u aω,c ). Now we establish an existence theorem of asymptotically (ω, c)-periodic mild solution to Equation (9). Theorem 3.8. Assume that f ∈ AP ω,c (Ω, X) with |c| ≥ 1, satisfying (H1) -(H2), (H5) -(H7) and the following additional conditions :

(1) For each r > 0,

sup t∈R+ t 0 Ψ(rh (s)) 1 + |ω|(t -s) α ds < ∞ that is lim t→∞ 1 h (t) sup t∈R+ t 0 Ψ(rh (s)) 1 + |ω|(t -s) α ds = 0
where h is the function given in lemma (2.29) and we set

(r) = C α,θ M sup t∈R+ t 0 Ψ(rh (s)) 1 + |ω|(t -s) α ds h (2)
For each ε > 0, and any fixed h ≥ 0 there is δ 0 > 0 such that for every u, v ∈ C 0 h (R + , X), u -v h < δ 0 implies that for all t ∈ R + ,

sup t∈R+ t 0 f (s, u h (s)) -f (s, v h (s)) aω,c 1 + |ω|(t -s) α ds ≤ ε C α,θ M , (3) 
For each α, β ∈ R + and r > 0, the set {f (s, h (s)u) :

α ≤ s ≤ β, u ∈ C 0 h (R + , X), u h ≤ r} is relatively compact in X. (4) lim inf ξ→∞ ξ (ξ) > 1.
Then Equation ( 9) admits one mild solution in AP ω,c (Ω, X).

Proof. We define the nonlinear operator Λ :

C 0 h (R + , X) → C 0 h (R + , X) by (Λu)(t) := t 0 S α (t -s)f (s, u h (s)
)ds , t ≥ 0, and h ≥ 0 (fixed).

We will show that Λ has a fixed point in AP ω,c (Ω, X) by the following steps :

(1) For u ∈ C 0 h (R + , X), we have u h * < ∞ and Λu aω,c h (t) ≤ 1 h (t) C α,θ M sup t∈R+ t 0 Ψ( u h h (s)) 1 + |ω|(t -s) α ds
It follows from condition 1. that Λ is well defined.

(2) For each ε > 0, and any fixed h ≥ 0 there is δ 0 > 0 satisfying condition 2. such that for u, v ∈ C 0 h (R + , X), with u -v h < δ 0 we have

Λu(t) -Λv(t) aω,c ≤ C α,θ M sup t∈R+ t 0 f (s, u h (s)) -f (s, v h (s)) aω,c 1 + |ω|(t -s) α ds ≤ ε
which shows that Λ is continuous.

(3) Next we show that Λ is completely continuous. We set B r (X) for the closed unit ball with centre at 0 and radius r in the space X. Let ϑ = Λ(B r (C 0 h (R + , X))) and ς = Λ(u) for u ∈ B r (C 0 h (R + , X)). First, we will prove that ϑ b (t) is a relatively compact subset of X for each t ∈ [0, b]. In fact, by the continuity of S α (•) and condition 3. of f , we infer that the set Σ = {S α (s)f (τ, h (τ )u) : 0 ≤ s, τ ≤ t, u ∈ C 0 h (R + , X), u h ≤ r} is relatively compact. On the other hand, we can get ϑ b (t) ∈ t • co(Σ), where co(Σ) denotes the convex hull of Σ, which establishes our assertion.

Second, we show that the set ϑ b is equicontinuous. In fact, we can decompose

ς(t + s) -ς(t) = t+s t S α (t -s -τ )f (τ, u h (τ )) dτ + t 0 S α (t + s) -S α (t) f (t -τ, u h (τ )) dτ
Then from (H7) and above decomposition of ς(t + s) -ς(t), it follows that the set ϑ b is equicontinuous. Finally, applying condition 1., we have

ς aω,c h (t) ≤ C α,θ M h (t) sup t∈R+ t 0 Ψ(rh (s)) 1 + |ω|(t -s) α ds → 0, as t → ∞.
and this convergence is independent of u ∈ B r (C 0 h (R + , X)). Hence, by Lemma 2.29, ϑ is a relatively compact set in C 0 h (R + , X). (4) Let u λ (•) be a solution of equation u λ = λΛ(u λ ) for some λ ∈ (0, 1). From

u λ aω,c ≤ C α,θ M sup t∈R+ t 0 Ψ( u λ h h (s)) 1 + |ω|(t -s) α ds ≤ ( u λ h )h (t) we get u λ h ( u λ h ) ≤ 1 
and by condition 4., we see that the set {u λ : u λ = λΛ(u λ ), λ ∈ (0, 1)} is bounded.

(5) It follows from (H6) that t → f (t, u h (t)) belongs to AP ω,c (Ω, X) when u ∈ AP ω,c (Ω, X). Moreover, from Theorem (2.27), we can deduce that Λ(AP ω,c (Ω, X)) ⊂ AP ω,c (Ω, X). We note that AP ω,c (Ω, X) is a closed subspace of C 0 h (R + , X), consequently, we can consider Λ : AP ω,c (Ω, X) → AP ω,c (Ω, X). By propositions 1. -3., we deduce that this map is completely continuous. Applying the well-known Leray-Schauder alternative theorem (see [START_REF] Granas | Fixed point theory[END_REF]), we infer that Λ has a fixed point u ∈ AP ω,c (X) which is the asymptotically (ω, c)-periodic mild solution to Equation [START_REF] Mainardi | Fractional relaxation-oscillation and fractional diffusion-wave phenomena[END_REF].

From Theorem (3.8), we can obtain the following interesting corollary. Corollary 3.9. Let f : R + × X -→ X be a function satisfying assumption (H6) and the following Hölder-type condition : f (t, u h ) -f (t, v h ) aω,c ≤ ρ u -v ϑ aω,c , 0 < ϑ < 1 for all t ∈ R + and u, v ∈ X where ρ, h > 0 are constant. Moreover, assume the following conditions are satisfied : Then Equation ( 9) admits at least one asymptotically (ω, c)-periodic mild solution.

Proof. Let γ 1 = ρ and we take Ψ(ξ) = γ 1 ξ ϑ . Then, condition (H7) is satisfied. It follows from a), that the function f satisfies (1) in Theorem (3.8). Note that for each ε > 0 there is 0 < δ ϑ < ε γ1 such that for every u, v ∈ C 0 h (R + , X), u-v h ≤ δ implies that C α,θ M sup t∈R+ t 0 f (s, u h (s)) -f (s, v h (s)) aω,c 1 + |ω|(t -s) α ds ≤ ε for all t ∈ R + .

The assumption (3) in Theorem (3.8) can be easily verified by the definition of Ψ. So, from Theorem (3.8) we can conclude that Equation ( 9) admits at least one asymptotically (ω, c)-periodic mild solution.

4. An application to fractional diffusion-wave equations.

To illustrate Theorem (3.2), we consider the following fractional diffusion-wave equation type : It is well known that A is the infinitesimal generator of an analytic semigroup on L 2 ([0, π]). Thus, A is sectorial of type ω = -β < 0. In addition to that, we have For all u(t, •) ∈ L 2 ([0, π]), t ∈ R. Thus, f (t, u(t, x)) ∈ P 2π,a (R×L 2 ([0, π]), L 2 ([0, π])). Furthermore, for u 1 (t, •), u 2 (t, •) ∈ L 2 ([0, π]) and t ∈ R we have 

f (t + 2π, u(t + 2π, •)) = a
f (t, u 1 (t, •)) -f (t,

  where ξ = x1-x2 ω , ξ stands for the integer part of ξ and {ξ} for the fractional part of ξ.
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Theorem 3 . 4 .

 34 (Schauder) Let E be a Banach Space, C a nonempty closed convex set of E and T : C → C continuous. If T (C) is relatively compact, then T has at least one fixed point.

1 +

 1 |ω|(t -s) α ds = γ < ∞, b) For each α, β ∈ R + and r > 0, the set {f (s, h (s)u) : α ≤ s < β, u ∈ C 0 h (R + , X), u h ≤ r} is relatively compact in X, c) lim inf ξ→∞ ξ (ξ) > 1.

2

 2 ∂x 2 u(t, x) -βu(t, x) + c D α-1 t f (t, u(t, x)), t ∈ R, x ∈ [0, π] u(t, 0) = u(t, 2π) = 0, t ∈ Rwhere 1 < α < 2 and f (t, u(t, x)) = a t 2π sin(a -t 2π u(t, x)) with u(t, x) (2π, a)-periodic with respect to the first variable and |a| = 1. We set (X, • X ) = (L 2 ([0, π]), • 2 ) and defineD(A) = {u ∈ L 2 ([0, π]), u(0) = u(π) = 0)} Au = ∆u = u , ∀u ∈ D(A).

  a -1 au(t, •)) = af (t, u(t, •))

  u 2 (t, •)) 2 ≤ a 2π | u 1 (t, •) -u 2 (t, •) 2 ≤ u 1 (t, •) -u 2 (t, •) 2

		t 2π sin(a	-t 2π u 1 (t)) -a	t 2π sin(a	-t 2π u 2 (t)) 2
	≤ |a	t 2π | sin(a	-t 2π u 1 (t, •)) -sin(a	-t 2π u 2 (t, •)) 2
	≤ |a	t 2π | a	-t 2π u 1 (t, •) -a	-t 2π u 2 (t, •) 2
	≤ |a	t 2π ||a	-t
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Hence choosing β such that

where γ 1 = max{1, |a| -1 }, assumptions of theorem (3.2) are satisfied and (10) has a unique solution in P 2π,a (R × L 2 ([0, π]), L 2 ([0, π])).

We end this section with the study of existence and uniqueness of an asymptotically (ω, c)-periodic mild solution to the following fractional diffusion-wave equation type :

) and v(t, x) is asymptotically (2π, 2)-periodic with respect to the first variable. We assume that ξ, ∈ (0, 1) such that ξ

• 2 ) and (A, D(A)) as in the preceding example. Hence, A is sectorial of type ω = -µ < 0. Equation ( 11) can be formulated by the inhomogeneous problem [START_REF] Mainardi | Fractional relaxation-oscillation and fractional diffusion-wave phenomena[END_REF], where

We observe that f (t, v h ) is asymptotically (2π, 2)-periodic in t for each v h ∈ AP 2π,2 (L 2 ([0, π]), L 2 ([0, π])). Indeed, let us decompose f as f (t, v h )(s) = g(t, v h )(s) + h(t, v h )(s) with :

We have ϕ(t) ∈ P 2π,2 (R + ), ς(t) ∈ P 2π,2 -1 (R + ) and g(t + 2π, 2x) = 2g(t, x) for all x ∈ R. In addition to that, we know that (see previous example) :

Then, h is uniformly continuous for u in any bounded subset of L 2 ([0, π]) uniformly for t ≥ 0, and h(t, v h ) → 0 as t → ∞ uniformly in v h (s), s ∈ [0, π]. Finally, assumptions of Theorem (2.28) are satisfied.