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This paper presents the results and analyses stemming from the first VoicePrivacy 2020 Challenge which focuses on developing anonymization solutions for speech technology. We provide a systematic overview of the challenge design with an analysis of submitted systems and evaluation results. In particular, we describe the voice anonymization task and datasets used for system development and evaluation. Also, we present different attack models and the associated objective and subjective evaluation metrics. We introduce two anonymization baselines and provide a summary description of the anonymization systems developed by the challenge participants. We report objective and subjective evaluation results for baseline and submitted systems. In addition, we present experimental results for alternative privacy metrics and attack models developed as a part of the post-evaluation analysis. Finally, we summarise our insights and observations that will influence the design of the next VoicePrivacy challenge edition and some directions for future voice anonymization research.

Introduction

Due to the growing demand for privacy preservation in the recent years, privacy-preserving data processing has become an active research area. One reason for this is the European general data protection regulation (GDPR) in the European Union (EU) law and similar regulations in national laws of many countries outside the EU concerning the implementation of the data protection principles when treating, transferring or storing personal data.

Although a legal definition of privacy is missing (Nautsch et al., 2019a), speech data contains a lot of personal information that can be disclosed by listening or by automated systems (Nautsch et al., 2019b). This includes, e.g., age, gender, ethnic origin, geographical background, health or emotional state, political orientations, and religious beliefs. Speaker recognition systems can also reveal the speaker's identity. Therefore, the increased interest in developing privacy preservation solutions for speech technology is not surprising. This motivated the launching of the VoicePrivacy initiative [START_REF] Tomashenko | Introducing the VoicePrivacy initiative[END_REF]. This initiative aims to bring together a new community of researchers, engineers and privacy professionals in order to formulate the tasks of interest, develop evaluation methodologies, and benchmark new solutions through a series of challenges. The first VoicePrivacy challenge1 was organized as a part of this initiative (Tomashenko et al., 2020b,a).

Existing approaches to privacy preservation for speech can be broadly classified into: obfuscation, encryption, distributed learning, or anonymization. Obfuscation methods [START_REF] Cohen-Hadria | Voice anonymization in urban sound recordings[END_REF][START_REF] Gontier | Privacy aware acoustic scene synthesis using deep spectral feature inversion[END_REF] suppress or modify the speech signal to the point where no information about it can be recovered. Encryption methods [START_REF] Pathak | Privacypreserving speech processing: cryptographic and string-matching frameworks show promise[END_REF][START_REF] Brasser | VoiceGuard: Secure and private speech processing[END_REF][START_REF] Zhang | Encrypted speech recognition using deep polynomial networks[END_REF] support computation upon data in the encrypted domain, however they significantly increase the computational complexity. Decentralized or federated learning methods learn models from distributed data without accessing it directly [START_REF] Leroy | Federated learning for keyword spotting[END_REF], however the derived data used for learning (e.g., model gradients) may still leak information about the original data (Tomashenko et al., 2021a;[START_REF] Mdhaffar | Retrieving speaker information from personalized acoustic models for speech recognition[END_REF]. Note also that the latter two categories of approaches are incompatible with using the data for supervised machine learning purposes, which requires third-party annotators to access the data in non-encrypted form.

Anonymization refers to the goal of suppressing personally identifiable information in the speech signal, leaving other attributes intact. In contrast to the above approaches, it allows the data to be used for supervised machine learning purposes and it can easily be integrated within existing systems. Note, that in the legal community, the term "anonymization" means that this goal has been achieved. Here, it refers to the task to be addressed, even when the method being evaluated has failed. Anonymization requires altering not only the speaker's voice, but also other traits and states, words in the spoken contents, and sounds in the background which, when considered in combination with each other and possibly with external data, may reveal the speaker's identity. As a first step towards this goal, the VoicePrivacy 2020 Challenge focuses on voice anonymization, that is the task of altering the speaker's voice to hide their identity to the greatest possible extent, while leaving all other speech attributes (traits, states, and spoken contents) intact. Approaches to voice anonymization include noise addition [START_REF] Hashimoto | Privacy-preserving sound to degrade automatic speaker verification performance[END_REF], speech transformation [START_REF] Qian | Voicemask: Anonymize and sanitize voice input on mobile devices[END_REF][START_REF] Patino | Speaker anonymisation using the McAdams coefficient[END_REF], voice conversion [START_REF] Fang | Speaker anonymization using x-vector and neural waveform models[END_REF][START_REF] Han | Voiceindistinguishability: Protecting voiceprint in privacy-preserving speech data release[END_REF][START_REF] Tomashenko | The VoicePrivacy 2020 Challenge evaluation plan[END_REF], and disentangled representation learning [START_REF] Srivastava | Privacypreserving adversarial representation learning in ASR: Reality or illusion?[END_REF][START_REF] Aloufi | Privacy-preserving voice analysis via disentangled representations[END_REF]. Despite the appeal of voice anonymization, the level of privacy protection offered by these solutions is unclear and not meaningful because there is no formal definition of the task and no formal attack model, and there are no common datasets, protocols and metrics. The VoicePrivacy 2020 Challenge aims to address all of these concerns.

The paper is structured as follows. The challenge design, including the description of the anonymization task, attack models, datasets, objective and subjective evaluation methodologies with the corresponding privacy and utility metrics, is presented in Section 2. The overview of the baseline and submitted systems is provided in Sections 3. Objective and subjective evaluation results and their comparison and analysis are presented in Section 4. We conclude and discuss future directions in Section 5.

Challenge design

In this section, we present an overview of the official challenge setup: anonymization task, corresponding attack models selected for the challenge, data and evaluation methodology. Also we present an additional attack model developed as part of the post-evaluation analysis [START_REF] Tomashenko | Post-evaluation analysis for the VoicePrivacy 2020 challenge: Using anonymized speech data to train attack models and ASR[END_REF].

Anonymization task and attack models

Privacy preservation is formulated as a game between users who share2 some data and attackers who access this data or data derived from it and wish to infer information about the users [START_REF] Qian | Towards privacy-preserving speech data publishing[END_REF][START_REF] Srivastava | Evaluating voice conversion-based privacy protection against informed attackers[END_REF][START_REF] Tomashenko | Introducing the VoicePrivacy initiative[END_REF]. To protect their privacy, the users share data that contain as little personal information as possible while allowing one or more downstream goals to be achieved. To infer personal information, the attackers may use additional prior knowledge.

Focusing on speech data, a given privacy preservation scenario is specified by: (i) the nature of the data: waveform, features, etc., (ii) the information seen as personal: speaker identity, traits, spoken contents, etc., (iii) the downstream goal(s): human communication, automated processing, model training, etc., (iv) the data accessed by the attackers: one or more utterances, derived data or model, etc., (v) the attackers' prior knowledge: previously shared data, privacy preservation method applied, etc. Different specifications lead to different privacy preservation methods from the users' point of view and different attacks from the attackers' point of view.

Here, we consider the scenario illustrated in Figure 1 where speakers want to hide their identity to the greatest possible extent while allowing the desired downstream goals to be achieved, while attackers want to identify the speakers from their utterances. Example of a privacy preservation scenario as a game between users and attackers in the case where speaker identity is considered as personal information to be protected.

Anonymization task

The sentences shared by the users are called trial utterances. 3 In order to hide his/her identity, each user passes these utterances through a voice anonymization system prior to sharing. The resulting utterances sound as if they were uttered by another speaker, which we call pseudo-speaker since it may be an artificial voice not corresponding to any real speaker.

The task of challenge participants is to develop this anonymization system. It should: (a) output a speech waveform, (b) hide speaker identity, (c) leave other speech characteristics unchanged, (d) ensure that all trial utterances from a given speaker are uttered by the same pseudo-speaker, while trial utterances from different speakers are uttered by different pseudo-speakers.

The requirement (c) promotes the achievement of all possible downstream goals to the best possible extent. In practice, we restrict ourselves to a few goals corresponding to two use cases: ASR training and/or decoding, and multiparty human conversations. The requirement (d) corresponds to the latter goal and is motivated by the fact that, in a multi-party human conversation, the anonymized voices of all speakers must sound natural, be distinguishable from each other, and cannot change over time. The achievement of these goals is assessed via a range of utility metrics.

Attack models

For each speaker of interest, the attacker is assumed to have access to one or more utterances spoken by that speaker. These utterances may or may not have been anonymized and are called enrollment utterances.

In this work, the attackers have access to: (a) one or more anonymized trial utterances, (b) possibly, original or anonymized enrollment utterances for each speaker. The protection of identity information is assessed via privacy metrics, including objective speaker verifiability and subjective speaker verifiability and linkability. These metrics assume different attack models.

The objective speaker verifiability metrics (Section 2.3.1) assume that the attacker has access to a single anonymized trial utterance and several enrollment utterances. Two sets of metrics were computed, corresponding to the two attack models when the enrollment utterances are original or they have been anonymized by the user or the attacker. In the post-evaluation stage, we considered a stronger attack model where attackers also have access to anonymized training data and can retrain an automatic speaker verification system using this data.

For the subjective evaluation (Section 2.3.2), two situations are considered. The speaker verifiability metric assumes that the attacker has access to a single anonymized trial utterance and a single original enrollment utterance, while the speaker linkability metric assumes that the attacker has access to several original and anonymized trial utterances.

Datasets

Several publicly available corpora are used for the training, development and evaluation of voice anonymization systems.

Training set. The training set comprises the 2,800 h VoxCeleb-1,2 corpus [START_REF] Nagrani | VoxCeleb: a large-scale speaker identification dataset[END_REF][START_REF] Chung | VoxCeleb2: Deep speaker recognition[END_REF] and 600 h subsets of the LibriSpeech [START_REF] Panayotov | LibriSpeech: an ASR corpus based on public domain audio books[END_REF] and LibriTTS [START_REF] Zen | LibriTTS: A corpus derived from LibriSpeech for text-to-speech[END_REF] corpora. These corpora are among the largest and the most widely used for speaker verification, ASR, and speech synthesis, respectively, hence they are natural choices for training voice anonymization systems which must extract speaker identity and phonetic information and resynthesize a speech signal which hides the former and preserves the latter. The selected subsets are detailed in Table 1 

(top).
Development set. The development set involves LibriSpeech dev-clean and a subset of the VCTK corpus [START_REF] Veaux | CSTR VCTK corpus: English multi-speaker corpus for CSTR voice cloning toolkit (version 0.92[END_REF], denoted VCTK-dev (see Table 1, middle). With the above attack models in mind, we split them into trial and enrollment subsets. For LibriSpeech dev-clean, the speakers in the enrollment set are a subset of those in the trial set. This corpus is meant for objective ASR performance evaluation. For VCTK-dev, we use the same speakers for enrollment and trial and we consider two trial subsets: common and different. The common subset comprises utterances #1 -24 in the VCTK corpus that are identical for all speakers. This is meant for subjective evaluation of speaker verifiability/linkability in a text-dependent manner. The enrollment and different subsets comprises distinct utterances for all speakers. 

Utility and privacy metrics

We consider objective and subjective privacy metrics to assess speaker reidentification and linkability. We also propose objective and subjective utility metrics to assess the fulfillment of the user goals specified in Section 2.1.

Objective metrics

For objective evaluation of anonymization performance, two systems were trained to assess the following characteristics: (1) speaker verifiability and (2) ability of the anonymization system to preserve linguistic information in the anonymized speech. The first system, denoted ASV eval , is an automatic speaker verification (ASV) system based on x-vector speaker embeddings and probabilistic linear discriminant analysis (PLDA) [START_REF] Snyder | Xvectors: Robust DNN embeddings for speaker recognition[END_REF], which outputs a log-likelihood ratio (LLR) score. The second system, denoted ASR eval , is an automatic speech recognition (ASR) system which outputs a word sequence. Both ASR eval and ASV eval were trained on the LibriSpeech-train-clean-360 dataset using the Kaldi speech recognition toolkit [START_REF] Povey | The Kaldi speech recognition toolkit[END_REF]. These two models were used in the official challenge setup [START_REF] Tomashenko | Introducing the VoicePrivacy initiative[END_REF]. In addition, for post-evaluation analysis, we trained ASV and ASR systems on anonymized speech data. Both models, denoted ASV anon eval and ASR anon eval , were trained in the same way as ASV eval and ASR eval , respectively.4 

For objective utility evaluation, the official challenge setup relies on the ubiquitous word error rate (WER) metric. The post-evaluation phase also considers the gain of voice distinctiveness metric of [START_REF] Noé | Speech pseudonymisation assessment using voice similarity matrices[END_REF], which accounts for the additional requirement that the anonymized voices of all speakers must be distinguishable from each other.

For objective privacy evaluation, three well-established speaker verification metrics are computed in the official challenge setup: the equal error rate (EER) and the log-likelihood ratio (LLR) based costs C llr and C min llr . As seen in Figure 2, these metrics are computed for 4 evaluation scenarios corresponding to different types of attacks depending on the amount of the attackers' knowledge. Following the terminology of Srivastava et al. (submitted), we consider the following conditions.

1. Unprotected : no anonymization is performed by users; attackers have access to original trial and enrollment data.

2. Ignorant attacker (oa): original enrollment and anonymized trial data are used for evaluation. We refer to this scenario as (original, anonymized) or oa in short. Users anonymize their trial data, but attackers are unaware of it, hence they use original data for enrollment.

3. Lazy-informed (aa) anonymized enrollment and anonymized trial data are used for evaluation. We refer to this scenario as (anonymized, anonymized) or aa in short. This scenario reflects the situation when the enrollment data are anonymized data produced by users, who are assumed to use the same anonymization system but different pseudo-speakers from their trial data.5 While it is unlikely that attackers have access to anonymized data with explicit speaker identities, they may infer the identities of a subset of the data from the spoken contents and subsequently use this data as enrollment data. This scenario also reflects the alternative situation when attackers have access to original enrollment data and anonymize them using the same system (which is assumed to be publicly available) so that they become more similar to the anonymized trial data. Here again, the data is anonymized using a different pseudo-speaker, since attackers do not know which pseudo-speaker was picked by each user. Hence, both situations result in the same attack model.

4.

Semi-informed (aa with the model retrained on anonymized data): attackers have the same knowledge as in the previous case (the anonymization system, but not the pseudo-speaker picked by each speaker) and, in addition to this, they anonymize the training set for the ASV eval model using the same anonymization system with different pseudo-speakers and re-
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• 3 train it on this data. These attackers are the strongest ones among the considered in this paper. This evaluation scenario is part of the postevaluation stage.

The number of same-speaker and different-speaker trials in the development and evaluation datasets is given in Table 2. In addition to the EER, C llr , and C min llr , the post-evaluation phase considers one more privacy metric, namely the de-identification metric of [START_REF] Noé | Speech pseudonymisation assessment using voice similarity matrices[END_REF] which assesses how different each pseudo-speaker is from the original speaker. Note that, although this metric provides useful additional information, it does not directly match the requirements set in Section 2.1. Indeed, the requirement that the original speaker cannot be identified from the anonymized signal does not imply that the pseudo-speaker's voice must be maximally different.

The objective evaluation metrics for privacy and utility are listed below.

Equal error rate (EER). Denoting by P fa (θ) and P miss (θ) the false alarm and miss rates at threshold θ, the EER corresponds to the threshold θ EER at which the two detection error rates are equal, i.e., EER = P fa (θ EER ) = P miss (θ EER ).

Log-likelihood-ratio cost function (C llr and C min llr ). C llr is computed from PLDA scores as defined by [START_REF] Brümmer | Application-independent evaluation of speaker detection[END_REF] and [START_REF] Ramos | Cross-entropy analysis of the information in forensic speaker recognition[END_REF]. It can be decomposed into a discrimination loss (C min llr ) and ). C min llr is estimated by optimal calibration using monotonic transformation of the scores to their empirical LLR values.

De-identification and gain of voice distinctiveness. To visualize anonymization performance across different speakers in a dataset, voice similarity matrices have been proposed by [START_REF] Noé | Speech pseudonymisation assessment using voice similarity matrices[END_REF]. A voice similarity matrix M = (M (i, j)) 1≤i≤N,1≤j≤N is defined for a set of N speakers using similarity values M (i, j) computed for speakers i and j as follows:

M (i, j) = sigmoid     1 ninj 1≤k≤n i and 1≤l≤n j k̸ =l if i=j LLR(x (i) k , x (j) l )     (1)
where LLR(x

(i) k , x (j) 
l ) is the log-likelihood-ratio obtained by comparing the k-th segment from the i-th speaker with the l-th segment from the j-th speaker, and n i and n j are the numbers of segments for these speakers. Three matrices are computed: M oo on original data, M aa on anonymized data, and M oa on original and anonymized data. For computing the entries M (i, j) of M oa , we use original data for speaker i and anonymized data for speaker j.

Using voice similarity matrices, two additional metrics can be computed: de-identification (DeID) and gain of voice distinctiveness (G VD ) [START_REF] Noé | Speech pseudonymisation assessment using voice similarity matrices[END_REF]. They are computed based on the ratio of diagonal dominance for two pairs of matrices: {M oa , M oo } or {M oo , M oo }, respectively. The diagonal dominance D diag (M ) is defined as the absolute difference between the mean values of diagonal and off-diagonal elements:

D diag (M )= 1≤i≤N M (i, i) N - 1≤j≤N and 1≤k≤N j̸ =k M (j, k) N (N -1) . ( 2 
)
The de-identification metric is defined as DeID = 1-D diag (M oa )/D diag (M oo )

240
and it is expressed in percent. DeID = 100% means perfect de-identification, Post-evaluation

ASR evaluation

Figure 3: ASR evaluation for the official challenge setup using ASR eval trained on original data is performed for two cases: (1) original trial data and (2) anonymized trial data. ASR evaluation for the post-evaluation analysis is performed using ASR anon eval trained on anonymized data for case (3) anonymized trial data.

while DeID = 0% means no de-identification. Gain of voice distinctiveness is defined as G VD = 10 log 10 (D diag (M aa )/D diag (M oo )), where 0 means that the voice distinctiveness remains globally the same after anonymization, and a gain above or below 0 corresponds respectively to a global increase or a loss of voice distinctiveness.

Word error rate (WER). ASR performance is assessed using ASR eval which is based on the adapted Kaldi recipe for LibriSpeech involving an acoustic model with a factorized time delay neural network (TDNN-F) architecture [START_REF] Povey | Semi-orthogonal low-rank matrix factorization for deep neural networks[END_REF][START_REF] Peddinti | A time delay neural network architecture for efficient modeling of long temporal contexts[END_REF], trained on the LibriSpeech-train-clean-360 dataset, and a trigram language model. As shown in Figure 3, the (1) original and (2) anonymized trial data is decoded using the pretrained ASR eval model and the WERs are calculated. For the post-evaluation analysis, we also perform decoding of anonymized trial data using the ASR anon eval model trained on anonymized data (Figure 3, case 3).

Subjective metrics

We consider two subjective privacy metrics (speaker verifiability and speaker linkability), and two subjective utility metrics (speech naturalness and speech intelligibility). The speaker verifiability and speech intelligibility metrics are subjective counterparts to the EER/C llr /C min llr and WER metrics, and aim to assess how human perception differs from objective evaluation. The speaker linkability metric provides a closer account of the way humans perceive voice characteristics and distinguish voices as belonging to certain speakers. Finally, the speech intelligibility metric is motivated by the requirement that the anonymized voices should sound natural, for which no established objective metric 

exists.

Subjective speech naturalness, intelligibility, and speaker verifiability. These three metrics were evaluated using the unified subjective evaluation test illustrated in Figure 4. Each evaluator was asked to rate one original or anonymized test set trial at a time. For naturalness, the evaluator assigned a score from 1 ('totally unnatural') to 10 ('totally natural'). For intelligibility, the evaluator assigned a score from 1 ('totally unintelligible') to 10 ('totally intelligible'). For speaker verifiability, the evaluator was required to listen to one original enrollment utterance from the same or a different speaker and rate the similarity between the trial and enrollment voices using a scale of 1 to 10, where 1 denotes 'different speakers' and 10 denotes 'the same speaker' with highest confidence. The evaluator was instructed to assign the scores through a role-playing game. 6Every evaluator was required to evaluate 36 trials in one session, following the procedures in Figure 4. He or she could also evaluate more than one session. The trials were randomly sampled from the speakers in the three test sets. The ratio of anonymized vs. original trials was roughly 1:1. So was the ratio of enrollment-trial pairs from the same vs. different speakers. Among the anonymized trials, the proportion of trials from each submitted anonymization system was also balanced. 47 native English speakers participated in the evaluation and evaluated 16, 200 trials. The decomposed numbers of trials over the three test sets are listed in Table 3.

To reduce the perceptual bias of each evaluator, the scores were subject to normalized-rank normalization [START_REF] Rosenberg | Bias and statistical significance in evaluating speech synthesis with mean opinion scores[END_REF]. The normalized scores are real-valued numbers in [0, 1]. The Mann-Whiteney-U test [START_REF] Rosenberg | Bias and statistical significance in evaluating speech synthesis with mean opinion scores[END_REF] was used to assess statistical significance.

Table 3: Number of trials for the subjective evaluation of speech naturalness, intelligibility, and speaker verifiability. The anonymized trials are from 9 anonymization systems (2 baselines and 7 primary participants' systems). The number of speakers is 30 (15 male and 15 female) in each dataset, i.e., with respect to Table 1, 2 male speakers were re-sampled and 1 female speaker was discarded for LibriSpeech. Perception of speaker identity and speaker linkability. Evaluating the perception of speaker identity by humans is not simple. The subjective verifiability and intelligibility scores described above closely mimic the corresponding objective metrics. Yet, the question whether they suffer from perceptual biases like the memorisation bias (the evaluator recalls hearing the same voice previously) or the well-known priming effect (exposure to a stimulus inconsciently influences the response to a subsequent stimulus) remains open. In order both to assess speaker linkability (i.e., the ability to cluster utterances into speakers) and to decrease as much as possible the influence of such biases, we designed a clustering-based perceptual experiment and the corresponding metrics. We developed a specific software tool for this purpose (O'Brien et al., 2021). 7 Due to the time-consuming nature of this experiment, only the two baseline anonymization systems were evaluated. 74 evaluators were recruited: 29 are native English speakers and the others are either bilingual or hold a high level of English. Each evaluator did only one session composed of three panels, resulting in a total of 222 panels. Each panel includes 16 utterances from 3 reference speakers (2 to 6 utterances each) and 1 distractor speaker (1 utterance only). Including a distractor helps to verify that the evaluators focus on speaker specificities and are not disturbed by other acoustic differences. The anonymized distractor speaker was used to examine whether anonymization systems affect speaker discrimination performance, e.g., the evaluator either correctly identified the speaker as unique or incorrectly included it in a reference cluster.

For each panel, the evaluators were asked to group the 16 utterances into 1 to 4 clusters according to subjective speaker voice similarity. In order to avoid perceptual biases as much as possible, during a given session, each speaker was encountered in only 1 panel, and all speakers were of the same gender. For the control panel, original speech was used for all utterances; for the two other panels, half of the utterances were anonymized using the same anonymization system. The data used in the speaker clustering task come from the VCTK-test (common) corpus. Unlike all other experiments, only the first 3 s of each utterance were used. The motivation for this length restriction was to provide evaluators with excerpts that were short enough to not induce complex cognitive processes that involve complex syntactic, semantic, and pragmatic analysis. If the evaluators were provided longer excerpts, they could become distracted by attempting to complete and understand text narratives. In addition, limiting the duration of the excerpts reduces the risk of evaluator fatigue.

As a primary metric, we use the macro-average F-measure (F 1 ), a classical metric for such a task. We also use a secondary metric called clustering purity. Clustering purity associates each cluster with a unique ground truth speaker and focuses only on precision, while F 1 allows two clusters to correspond to the same ground truth speaker and is the harmonic mean of precision and recall. Clustering purity is defined as

purity(C) = max s∈S 1 N c∈C |c ∩ s c |, ( 3 
)
where C is the set of estimated clusters, c is an individual cluster in C, S is the set of all possible combinations of unique speakers assigned to each cluster, s c is the speaker label assigned to cluster c in combination s, and N is the number of utterances in the panel. In addition, we consider a clustering change (CC) metric, that is the number of times an evaluator (re-)assigns an utterance to a cluster.

Anonymization systems

We now describe the two baseline systems provided by the challenge organizers as well as those prepared by challenge participants.

Baseline systems

Two different anonymization systems were provided as challenge baselines8 to help the participants tackle this relatively new task and explore a wide range of solutions. The first baseline offers more flexibility in the choice of the pseudospeaker and provides state-of-the-art objective privacy and utility, but it requires significant development efforts and big computational resources. In contrast, the second baseline is simpler and provides good subjective speech naturalness and intelligibility, but it results in weaker privacy preservation.

The primary baseline, denoted B1, is shown in Figure 5. It is inspired from [START_REF] Fang | Speaker anonymization using x-vector and neural waveform models[END_REF] and performs anonymization using x-vectors [START_REF] Snyder | Xvectors: Robust DNN embeddings for speaker recognition[END_REF] and neural speech synthesis. It comprises three steps: (1) xvector, pitch (F0) and bottleneck (BN) feature extraction; (2) x-vector anonymization; (3) speech synthesis (SS) using the anonymized x-vector and the original F0 and BN features.

Step (1) encodes the spoken content by 256dimensional BN features extracted using a TDNN-F ASR AM trained on the LibriSpeech train-clean-100 and train-other-500 datasets and speaker information by a 512-dimensional x-vector extracted using a TDNN trained on the VoxCeleb-1,2 dataset. Both extractors are implemented with the Kaldi toolkit.

Step (2) computes an anonymized x-vector for every original x-vector. It is generated by averaging a set of N * x-vectors selected at random from a larger set of N x-vectors, itself composed of the N farthest x-vectors in the LibriTTS trainother-500 dataset, according to PLDA distance. 9 Step (3) uses a SS AM to generate Mel-filterbank features from the anonymized x-vector and the original F0 and BN features, and a neural source-filter (NSF) waveform model (Wang & Yamagishi, 2019) In contrast to the primary baseline, the secondary baseline, denoted B2, does not require any training data and is based upon traditional signal processing techniques [START_REF] Patino | Speaker anonymisation using the McAdams coefficient[END_REF]. It employs the McAdams' coefficient (McAdams, 1984) to achieve anonymization by shifting the pole positions derived from the linear predictive coding (LPC) analysis of speech signals. The process is depicted in Figure 6. It starts with the application of frame-by-frame LPC source-filter analysis to derive LPC coefficients and residuals. The residuals are set aside for later resynthesis, whereas LPC coefficients are converted into pole positions by polynomial root-finding. The McAdams' transformation is then applied to the angles of the poles (with respect to the origin in the zplane), each one of which corresponds to a peak in the spectrum (resembling 

Submitted systems

The VoicePrivacy Challenge attracted 45 participants from both academic and industrial organizations and 13 countries, representing 25 teams. Among the 5 allowed submissions by each team, participants were required to designate one as their primary system with any others being designated as contrastive systems. With full descriptions available elsewhere, we provide only brief descriptions of the 16 successful, eligible submissions, a summary of which is pro- [START_REF] Huang | Analysis of PingAn submission in the VoicePrivacy 2020 Challenge[END_REF] •PAII Inc., Palo Alto, CA, USA -

vided in

Submissions derived from Baseline-1

Teams A, M, O and S (see identifiers in column 3 of Table 4 and column 1 of Table 5) submitted systems derived from the primary baseline. Table 5 provides an overview of the modifications made by each team to the baseline modules shown in Figure 5. None of the teams modified the x-vector extraction module 410 (#3 in Table 5), whereas two systems modified the x-vector anonymization module (#6). Details of specific modifications are described in the following. We focus first on differences made to specific modules, then on specific system attributes. replaced the baseline F0 extractor with WORLD [START_REF] Morise | World: a vocoder-based highquality speech synthesis system for real-time applications[END_REF] and by SPTK13 alternatives. While no significant impact upon ASR performance was observed, SPTK F0 estimation was found to have some impact, albeit inconsistent, upon the ASV EER. Consequently, the final system used the baseline F0 extractor. Post-evaluation work conducted by [START_REF] Champion | A study of F0 modification for x-vector based speech pseudo-anonymization across gender[END_REF] showed improved anonymization performance when F0 statistics of the original speaker are replaced with those of a pseudo-speaker, without significant impact upon the ASR performance.

ASR AM, speech synthesis AM and NSF model:. Instead of the baseline hybrid TDNN-F ASR acoustic model, systems M1 and M1c1 (Champion et al., 2020a) used an end-to-end model with a hybrid connectionist temporal classification (CTC) and attention architecture [START_REF] Watanabe | Hybrid ctc/attention architecture for end-to-end speech recognition[END_REF] for BN feature extraction. The SS AM and NSF models were then re-trained using the new BN features. In addition, the M1c1 contrastive system relied on semiadversarial training of the ASR AM to learn linguistic features while masking speaker information.

X-vector anonymization:. All teams explored different approaches to xvector anonymization. They are described in the following:

•A2. Singular value modification [START_REF] Mawalim | X-vector singular value modification and statistical-based decomposition with ensemble regression modeling for speaker anonymization system[END_REF]. The singular value decomposition (SVD) of the matrix constructed from the utterance-level speaker

x-vectors was used for anonymization. The target x-vector was obtained from the least similar centroid using x-vector clustering. Anonymization was performed through modification of the matrix singular values. A singular value threshold parameter determines the dimensionality reduction used in the modification and determines the percentage of the kept non-zero singular values.

•A1. Variability-driven decomposition with regression models [START_REF] Mawalim | X-vector singular value modification and statistical-based decomposition with ensemble regression modeling for speaker anonymization system[END_REF]. The speaker x-vector was decomposed into high-and low-variability components which were separately modified using two different regression models.

It was argued that speaker-specific information is mostly contained in the lowvariability component, which is hence the component upon which the anonymisation must focus.

•O1. Distribution-preserving x-vector generation [START_REF] Turner | Speaker anonymization with distribution-preserving x-vector generation for the VoicePrivacy Challenge[END_REF]. Baseline B1 performs anonymization through x-vector averaging. As a result, the anonymized voices are less diverse than the original voices and the resulting differences in the distribution of original vs. anonymized x-vectors leaves the anonymization system vulnerable to inversion. [START_REF] Turner | Speaker anonymization with distribution-preserving x-vector generation for the VoicePrivacy Challenge[END_REF] investigated the use of GMMs to sample x-vectors in a PCA-reduced space in a way that retains the original distribution of cosine distances between speaker x-vectors, thereby improving robustness to inversion.

•O1c1. Forced dissimilarity between original and anonymized x-vectors [START_REF] Turner | Speaker anonymization with distribution-preserving x-vector generation for the VoicePrivacy Challenge[END_REF]. In a slight variation to the O1 system, the O1c1 contrastive system generates a new x-vector in the case when the original and anonymized x-vectors are not sufficiently dissimilar. •M1c2. Copy-synthesis (Champion et al., 2020a). This contrastive system is essentially the B1 baseline, but without explicit x-vector anonymization, It provides some insights into the added benefit of the latter, beyond simple copysynthesis.

•M1c3. Original x-vectors for NSF. Another contrastive system for which the NSF model receives original x-vectors while the SS AM receives anonymized x-vectors.

•M1c4. Original x-vectors for SS AM. A variation on the above contrastive systems whereby the SS AM receives original x-vectors but the NSF model receives anonymised x-vectors.

•A and O. Speaker pool augmentation. In addition to their respective modifications made to x-vector anonymization, some teams also investigated the augmentation of the x-vector pool using additional datasets, namely LibriTTStrain-clean-100 (team A) and VoxCeleb-1,2 (team O).

Submission derived from Baseline-2

•D1. Modifications of the pole radius [START_REF] Gupta | Design of voice privacy system using linear prediction[END_REF]. Team D investigated modifications of the pole radius (distance from the origin) in addition to the shift in phase operated by baseline B2. This approach further distorts the spectral envelope. Pole radii were reduced to 0.975 of the original values whereas the McAdams' coefficient was set to 0.8 as in baseline B2.

Other submissions

•K2. Anonymization using x-vectors, SS models and a voice-indistinguishability metric [START_REF] Han | System description for Voice Privacy Challenge[END_REF]. Similar to the primary baseline B1, system K2 is also based on x-vector anonymization, but the anonymization process and SS models (and corresponding input features) are quite different from those of baseline B1. Other differences include using the test dataset for creating the speaker pool. The speech synthesis framework uses two modules: (1) an end-toend AM implemented with ESPnet 14 which produces a Mel-spectrogram from filterbank features and speaker x-vectors; (2) a waveform vocoder based on the Griffin-Lim algorithm [START_REF] Griffin | Signal estimation from modified short-time fourier transform[END_REF] which produces a speech waveform from the Mel-spectrogram after conversion to a linear scale spectrogram. A voice indistinguishability metric [START_REF] Han | Voiceindistinguishability: Protecting voiceprint in privacy-preserving speech data release[END_REF] inspired by differential privacy concepts [START_REF] Dwork | The differential privacy frontier[END_REF] was applied during x-vector perturbation to select target speaker x-vectors.

•I1. Modifications to formants, F0 and speaking rate [START_REF] Dubagunta | Adjustable deterministic pseudonymisation of speech: Idiap-NKI's submission to VoicePrivacy 2020 challenge[END_REF]. The I1 system is based upon a signal-processing technique inspired from van Son (2020). The playback speed was adjusted to linearly shift formant frequencies. Individual formants were then shifted to specific target values chosen from 14 https://github.com/espnet/espnet/tree/master/egs/librispeech/tts1 a set of randomly chosen speakers in the LibriSpeech-train-other-500 dataset.

The F0 and the speaking rate were also adjusted using a pitch-synchronous overlap-and-add method [START_REF] Moulines | Pitch-synchronous waveform processing techniques for text-to-speech synthesis using diphones[END_REF]. Additional processing includes exchanging the F4 and F5 bands using a Hann filter method and adding modulated pink noise to the speaker F6-F9 bands for formant masking.

Results

In this section we report the evaluation results for the systems described in Section 3. The results obtained as part of the challenge and those obtained as part of the post-evaluation analysis are both presented without distinction.

Objective evaluation results

We first present and discuss the objective evaluation results.

Privacy: objective speaker verifiability

Speaker verifiability results are shown in Figure 7 in terms of EER averaged across all test datasets for the ignorant (oa) and lazy-informed (aa) attack models described in Section 2.1.2. Without anonymization, the EER is 3.29%. Anonymization is expected to increase the EER.

When only trial data is anonymized (oa condition, light bars in Figure 7), the EER increases for all anonymization systems: from 22.56% for M1c4 to 53.37% for M1c1. Better anonymization is achieved by using x-vector based anonymization systems (K2, A*, S*, M*, B1, O*) than signal processing based ones (B2, D1, I1). Systems M1c2 and M1c4 perform worst as expected, because they provide non-anonymized x-vectors to the speech synthesis AM, but they still result in an increased EER compared to original speech due to the acoustic mismatch between original and synthesised speech. Systems K2, A*, M1c1, M1, B1 all produce EERs above 50%, indicating that the anonymization requirement against ignorant attackers is fully met. . Anonymization of both enrollment and trial utterances (aa condition, darker bars in Figure 7) results in universally lower EERs for all systems. While system rankings are different for each attack model, the general trend is consistent: B1 based systems outperform others. Some results are of particular interest. The EER of 3.75% for system K2 is only marginally above the original EER of 3.29%, despite it being the 3rd best performing system for the oa condition. Even the best O1c1 system achieves an EER of only 37.79%, which is far away from the 50% which indicates successful anonymization. These results highlight the importance of designing anonymization systems under the assumption of a strong attack model. Without it, results may provide a false sense of protection.
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Overall, taking confidence intervals (not shown in the figure) into account, baseline B1 is outperformed by systems A1, A2, M1, M1c1, and K2 in the oa condition and by systems S2, S2c1, O1, and O1c1 in the aa condition.

These two sets of systems do not intersect and no single system works best in both conditions. This highlights the difficulty of designing and optimising an anonymization system that works well under different attack scenarios. The results for system K2 are also of note. This system achieves a very high anonymization performance in the oa condition due to the fact that anonymized utterances are acoustically very different from the original ones. At the same time, it achieves a very poor performance in the aa condition since, instead of generating anonymized x-vectors from a dataset with many speakers (relative to the evaluation dataset), it generates them from the evaluation dataset itself. This results in distinct confusions between some speakers, however the number of such confusions is very low, especially for some test sets (see, for example, the speaker similarity matrix M aa for female speakers on the LibriSpeech-test set in Figure 13h).

The results for other privacy metrics are consistent with those for the EER. See, for example, Figure 8 which illustrates EER vs. C min llr results for ignorant and lazy-informed attack models for different datasets and systems. Due to space constrains, we therefore focus on the EER in the following. Results for other metrics are reported by Tomashenko et al. (2021b, Section 3). Anonymization performance differs at the gender level. Gender-dependent results averaged over all datasets in both evaluation conditions are given in Figure 9. On the original data, the EER is lower for male speakers than for female speakers. With only few exceptions (e.g., A2), the opposite is observed after x-vector based anonymization. Systems M1c2 and M1c4, for which the SS AM is fed with original x-vectors, are two of the exceptions, indicating that gender-dependent differences are the result of x-vector anonymization rather than any extraneous influence, e.g., acoustic mismatch between original and synthesized data. In contrast, signal processing based approaches show the same gender-dependent trend as the original data.

Utility: speech recognition error

Figure 10 shows the ASR performance in terms of the WER. Since we observed substantial disparities in the results, they are illustrated separately for the LibriSpeech-test and VCTK-test datasets. The WER on original data (no anonymization) is 4.14% and 12.81%, respectively. This difference in the WER is explained as follows: with the ASR system being trained on the LibriSpeechtrain-clean-360 dataset, performance is better on the matched LibriSpeech-test dataset than on the mismatched VCTK-test set.

All anonymization systems degrade the WER. In other words, any improvement in privacy comes at the expense of lower utility. The relative WER increase is more substantial on the LibriSpeech-test dataset (40-217%) than on the VCTK-test dataset (14-120%). After anonymization, the best WER of 5.83% on the LibriSpeech dataset is obtained by the signal processing based system I1. Compared to other systems, however, it performs poorly on the VCTK-test dataset. Other signal processing based systems based upon baseline B2 fair even worse on this dataset. On average, on both test sets, x-vector based anonymization techniques related to the primary baseline (B1, S2c1, A2, S2) obtain better results than other systems (and very close to each other).

Original I1 M1c4 B1 S2c1 A2 S2 O1c1 A1 O1 S1c1 S1 D1 M1 M1c1 B2 M1c3 M1c2
Of note is the high WER of system M1c2, which retains the original xvectors, on the LibriSpeech-test dataset. Systems M1c3 and M1c4, which partially retain the original x-vectors, yield a higher WER than original data on that dataset too. This suggests that resynthesis by itself significantly degrades ASR performance. The results for systems M1 and M1c1 (vs. B1) indicate that using an end-to-end ASR AM for BN feature extraction degrades ASV performance on both datasets. For signal processing based techniques (I1, D1, B2) the relative WER degradation is similar across the datasets, while for xvector based techniques it is much larger on in-domain data with respect to the data used to train the ASR model (LibriSpeech) than on out-of-domain data.

Using anonymized speech data to assess privacy

The results reported in Section 4.1.1 were obtained using an ASV system trained on original data. We now report evaluation results using ASV systems trained on anonymized data, according to the semi-informed attacker scenario in Section 2.3.1. Four teams submitted anonymized LibriSpeech-train-clean-360 training data for their primary systems O1, M1, S2, and K2, and we trained four new corresponding ASV anon eval models on this data. In addition, we trained two ASV anon eval models on the training data anonymized by the baseline systems B1 and B2. Models were trained in the same way as before, and have the same topology as the ASV eval model trained on original data. Figure 11 compares the average EERs obtained for the semi-informed (dark, lower bars), lazy-informed, and ignorant attack models. For all anonymization systems, training the ASV evaluation model on anonymized data significantly decreases the EER: EERs are substantially lower against semi-informed than ignorant or lazy-informed attackers. Thus, assessing the performance of anonymization systems using an ASV system trained on original data leads to a false impression of protection; if the ASV system is retrained on similarly anonymized data, the level of protection becomes closer to (but still better than) that for original, unprotected data. 4.1.4. Using anonymized speech data to assess utility Similarly, Figure 12 compares the WERs obtained by ASR systems trained on anonymized speech data (ASR anon eval ) with those obtained by the ASR system trained on original data (ASR eval ). The WERs for ASR anon eval (dark, lower bars, a) are consistently lower than for ASR eval (light, upper bars, o). In some cases, the WER decreases to a level close to that of ASR eval on original data. This implies that degradations to utility can be offset simply by retraining using similarly anonymized data. This substantially improves the trade-off between privacy and utility; there is potential to protect privacy with only modest impacts upon utility. 

De-identification and gain of voice distinctiveness

Figure 13 illustrates the voice similarity matrices obtained for all primary systems. The distinct diagonal in M oo (top left submatrix of each matrix M ) points out the speaker discrimination ability in the original data. The two other submatrices, M oa (top right) and M aa (bottom right), show substantial differences across the systems. In M oa the diagonal disappears if the pseudospeakers differ from the original speakers, while in M aa the diagonal emerges if the pseudo-speakers can be distinguished from each other [START_REF] Noé | Speech pseudonymisation assessment using voice similarity matrices[END_REF]. The matrices for signal processing based systems and for system K2 exhibit a distinct diagonal in M aa , indicating that voices remain distinguishable after anonymization. For x-vector based systems, this diagonal is much weaker. The scatter plots in Figure 14 show the gain of voice distinctiveness (G VD ) against de-identification performance (DeID) for the LibriSpeech-test (left) and VCTK-test (right) datasets. 15 The results show that systems based upon baseline B1 provide close to perfect de-identification, while signal processing based solutions tend to better preserve voice distinctiveness. For the latter, deidentification performance varies across the datasets. Only system K2 achieves high de-identification with only modest degradation to voice distinctiveness. The results for systems M1c4 and M1c2 which use original x-vectors show that copy-synthesis alone also degrades voice distinctiveness. Interestingly, deidentification performance for both systems is comparable to that for signalprocessing based methods. These observations are consistent with EER and C min llr results. The results in Figure 14 also show that different systems lead to differences in voice distinctiveness for different genders. In particular, systems S2 and S2c1 better preserve distinctiveness for female speakers, while system A2 better preserves distinctiveness for male speakers.

Relation between privacy and utility metrics

As we observed above, all anonymization systems reduce the utility of speech data. Therefore, it is important to consider the trade-off between privacy and utility. Figure 15 demonstrates the relation between objective privacy and utility in the form of scatter plots with WER and EER values for all anonymization systems, evaluated using ASR eval and ASV eval systems trained on original data. The best anonymization system should have maximum EER and minimum WER, i.e., be close to the top-left corner. We can see that there is no system which provides the best results for both metrics. On the LibriSpeech-test dataset, the best anonymization is achieved using x-vector based systems, while the lowest WER corresponds to system I1 which is a signal processing based system. However on VCTK-test, the results for this system are different and better results for both metrics are obtained using x-vector based systems. 

Subjective evaluation results

This section presents subjective evaluation results for speech naturalness, intelligibility, and speaker verifiability (Sections 4.2.1 and 4.2.2), and speaker linkability (Section 4.2.3).

Distribution of naturalness, intelligibility, and verifiability scores

The distributions of normalized naturalness, intelligibility, and speaker similarity scores obtained from the unified subjective test are displayed in Figure 16 as violin plots [START_REF] Hintze | Violin plots: a box plot-density trace synergism[END_REF]. 16 The similarity scores for same-speaker and different-speaker pairs are plotted separately, since they are expected to be different.

The results for naturalness and intelligibility are as expected. Anonymized samples from all systems are inferior to the original data, and the differences are statistically significant at p ≪ 0.01. This performance gap exists in both methods based on the primary baseline (B1, O1, M1, S2, and A2) and the secondary baseline (B2, D1). While I1 outperforms the other anonymization systems in terms of naturalness, it is still far from perfect in terms of both naturalness and intelligibility. More efforts are necessary to address the degradation caused by existing anonymization methods.

Concerning speaker similarity, the anonymized trial data from a given speaker are perceptually much less similar to the original enrollment data of that speaker than the original trial data of that speaker. This indicates that all systems achieve a good degree of anonymization according to human perception. 

Naturalness, intelligibility, and verifiability DET curves

To further investigate the difference across systems, we plot detection error trade-off (DET) curves [START_REF] Martin | The DET curve in assessment of detection task performance[END_REF]. These curves assume a detection task, where the decision for a given trial is made by comparing the score with a threshold. The false alarm and miss rates are computed as a function of the threshold and plotted against each other. For naturalness and intelligibility the task is to detect original data, while for speaker similarity the task is to detect whether the trial utterance is from the same speaker as the enrollment utterance. The closer the DET curves are to the top-right corner of each plot, the higher the naturalness, intelligibility, and privacy preservation. Once again, the DET curves for same-speaker and different-speaker pairs are plotted separately, since they are expected to be different.

The four types of DET curves are plotted in Figure 17. 17 ralness and intelligibility, the DET curves for anonymized data are far from the top-right corner, suggesting that anonymized data are inferior to original data in terms of naturalness and intelligibility. The naturalness DET curves of I1 and K2 seem to deviate from the other anonymization systems. While other systems are based on either B1 or B2, I1 uses a different signal processing based approach, and K2 uses a different deep learning method. As such, I1 avoids several errors such as ASR AM errors in B1, which may contribute to its naturalness. However, it is interesting to note how different signal processing algorithms result in different perceptual naturalness and intelligibility. Also note that none of the systems except I1 outperforms B2.

Concerning speaker similarity, both in the same-speaker and different-speaker cases, the DET curves of original data are close to the bottom-left corner while those of anonymized data are close to the top-right corner. In other words, anonymization of the trial utterances makes it difficult to decide whether the original enrollment utterance comes from the same speaker or not. The similarity DET curves of K2, S2, and I1 in the same-speaker case are closer to the top-right corner than others. However, these three systems behave quite differently in terms of naturalness and intelligibility, with I1 and K2 achieving the highest and lowest median score, respectively. This implies that an anonymized trial may sound like the voice of a different speaker simply because of the severe distortion caused by anonymization.

To sum up, all the submitted anonymization systems can conceal the perceived speaker identity to some degree. However, none of them can produce anonymized speech that is as natural and intelligible as original speech. One signal processing based anonymization method (I1) degrades the naturalness and intelligibility less severely, but it still degrades them to some extent.

Perception of speaker identity and speaker linkability

We report speaker linkability results for the two baseline systems in terms of the F-measure (F 1 ), clustering change (CC), and clustering purity metrics.

To measure the effects of anonymization for each evaluator, we calculated the difference between the values of the F 1 and CC metrics on the control panel (original data only) and their average values over the two other panels (half of the data anonymized by B1 or B2).

We observed a main effect on the mean F 1 difference of the evaluator's native language F 1,64 = 6.5, p < 0.05, η 2 p = 0.09, but no effects of the anonymization system nor the original speaker's gender, p > 0.05. B1 evaluators exhibited a greater mean F 1 difference (0.24 ± 0.02) than B2 evaluators (0.21 ± 0.02). Post-hoc t-tests showed that non-native English speaking evaluators were more affected by linking natural and anonymized utterances (0.26 ± 0.02) than native English speaking evaluators (0.19 ± 0.022) (Figure 18a).

For the mean CC difference, we found a main effect of the original speaker's gender F 1,64 = 4.45, p < 0.05, η 2 p = 0.06, and interactions for anonymization system × language F 1,64 = 4.26, p < 0.05, η 2 p = 0.06 and anonymization system × language × original gender F 1,64 = 8.75, p < 0.01, η 2 p = 0.11. Post-hoc t-tests revealed that evaluators showed a greater mean CC difference when presented male utterances (0.07 ± 0.03) in comparison to female (-0.03 ± 0.04) (Figure 18b). Native English speaking evaluators also exhibited a greater mean CC difference than B2 evaluators (Figure 18c). These results suggest that the evaluators were able to use the anonymized utterances to aid their performance when grouping female utterances, whereas performance diminished when they listened to anonymized male utterances. Non-native English speaking evaluators achieved a lower accuracy when presented with anonymized stimuli from either system. Overall, the above results suggest that the perceptual effectiveness of an anonymization system can depend on the users as well as on the attacker (here, the evaluator). The distribution of clustering purity for the three panels is displayed in Figure 19a. The Mann-Whitney test shows an effect of the panel (control vs. other) on the purity: χ 2 = 82,688 (p < 0.001) for female speakers and χ 2 = 41,344 (p < 0.001) for male speakers, which indicates that the distributions for the original and the anonymized panels are different. As expected, the evaluators achieve a higher average purity (86.40%) on the original panel than on the two other panels (61.68% and 62.58%). These results indicate that linking an anonymized voice to its original counterpart is not as easy as clustering original voices. The distribution of the clustering purity is similar to that of F 1 for all panel types (see Figure 19b). No significant difference between the two baselines is noticed for both metrics. 

Comparison of objective and subjective evaluation results

In this section, we compare objective and subjective evaluation results. Figure 20 plots the EER against the median subjective speaker verifiability (similarity) score for all primary anonymization systems and for original data (blue star) on the three test sets. The results indicate that anonymizing the trial increases the EER and decreases the same-speaker subjective similarity score, while it leaves the different-speaker similarity score roughly unchanged. The precise impact depends on the anonymization system and the test set. This suggests that the considered anonymization systems can hide the speaker identity to some degree from both ASV system and human ears. This is an encouraging message from the challenge. Similar results can be observed for other privacy metrics, as shown by Tomashenko et al. (2021b, Section 5).

Figure 21 observation made earlier that all anonymization systems degrade the objective and subjective utility metrics. On LibriSpeech-test, the best results for all utility metrics is achieved by the signal processing based system I1, and the worst one by system K2. However, on VCTK-test, there is no system that performs best (or worst) for all metrics. This is mostly due to the fact that the WER is less consistent across datasets than the subjective naturalness and intelligibility scores.

Conclusions

The VoicePrivacy 2020 Challenge was conceived to promote private-by-design and private-by-default speech technology and is the first evaluation campaign in voice anonymization. The voice anonymization task is defined as a game between users and attackers, with three possible attack models each corresponding to adversaries with different knowledge of the applied anonymization methods. The paper describes a full evaluation framework for the benchmarking of different anonymization solutions, including datasets, experimental protocols and metrics, as well as two open-source baseline anonymization solutions in addition to the comprehensive objective and subjective evaluation of both baseline systems and those submitted by challenge participants. These indicate the potential for successful anonymization and serve as a platform for future work in what is now a burgeoning research field.

Summary and findings

The challenge attracted participants from both academia and industry, including experts already working on anonymization and people new to the field. The submitted anonymization systems can be broadly classified into two classes:

x-vector based systems relying on speech synthesis (such as the primary baseline B1) and signal processing based systems (relating to the secondary baseline B2 and system I1). X-vector based systems provide the best objective results on average. 18 In contrast, subjective evaluation shows that signal processing based systems tend to yield higher naturalness and intelligibility.

More consistent findings show that anonymization produced by all systems degrade naturalness and intelligibility, as well as the WER. Furthermore, the best systems in terms of WER are based on x-vector anonymization whereas the best system in terms of intelligibility is system I1.

Anonymization is also achieved only partially and always at the cost of utility; no single system gives the best performance for all metrics and each system offers a different trade-off between privacy and utility, whether judged objectively or subjectively. This finding holds irrespective of the attack model. While for the ignorant attack model, many systems achieve EERs above 50%, the best results are in the range of 33 -43% for the lazy-informed attack model, and in the range of 16 -26% for the semi-informed attack model. System rankings are also different in each case, demonstrating the difficulty of designing an anonymization system that performs well across the range of different VoicePrivacy attacks models. Challenge participants investigated the proposed anonymization approaches and suggested improvements in some test-cases over the baseline anonymization solutions. They found out, that (1) resynthesis alone degrades utility, while also improving privacy;

(2) there is potential for privacy leakage not only in x-vector embeddings, but also in phonetic features and pitch estimates (Champion et al., 2020a;[START_REF] Mawalim | X-vector singular value modification and statistical-based decomposition with ensemble regression modeling for speaker anonymization system[END_REF]; (3) the distribution of anonymized x-vectors differs from that of original x-vectors [START_REF] Turner | Speaker anonymization with distribution-preserving x-vector generation for the VoicePrivacy Challenge[END_REF]. Recent work shows the potential to reduce privacy leakage in pitch estimates while also protecting utility [START_REF] Champion | A study of F0 modification for x-vector based speech pseudo-anonymization across gender[END_REF]Srivastava et al., submitted). Other findings show that degradations to utility can be mitigated by retraining models used for downstream goals, such as ASR, using anonymized data. Lastly, we identified some differences or bias in performance across different datasets and for different speaker gender. The scale of these differences is one factor, among others discussed below, that warrants further attention in future research.

Open questions and future directions

A common understanding of VoicePrivacy is still in its infancy. For one, communicating the achievements in layperson terms remains a challenge to better integrate the larger speech community and for outreach to the public at large; for another, VoicePrivacy cannot remain at scratching the surface of privacy issues related to speech and language technology. While considering biometric identity as sensitive information in the first edition, there are other types of sensitive information encoded and transported through speech as a communication medium. Moreover, by constraining the first edition to the operability of speech recognition, linguistic features still allow for extracting biometric characteristics to identify authorship. Depending on the context, the settings of ASV and ASR systems, one might argue that for prompted speech in automated call centers, there is less subjective variability in what is said; let alone, the goal of VoicePrivacy as a community is speech technology as a whole. Future editions of the VoicePrivacy Challenge will include stronger baseline solutions, possible extensions of the tasks, and re-visited evaluation protocols:

• Improved anonymization methods for stronger baseline solutions. For the primary baseline and related approaches, perspective improvements in x-vector based anonymization include adversarial learning (Espinoza-Cuadros et al., 2020a) and design strategies based on speaker space analysis, gender, distance metric, etc. (Srivastava et al., 2020a, submitted). Sensitive information can be further removed from prosodic and other features, in particular, from pitch (Srivastava et al., submitted;[START_REF] Champion | A study of F0 modification for x-vector based speech pseudo-anonymization across gender[END_REF][START_REF] Gaznepoglu | Exploring the importance of f0 trajectories for speaker anonymization using x-vectors and neural waveform models[END_REF] and phonetic (BN) features. Improved algorithms to use the speaker pool should take into account not only speaker characteristics before anonymization but also voice distinctiveness after anonymization. Moreover, the quality of the synthesized speech using unseen x-vectors has room for improvement. For the secondary baseline, we will consider its extension using a stochastic choice of McAdams' coefficient [START_REF] Patino | Speaker anonymisation using the McAdams coefficient[END_REF].

• Stronger and more realistic attack models. Development and investigation of stronger attack models is another potential direction. A knowledgeable and experienced adversary will improve the ASV system and adapt it to make better decisions, i.e., to yield better class discrimination alongside accurate forecasts. Contrary to the conventional experimental validation based on error rates, an adversary actually needs to put a specific threshold and might want to change this threshold, depending on the settings of the ASV systems.

In other words, priors and costs that determine the decision policy of an adversary need to be highly adaptable.

• Alternative privacy and utility metrics and datasets. The ongoing work on privacy preservation assessment is focusing on the development of new evaluation frameworks, anonymization metrics, and investigation of their correlation and complementarity. This includes the ZEBRA framework [START_REF] Nautsch | The Privacy ZEBRA: Zero evidence biometric recognition assessment[END_REF][START_REF] Noé | Towards a unified assessment framework of speech pseudonymisation[END_REF], and objective and subjective linkability metrics [START_REF] Maouche | A comparative study of speech anonymization metrics[END_REF]. Also one may be interested in evaluation that is close to real industry applications and tasks, for example, speaker labeling for diarization, analysis of time and quality required for annotation of real vs. anonymized speech [START_REF] Espinoza-Cuadros | Speaker de-identification system using autoencoders and adversarial training[END_REF]. The metrics considered in the challenge do not evaluate fully the requirement that all characteristics in the speech signal except the speaker identity should be intact. Relevant utility metrics depend on the user's downstream goals, and for additional downstream goals other utility metrics should be considered. This will require additional datasets for which these goals have been annotated. Datasets collected in real usage conditions should also be considered to assess the impact of acoustic conditions (reverberation, noise, overlapping speech) and full conversations.

• Attributes. Besides the speaker identity information, speech also conveys other attributes that can be considered as sensitive, such as emotional state, age, gender, accent, etc. Selective suppression of such attributes is a possible task extension. Except for age and gender which are available in LibriSpeech, this will require additional datasets for which these attributes have been annotated.

• Privacy vs utility trade-off. The privacy is often achieved at the expense of utility, and an important question is how to set up a proper threshold between privacy and utility [START_REF] Li | On the tradeoff between privacy and utility in data publishing[END_REF]. When developing anonymization methods, a joint optimization of utility gain and privacy loss can be performed by incorporating them into the criterion for training anonymization models [START_REF] Kai | Lightweight voice anonymization based on data-driven optimization of cascaded voice modification modules[END_REF].

• Integrated approach to voice privacy and security. In the bigger picture, security and privacy need to be thought of together and not as opposing forces:

positive-sum solutions [START_REF] Cavoukian | Global privacy and security, by design: Turning the "privacy vs. security" paradigm on its head[END_REF] need to be sought to design technology for better products and services. In other words, while one might draw inspiration from machine learning, forensic sciences, and biometrics, integrated privacy designs for speech and language technology must sacrifice neither security, business interests, nor privacy. Developing of adequate VoicePrivacy safeguards demands future directions that empower capacity for their credible and adequate use in integrated privacy designs which beyond technology include organisational measures.

  Figure1: Example of a privacy preservation scenario as a game between users and attackers in the case where speaker identity is considered as personal information to be protected.

Figure 2 :

 2 Figure 2: ASV evaluation for the official challenge setup using ASV eval trained on original data is performed for three cases: (1)Unprotected: original enrollment and trial; (2) Ignorant attacker (oa): original enrollment and anonymized trial; (3) Lazy-informed attacker (aa):anonymized enrollment and trial. ASV evaluation for the post-evaluation analysis is performed using ASV anon eval trained on anonymized data for case (4) Semi-informed attacker (aa): anonymized enrollment and trial.

Figure 4 :

 4 Figure 4: Subjective evaluation test for speech naturalness, intelligibility, and speaker verifiability.

Figure 5 :

 5 Figure 5: Primary baseline anonymization system (B1).

Figure 6 :

 6 Figure 6: Secondary baseline anonymization system (B2).

  -end ASR AM; semi-adversarial training to learn linguistic features while masking speaker information ✓ ✓ ✓ M1c2 copy-synthesis (original x-vectors) ✓ M1c3 x-vectors provided to SS AM are anonymized, x-vectors provided to NSF are original ✓ M1c4 x-vectors provided to SS AM are original, x-vectors provided to NSF are anonymized ✓ O1 keeping original distribution of cosine distances between speaker x-vectors; GMM for sampling speaker vectors in a PCA-reduced space followed by projection to the original xthe top of the B1 x-vector anonymization ✓ S1c1 domain-adversarial training; autoencoders: using gender, accent, speaker id outputs corresponding to adversarial branches in ANN for x-vector reconstruction ✓ S2 S2c1 applied on the top of the B1 x-vector anonymization ✓ S2c1 S1c1 with parameter optimization ✓ F0:. Only team A (Mawalim et al., 2020) modified the pitch extractor. They

•

  S1c1 & S2c1. Domain-adversarial training (Espinoza-Cuadros et al., 2020a). Domain adversarial training was used to generate x-vectors with separate gender, accent, and speaker adversarial branches in an autoencoder adversarial network. For system S2c1, the parameters of the adversarial branches were tuned to optimise the trade-off between the autoencoder and the adversarial objectives. •S1 & S2. Domain-adversarial training on top of B1 (Espinoza-Cuadros et al., 2020a). The primary systems S1 and S2 are based upon the application of the contrastive systems S1c1 and S2c1 to the anonymized x-vectors generated by baseline B1.

Figure 7 :

 7 Figure7: Average EER over all test datasets for all anonymization systems and for original data, against ignorant (oa) or lazy-informed (aa) attackers. Blue and red colors in the system IDs indicate systems developed from B1 or B2, respectively. Higher EER corresponds to better privacy.

Figure 9 :

 9 Figure 9: Average EER over all test datasets for all anonymization systems and for original data, depending on the attack model and the original speaker's gender.

  Figure 8: EER vs. C min llr results for the ignorant and lazy-informed attack models. Each point corresponds to the result of one anonymization system on one dataset among the 12 development and evaluation datasets. Higher EER and C min llr correspond to better privacy.

Figure 11 :

 11 Figure11: Average EER over all test datasets for a subset of anonymization systems and for original data, against the three attack models.

Figure 12 :

 12 Figure 12: WER on LibriSpeech-test and VCTK-test for a subset of anonymization systems and for original data, evaluated using ASR eval (o) or ASR anon eval (a).

Figure 13 :

 13 Figure 13: Voice similarity matrices for all primary systems on the female speakers of the LibriSpeech-test dataset. The global matrix M for each system is composed of the three submatrices Moo, Moa and Maa defined in Section 2.3.1 as M = Moo Moa Moa Maa .

  Figure14: De-identification (DeID) vs. gain of voice distinctiveness (G VD ) for all anonymization systems. Higher DeID corresponds to better privacy, higher G VD to better distinctiveness of anonymized voices.

Figure 15 :

 15 Figure15: WER vs. EER on LibriSpeech-test and VCTK-test for all anonymization systems and for original data, evaluated using ASR eval and the lazy-informed attack model.

  Concerning natu-17 For separate results over LibriSpeech-test and VCTK-test, see Tomashenko et al. (2021b, Figure26).

Figure 17 :

 17 Figure 17: DET curves based on subjective evaluation scores pooled over LibriSpeech-test and VCTK-test.

Figure 18 :Figure 19 :

 1819 Figure 18: Diamonds and vertical lines represent the means and standard errors, respectively. (a) Mean F 1 difference for native and non-native English speaking evaluators. {*} signifies p < 0.05. (b) Mean CC difference depending on the original speaker's gender. (c) Mean CC difference for anonymization system×language×original gender interactions. {*, **} signify p < {0.05, 0.01}.

Figure 20 :

 20 Figure 20: Objective EER (ignorant attack model) vs. subjective same-or different-speaker speaker similarity scores on LibriSpeech-test and the two subsets of VCTK-test.

Table 1 :

 1 Number of speakers and utterances in the VoicePrivacy 2020 training, development, and evaluation sets.

	Subset	Female Male Total #Utter.
		VoxCeleb-1,2	2,912 4,451	7,363 1,281,762
	Training	LibriSpeech train-clean-100 LibriSpeech train-other-500 LibriTTS train-clean-100	125 564 123	126 602 124	251 1,166 247	28,539 148,688 33,236
		LibriTTS train-other-500	560	600	1,160	205,044
	Development	LibriSpeech Enrollment dev-clean Trial Enrollment VCTK-dev Trial (common) Trial (different)	15 20 15	14 20 15	29 40 30	343 1,978 600 695 10,677
	Evaluation	LibriSpeech Enrollment test-clean Trial Enrollment VCTK-test Trial (common) Trial (different)	16 20 15	13 20 15	29 40 30	438 1,496 600 700 10,748

Evaluation set. Similarly, the evaluation set comprises LibriSpeech test-clean and a subset of VCTK called VCTK-test (see Table 1, bottom).

Table 2 :

 2 Number of speaker verification trials.

	Subset	Trials	Female Male Total
	Development	LibriSpeech Same-speaker dev-clean Different-speaker VCTK-dev Same-speaker (common) Same-speaker (different) Different-speaker (common) Different-speaker (different)	704 14,566 12,796 27,362 644 1,348 344 351 695 1,781 2,015 3,796 4,810 4,911 9,721 13,219 12,985 26,204
		LibriSpeech Same-speaker	548	449	997
	Evaluation	test-clean VCTK-test	Different-speaker Same-speaker (common) Same-speaker (different) Different-speaker (common)	11,196 9,457 20,653 346 354 700 1,944 1,742 3,686 4,838 4,952 9,790
			Different-speaker (different)	13,056 13,258 26,314
	a calibration loss (C llr -C min llr	

Table 4 :

 4 Table4which shows system identifiers (referred to below) in column 3. Most systems submitted to the VoicePrivacy 2020 challenge were inspired by the primary baseline (see Section 3.2.1). One submission is based upon the secondary baseline (see Section 3.2.2) whereas two others are not related to either (see Section 3.2.3). 10 Teams, organizations, and submitted systems. The submission identifier (ID) for each system in the last column comprises: <team id: first letter of the team name><submission deadline 11 : 1 or 2><c, if the system is contrastive><index of the contrastive system>. The symbol ⋆ in the first column indicates that the team submitted the anonymized training data for post-evaluation analysis. The colors x h 1 and x h 2 indicate systems that were developed from B1 or B2, respectively, while x h indicates other systems. .

	Team (Reference)		Organization(s)	Sys.
	AIS-lab JAIST (Mawalim et al., 2020) } m A ⋆		•Japan Advanced Institute of Science and Technology, Japan Agency, Thailand •NECTEC, National Science and Technology Development	A1 A2
	DA-IICT Speech Group			
	(Gupta et al., 2020) D ⋆ } m		tion Technology, India •Dhirubhai Ambani Institute of Information and Communica-	D1
	Idiap-NKI		•Idiap Research Institute, Martigny, Switzerland	
	(Dubagunta et al., 2020) } m I	⋆	land • École Polytechnique Fédérale de Lausanne (EPFL), Switzer-	I1
			•Netherlands Cancer Institute (NKI), Amsterdam, Netherlands	
	Kyoto Team (Han et al., 2020b) } m K ⋆		nology, Kyoto, Japan •Kyoto University, Kyoto, Japan •National Institute of Information and Communications Tech-	K2
	MultiSpeech (Champion et al., 2020a)		•Université de Lorraine, CNRS, Inria, LORIA, Nancy, France	M1 M1c1 M1c2
	} m M ⋆		•Le Mans Université, LIUM, France	M1c3 M1c4
	Oxford System Security Lab (Turner et al., 2020) } m O ⋆	•University of Oxford, UK	O1 O1c1
	Sigma Technologies SLU (Espinoza-Cuadros et al., 2020a) } m S ⋆	•Sigma Technologies S.L.U., Madrid, Spain •Universidad Politecnica de Madrid, Spain	S1 S1c1 S2 S2c1
	PingAn			

Table 5 :

 5 Summary of the challenge submissions derived from B1. ✓ and blue color indicate the components and speaker pool data that were modified w.r.t. B1.

	.

  Figure 10: WER on LibriSpeech-test and VCTK-test for all anonymization systems and for original data. Lower WER corresponds to better utility.
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  Figure 16: Violin plots of normalized subjective speech naturalness, intelligibility, and speaker similarity scores pooled over LibriSpeech-test and VCTK-test. The dotted line indicates the median for B1. Numbers indicate mean values. Higher naturalness and intelligibility scores correspond to better utility, and lower similarity scores to better privacy.
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  plots the WER against the median subjective naturalness and intelligibility scores, averaged over all test datasets. The results reinforce the
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https://www.voiceprivacychallenge.org/

This data may be shared with selected individuals, with a company providing a service, with a public cloud provider, with the general public (open data), etc.. Attackers may include employees or subcontractors of these companies, hackers who get access to the cloud storage, or simply other individuals who browse the open data.

The terms trial and enrollment are borrowed from the speaker verification literature, where they refer respectively to a speech signal uttered by a speaker willing to be authenticated and a speech signal (or a model) associated with the claimed identity. Although anonymization is a different task (there is no speaker willing to be authenticated), these terms are used here due to the high similarity between the evaluation protocols for these two tasks.

Scripts for training ASR eval and ASV eval and for evaluation are provided at https:// github.com/Voice-Privacy-Challenge/Voice-Privacy-Challenge-2020.

The scenario when enrollment data has been anonymized using the same pseudo-speakers as the trial data is of little practical interest. Indeed, prior work has shown that attackers who have access to such data can identify the speakers as well as if the data had not been anonymized[START_REF] Srivastava | Evaluating voice conversion-based privacy protection against informed attackers[END_REF]. Users are therefore required to pick a different, random pseudo-speaker for each conversation.

Details are given byTomashenko et al. (2021b, Section 4.1).

https://demo-lia.univ-avignon.fr/voiceprivacy/instructions

https://github.com/Voice-Privacy-Challenge/Voice-Privacy-Challenge-2020

In the baseline, we use N = 200 and N * =

There is also one non-challenge entry work related to the challenge[START_REF] Huang | Analysis of PingAn submission in the VoicePrivacy 2020 Challenge[END_REF]. This team worked on the development of stronger attack models for ASV evaluation.

deadline-1: 8th May 2020; deadline-2: 16th June 2020.

Different F0 extractors were used in experiments, but the baseline F0 in the final A1.

Speech Signal Processing Toolkit (SPTK): http://sp-tk.sourceforge.net/

For more details, seeTomashenko et al. (2021b, Sections 3.4 and 3.5) 

Statistical significance test results are reported by Tomashenko et al. (2021b, Tables 16 and

17).

There are some exceptions, related to the WER results for system I1 and the LibriSpeech dataset in particular.
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