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Abstract - A two-valley formulation of 1D drift-diffusion transport
is presented that takes the coupling between the valleys into account
via a new approximation for the non-local electric field. The pro-
posed formulation is suitable for the simulation of III-V heterojunc-
tion bipolar transistors as opposed to formulations that employ the
single electron gas approximation with a modified velocity-field
model, which also causes convergence problems. Based on Boltz-
mann transport equation simulations, model parameters of the pro-
posed two-valley formulation are given for GaAs, InP, InAs and
GaSb at room temperature. Applications of the new formulation are
also demonstrated.

Index Terms - III-V semiconductors, drift-diffusion, charge
carrier transport, negative differential mobility, TCAD, HBT.

I. INTRODUCTION

Transistors based on III-V semiconductors provide high tran-
sit frequencies simultaneously with high breakdown voltages,
owing to their higher low-field mobility and larger bandgap
compared to silicon based transistors. The development of both
process technology along with device design optimization and
adequate physics-based compact models for technology
deployment may benefit tremendously from numerical device
simulation (a.k.a. technology computer aided design or TCAD)
under the following conditions. (i) The associated TCAD tools
provide a reasonably accurate prediction of the impact of struc-
tural changes on the electrical device characteristics. (ii) The
computational effort enables obtaining useful results within
reasonable time. Meeting these requirements is becoming
increasingly difficult with the reduction of critical device
dimensions and the use of materials that exhibit additional
physical effects compared to silicon. Both of these attributes
apply to III-V semiconductors and are the main reason for the
lack of suitable TCAD tools in that field.

In contrast to silicon based devices, III-V based devices
employ materials in which electron transport in more than one
conduction band is relevant [1-3]. Transport in (typically) two
valleys with quite different mobility is usually accounted for
using the so-called single electron gas (SEG) approximation
with a modified electron velocity-field equation 

that accounts for the negative-differential-mobility (NDM)
effect [3-5]. This approach has been used in moment-based
transport equations like the drift-diffusion (DD) and hydrody-
namic transport formulations. Due to their computational effi-
ciency, those formulations are being widely used by device
simulators (e.g. [7-9]) in industry and academia. It has been
shown though that the SEG approach does not provide satisfac-
tory results for III-V devices for several reasons [10-13]. The
NDM formulation of the mobility leads to severe convergence
problems, prohibiting simulations in the operating region of
interest for circuit applications [6, 11, 14]. Moreover, the SEG
approach is questionable due to its physical basis, which has
extensively been discussed in [15]. Fundamentally, such issues
can be overcome by using the Boltzmann transport equation
(BTE) (e.g., [16-18]) or more complicated quantum transport
formalisms (e.g., [19]).

However, these approaches are not suitable for practical
applications due to their far too large computational effort and
resulting simulation times. Therefore, a self-consistent solution
of moment-based transport equations is highly desirable due to
their far lower computational cost and parameters that are eas-
ier to adjust to measured device characteristics. Despite the fact
that their physical basis at small length scales becomes ques-
tionable, it has been shown that even the DD approach can still
be employed if the mobility is properly adjusted [20]. This
insight is very beneficial for maintaining a basic analytical
understanding of the major transport effects in a device. In par-
ticular, the simplicity of the DD transport formalism preserves
the bridge between BTE and physics-based compact models
for circuit design, since all mainstream compact models for
FETs and HBTs are based on 1D DD transport (e.g. [21, 22]). 

It is thus desirable to overcome the limitations of the SEG
approximation within the DD transport formalism. In [6], a
two-valley DD approach was proposed that uses a carrier tem-
perature calculated from electrothermal considerations but still
assumes a SEG. It has already been shown that two-valley
hydrodynamic transport with two separate electron gas systems
may be used to accurately reproduce BTE results [23]. How-
ever, the system in [23] requires a large number of parameters
and is, in our opinion, not practical for the analysis and optimi-
zation of transistors that have both a spatially dependent mate-
rial composition and doping density, such as heterojunction
bipolar transistors (HBTs). In this work a two-valley (2v) for-
mulation of 1D DD transport with two separate electron gas
systems is proposed as a compromise between physical rigor
and suitability for practical use of TCAD for device design,
optimization and modeling. Section II introduces the rationale
and physical basis for the 2v-DD equation system, which is
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then formulated in section III. The application of the new 2v-
DD model is demonstrated in section IV.

The DD simulations shown herein have been obtained with
the in-house simulator COOS [24], which has been extended
for the simulation of III-V compound semiconductor hetero-
junction bipolar transistors with more than a single valley. All
simulations herein have been conducted at 300 K.

II. FUNDAMENTALS

The BTE can be used to model carrier transport on a micro-
scopic scale in bulk semiconductors and devices [16, 17]. The
bulk velocity field characteristics of GaAs, InP, GaSb and InAs
obtained from the BTE are shown in Fig. 1 along with mea-
sured data.

 Fig.1.  Measured (symbols) and simulated (solid lines) bulk velocity
field characteristics of intrinsic (a) GaAs [25], (b) InP [26], (c)
InAs and (d) GaSb at 300 K from the BTE. Note that no
experimental data for (c) and (d) have been found for 300 K.

For a semiconductor with several valleys one may use the
method of moments to derive a system of equations from the
BTE [15]. Conservation of particles is expressed as

, (1)

where x is the transport direction, t is the time, nj is the carrier
density and vj is the carrier velocity in valley j. The collision
term in (1), denoted with subscript c, is of crucial importance
for the simulation of many-valley semiconductors. It describes
the coupling between the valleys due to scattering, including
thermal carrier generation and recombination.

For the two valley (j = , L) equation system, numerical solu-
tions based on the hydrodynamic and energy-transport approx-
imations outlined in [15] have been obtained in [23, 27].
However, to the best of our knowledge, such formulations have
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not been implemented in any open-source or commercial
TCAD simulator. This may be related to practical issues. First,
the implementation and numerical effort is quite large. Second,
the accuracy compared to measurements is not necessarily
improved when more moments of the BTE are included, since
more moments require more parameters that also need to be
accurately determined [28, 29]. If predictive device simula-
tions are required, the BTE should be solved [28].

III. MODEL FORMULATION 

A. Two-Valley Drift Diffusion Model 
To reduce the computational effort, the analysis is restricted

to just the most important valleys. For the practically relevant
III-V semiconductors, transport in the  and the L valley domi-
nates for electric fields typically encountered in device and cir-
cuit applications. To be on the safe side, the BTE simulations
used as references in this work also include the X valleys. The
L valley results shown herein are the averages over the simu-
lated L and X valleys.

From (1) and j = , L, one gets two continuity equations

, (2)

where

. (3)

Here Jnj is the current density, q is the elementary charge, µnj is
the carrier mobility, nj is the quasi-Fermi potential (QFP) and
wj is the carrier energy in valley j. This formulation of the DD
current density is better suited for the analysis of heavily doped
devices compared to Blotekjaer’s formulation and can also be
derived directly from the BTE [30]. For a 2v-DD equation sys-
tem the collision terms can be written as

(4)

where j =  when k = L and vice-versa. The functions f are the
intervalley transition frequencies that describe the intervalley
scattering processes as a function of wj and wk. The collision
terms cause the energy dependence of the carrier populations
among the valleys. The intervalley transition frequencies can
be obtained from BTE simulations as explained in [16].

Since the carrier energies are not directly available in a DD
formulation, nj and fjk are modeled as functions of the abso-
lute value of a driving force Fj. This force needs to be calcu-
lated from local quantities and is used to estimate the carrier
energy in each valley. For a homogeneous bulk semiconductor
the carrier energy is a function of the absolute value of the
electrical field E [31]. This allows to find empirical model
equations for nj and fjk as functions of E from bulk BTE simu-
lations. In non-homogeneous structures other fields are more
suitable as driving forces, as will be discussed in Sec. IV.

B.  Intervalley Transfer Rate Model
According to Fig. 2(a), fL shows a distinct dependence on

the electric field, which is modeled by 
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, (5)

where af is a model parameter and EfL is a normalization con-
stant (= 1 kV/cm). The critical field for the onset of intervalley
transfer Eivt is modeled doping dependent as

 , (6)

where Eivt,0, Nivt and ivt are model parameters. In equilibrium,
(4) yields the relationship 

, (7)

with nL),equ as the equilibrium carrier concentration in the
(L) valley. The parameter fL,equ in (5) is implicitly deter-
mined by the band structure, (7) and by the model for fL,
which is introduced next.

The results in Fig. 2(b) indicate that fL is almost indepen-
dent of doping but a linear function of the field, hence 

. (8)

The field dependence of fL has only minor influence on the
distribution of carriers amongst the valleys, since the dynamic
range of fL is much larger. The noise observed in the simu-
lated fL results from the very small amount of carriers in the L
valley at low fields.

C. Velocity Formulation
The carrier velocity in each band as a function of the electric

field is shown in Fig. 3 for GaAs. The velocity field curve for
carriers in the  valley shows a slight NDM effect for doping
concentrations below about 5x1016 cm-3 [32, 33], which has
not been included in this work for the following reasons. (i)
The low impurity concentrations where this effect occurs are of
little relevance in advanced high-speed HBTs. (ii) For field val-
ues where this region would be relevant, the amount of carriers
in the  valley is small. Neglecting this effect causes minor
deviations between BTE and the 2v-DD model at high fields.

 Fig.2.  Intervalley transition frequency in GaAs for NI = [1.0x1015,
1.4x1016, 2.2x1016, 3.3x1016, 5.2x1016, 8.0x1016, 1.1x1018,
1.7x1018, 2.7x1018, 4.2x1018, 6.4x1018]cm-3. Comparison
between BTE (symbols) and analytical approximations (lines)
for (a) fL with (5) and (b) fL with (8). 
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 Fig.3.  Average velocity in (a) the  and (b) the L valley of GaAs
from BTE (symbols) and from (10) (lines) for  the same impu-
rity concentrations NI as listed in Fig. 2.

The mobility model proposed herein has separate parameters
for each valley j. It consists of a low-field mobility due to lat-
tice and impurity scattering [34]

, (9)

where j,L is the lattice mobility, j,min is the mobility at high
impurity concentrations and αj and Nj,ref are model parameters.
Finally, the mobility field dependence is given as

(10)

with vj,sat as the saturation velocity and βj as a model parame-
ter. This mobility model is available in this or a similar form in
most TCAD simulators.

IV. MODEL APPLICATION

A.  Steady-State Bulk Velocity-Field Characteristics
The average carrier velocity in a homogeneous bulk semi-

conductor with two valleys is 

, (11)

where n+nL = NI. Under steady-state conditions the l.h.s. of
(4) equals zero, resulting in

, (12)

which can be evaluated using (5) and (8) [35]. The parameters
for the model equations of fL, fL, nL and n have been
obtained by fitting (5), (8) and (10) to BTE simulation results.
The bulk velocity field characteristics are then obtained using
(11) and (12). The comparison of the 2v-DD model with BTE
data is shown in Fig. 4. Quite good agreement, including the
NDM effect, is observed over a wide range of doping levels1.
The model parameters are summarized in Appendix B.
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 Fig.4.  Bulk velocity-field characteristic of (a) GaAs, (b) InP, (c) InAs
and (d) GaSb from BTE simulation (symbols) and the 2v-DD
equation system (lines) for the same impurity concentrations
NI as listed in Fig. 2.

B. Driving Force and Application to Test Structures
In this section different choices for the driving force Fj,

labeled (i)-(iii), are discussed using two n+-n-n+ test structures
as examples. Common choices for driving forces are the gradi-
ents of the QFPs and the electric field. Approach (i) and (ii) are
defined as:

 (i)

 (ii)

(i) is often used in DD simulations and has been proven useful
in practice [36]. Using (ii), the local energy in valley j is esti-
mated from d(Wj0-Wj)/dx, where Wj is the band edge of valley j
and the index 0 indicates its equilibrium value. Note that for a
homogeneous bulk semiconductor, d(Wj0-Wj)/dx is equal to the
electric field2. 

BTE results of the mean carrier energy, along with the gradi-
ents for (i) and (ii) are shown in Fig. 5. The QFPs in Fig. 5
have been extracted from the BTE assuming

, (13)

1. Due to the lack of published experimental data over a sufficiently 
wide doping concentration range (GaAs, InP) or at all (GaSb, InAs) 
BTE data have been used as reference for calibrating the DD model.

2. In the general 3D case the d/dx operators in (i) and (ii) need to be 
replaced with .Jnj J nj 
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as would be valid for DD transport; nij is the effective intrinsic
carrier density of valley j,  is the electrostatic potential and
VT is the thermal voltage. All fields show a similar behavior
and a significant deviation from the shape of the mean carrier
energy. Thus, at least for this structure, the local fields are
unsuitable for estimating the non-local energy acquisition.

 Fig.5.  Comparison of different fields (left axis) based on local quan-
tities and the mean carrier energy (right axis, black solid line)
for the GaAs n+-n-n+ structure of Fig. 6. The applied voltage
is 3 V.

 Fig.6.  Comparison of (a) current density, (b) carrier distribution
between the valleys and (c) electrostatic potential (left y-axis)
and doping profile (blue solid line, right axis) of a n+nn+

GaAs structure. The bias in (b) and (c) is V = 3 V. The choices
(i)-(iii) for the driving force are described in the text.

In Fig. 6 simulations with (i) and (ii) are compared to measure-
ment data and BTE simulations. In both cases, the velocity sat-
uration in the  valley had to be turned off to achieve
convergence with (i) and (ii). As expected, both choices are
unable to reproduce the BTE results satisfactorily and, thus, to
describe non-local effects within the DD transport framework.
To overcome this limitation, another driving force needs to be
found. This driving force is used in approach (iii) and will be
introduced, next.
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Before (iii) is derived, the principal properties between
energy and electric field are discussed based on the BTE
results in Fig. 7. Regardless of the bias level, the energy peaks
on the right side of the n-layer. Even though the field is almost
constant for low bias, the energy shows a spatial dependence.
At high bias, the mean energy tends to saturate around 0.12 eV,
while the field is still significantly increasing.

To account for the non-local energy-field dependence, the
local field needs to be transformed into an effective local field
such that the local energy is estimated correctly. As shown in
Appendix A, a simplified energy balance equation for the 
valley reads

. (14)

Here, w is the energy relaxation time, T0 is the lattice tempera-
ture and T is the average carrier temperature in the  valley.
Near steady-state, (14) allows defining an effective local field

  , (15)

 Fig.7.  (a) Electric field and (b) mean carrier energy from BTE simu-
lations of the n+nn+ GaAs structure for different applied volt-
ages 0.25-3 V.

where  is a parameter related to the energy relaxation time
and the saturation velocity (see Appendix A). In regions where
carrier heating is relevant, but intervalley transfer is not, a
rough solution of (14) may be obtained by assuming that the
field is spatially constant and that carriers travel at saturation
velocity in the transport direction x. Then, the solution of (14)
is [37]

, (16)
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where is used as a fitting parameter and xb is the first point
in the carrier heating region.

In n+ regions, the gradient of the quasi-Fermi potential is
negligible and hence T equals T0. In the n region (16) can be
used to estimate T as long as intervalley transfer is negligible.
When T becomes sufficiently large, intervalley transfer
becomes relevant and an analytical solution for T is difficult
to obtain. From the BTE solutions in Fig. 7(b) one can deduce
that the energy, and thus also T, is saturating beyond a certain
critical field. Hence, a suitable driving force is

, (iii-a)

where Ecrit and  are used as fitting parameters and (15)-(16)
are used to calculate |dneff/dx|. For the L valley it is assumed
that 

, (iii-b)

which overestimates the L valley energy. This error is not criti-
cal, since carriers transferred to the L valley travel near satura-
tion velocity anyway. Furthermore, fL is only weakly
dependent on FL. Equations (iii-a) and (iii-b) define approach
(iii).

Approach (iii) leads to quite good agreement for the electro-
static potential and carrier densities as shown in Fig. 6(b), (c).
Also, the terminal current density exhibits qualitatively better
agreement with BTE and experimental data at high fields (see
Fig. 8(a)), but is now somewhat too large. With a proper
adjustment of the L valley saturation velocity, the agreement
can be improved further. The proposed use of the effective
field in (iii-a) provides a practical approach towards capturing
negative different mobility effects in a DD transport frame-
work. The simulation results for an InP n+-n-n+ structure,
shown in Fig. 8, further underline the suitability of this
approach to capture non-local effects.

C. Application to GaAsSb/InP HBT
Fig. 9 depicts simulation results for a GaAsSb/InP HBT [38],

using the 2v-DD equation system. In addition to the two elec-
tron continuity equations (3) and the Poisson equation, a hole
continuity and transport equation needs to be solved. Herein,
the mobility model and corresponding parameters from [39]
are used. At the abrupt heterojunction, a special boundary con-
dition is required [39]. In the middle of the neutral base the
hole quasi-Fermi potential is forced to equal the applied base
voltage [40].

To estimate the non-local energy, approach (iii) is used,
where the collector is treated in the same way as the n region
before. The material properties of the GaAsSb alloy are calcu-
lated using the parameters of its constituents and assuming
bowing parameters equal to zero. The solution shows similar
trends as the results in [17, 23]. In particular, the L valley car-
rier density in the BC space-charge-region increases (s. Fig.
9(b)) and exceeds the valley carrier density with increasing
bias. The impact of intervalley transfer on the transit frequency

F
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+
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can be seen in Fig. 9(c), where simulation results without inter-
valley transfer are shown for comparison. As the current den-
sity increases, more carriers get transferred to the L valley,
decreasing the transit time due to the lower velocity in that val-
ley. A calibration of the model to measured data for this tran-
sistor is left for future work.

 Fig.8.  Comparison of (a) current density, (b) electrostatic potential
and (c) carrier distribution between the valleys of an InP struc-
ture with the same doping profile as depicted in Fig. 6(c) from
BTE (dots) and DD simulations with the energy estimator
approach (iii) (solid lines) and (i) (dashed lines). The bias in
(b) and (c) is V = 3 V.

V. CONCLUSION

A two-valley DD formulation for the simulation of III-V
semiconductors has been developed. The transition of charge
carriers between the two bands is described by a model for
intervalley transfer that employs an effective electric field in
order to capture the non-local energy acquisition of carriers. As
opposed to standard single-valley transport models employed
in most TCAD simulators, the new 2v-DD transport formula-
tion captures the negative differential mobility effect in a natu-
ral way while at the same time maintaining computational
efficiency and limiting the number of model parameters. 

The parameters for widely used III-V materials have been
obtained from bulk BTE simulations at room temperature.
Examples for the application of the new 2v-DD model have
been presented. Future investigations will focus on the applica-
tion of the two-valley DD model to III-V HBTs and compact
modeling support. Also, it would be useful to determine bow-
ing parameters for III-V alloys.

 Appendix  A: Carrier temperature
The energy-balance equation is given by (6) in [41]. It is also

valid also for III-V semiconductors as long as intervalley trans-
fer, and thus the associated energy flux, can be neglected. With

0 1 2

0.7

0.8

0.9

1

x (μm)

n
Γ
/
(n

Γ
+

n
L
)

0 1 2 3
0

0.2

0.4

0.6

V (V)

J
( m

A
μm

−
2
)

0 1 2
0

1

2

3

x (μm)

Ψ
(V

)

(b)(a)

(c)

the assumptions given in [42] and using (3), one can derive
(14). Assuming dJn/dx = 0 and carriers traveling at saturation
velocity allows to rewrite (14) as

, (17)

where vsat is the  valley saturation velocity and
 = 5vsatw/3 is the energy relaxation length as defined in
[37]. This equation allows to derive (15) and (16) [37].

 Fig.9.  Simulated GaAs1-zSbz/InP HBT with z = 0.5 in the base and
z = 0 in all other regions. (a) Band diagram for VBE = 0 V. (b)
Electron density in the (solid lines) and L valleys (symbols)
and impurity concentration (dashed line) in the base and col-
lector for operating points JC = [4x10-3, 0.18, 4.6, 7.4] mA/
m2. (c) Transit frequency vs. collector current density with
intervalley valley transfer turned on and off. VBC = -0.2 V in
all cases. The dashed line in (a) indicates the net doping con-
centration in log scale.

 Appendix  B: Extracted Model Parameters
The parameters of the two-valley DD system are listed in the

tables below. 

Table 1: Parameters for the velocity field model in the  valley.
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Table 2: Parameters for the velocity field model in the L valley.

Table 3: Parameters for the intervalley transfer rate model. 
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