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Abstract

This paper presents the results and analyses stemming from the first VoicePri-
vacy 2020 Challenge which focuses on developing anonymization solutions for
speech technology. We provide a systematic overview of the challenge design
with an analysis of submitted systems and evaluation results. In particular,
we describe the voice anonymization task and datasets used for system de-
velopment and evaluation. Also, we present different attack models and the
associated objective and subjective evaluation metrics. We introduce two ano-
nymization baselines and provide a summary description of the anonymization
systems developed by the challenge participants. We report objective and sub-
jective evaluation results for baseline and submitted systems. In addition, we
present experimental results for alternative privacy metrics and attack models
developed as a part of the post-evaluation analysis. Finally, we summarise our
insights and observations that will influence the design of the next VoicePrivacy
challenge edition and some directions for future voice anonymization research.

Keywords: privacy, anonymization, speech synthesis, voice conversion, speaker
verification, automatic speech recognition, attack model, metrics, utility

1. Introduction

Due to the growing demand for privacy preservation in the recent years,
privacy-preserving data processing has become an active research area. One
reason for this is the European general data protection regulation (GDPR) in
the European Union (EU) law and similar regulations in national laws of many
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countries outside the EU concerning the implementation of the data protection
principles when treating, transferring or storing personal data.

Although a legal definition of privacy is missing (Nautsch et al., [2019a),
speech data contains a lot of personal information that can be disclosed by lis-
tening or by automated systems (Nautsch et al., 2019b). This includes, e.g.,
age, gender, ethnic origin, geographical background, health or emotional state,
political orientations, and religious beliefs. Speaker recognition systems can
also reveal the speaker’s identity. Therefore, the increased interest in devel-
oping privacy preservation solutions for speech technology is not surprising.
This motivated the launching of the VoicePrivacy initiative (Tomashenko et al.
2020bf). This initiative aims to bring together a new community of researchers,
engineers and privacy professionals in order to formulate the tasks of interest,
develop evaluation methodologies, and benchmark new solutions through a se-
ries of challenges. The first VoicePrivacy challengeﬂ was organized as a part of
this initiative (Tomashenko et al., [2020bla)).

Existing approaches to privacy preservation for speech can be broadly classi-
fied into: obfuscation, encryption, distributed learning, or anonymization. Ob-
fuscation methods (Cohen-Hadria et al.l |2019; |Gontier et al., [2020) suppress
or modify the speech signal to the point where no information about it can
be recovered. Encryption methods (Pathak et al.| [2013} Brasser et al.| [2018;
Zhang et all 2019)) support computation upon data in the encrypted domain,
however they significantly increase the computational complexity. Decentral-
ized or federated learning methods learn models from distributed data without
accessing it directly (Leroy et al., 2019]), however the derived data used for learn-
ing (e.g., model gradients) may still leak information about the original data
(Tomashenko et al., [2021a; Mdhaffar et al.,|2021). Note also that the latter two
categories of approaches are incompatible with using the data for supervised
machine learning purposes, which requires third-party annotators to access the
data in non-encrypted form.

Anonymization refers to the goal of suppressing personally identifiable infor-
mation in the speech signal, leaving other attributes intact. In contrast to the
above approaches, it allows the data to be used for supervised machine learning
purposes and it can easily be integrated within existing systems. Note, that in
the legal community, the term “anonymization” means that this goal has been
achieved. Here, it refers to the task to be addressed, even when the method be-
ing evaluated has failed. Anonymization requires altering not only the speaker’s
voice, but also other traits and states, words in the spoken contents, and sounds
in the background which, when considered in combination with each other and
possibly with external data, may reveal the speaker’s identity.

As a first step towards this goal, the VoicePrivacy 2020 Challenge focuses on
voice anonymization, that is the task of altering the speaker’s voice to hide their
identity to the greatest possible extent, while leaving all other speech attributes
(traits, states, and spoken contents) intact. Approaches to voice anonymization

Thttps://www.voiceprivacychallenge.org/
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include noise addition (Hashimoto et al. [2016), speech transformation (Qian
et al.,|2017; [Patino et al. 2021)), voice conversion (Fang et al., 2019; Han et al.,
2020al [Srivastava et al., 2020a)), and disentangled representation learning
vastava et al., 2019; |Aloufi et al., 2020).

Despite the appeal of voice anonymization, the level of privacy protection
offered by these solutions is unclear and not meaningful because there is no
formal definition of the task and no formal attack model, and there are no
common datasets, protocols and metrics. The VoicePrivacy 2020 Challenge
aims to address all of these concerns.

The paper is structured as follows. The challenge design, including the
description of the anonymization task, attack models, datasets, objective and
subjective evaluation methodologies with the corresponding privacy and utility
metrics, is presented in Section [2] The overview of the baseline and submitted
systems is provided in Sections [3] Objective and subjective evaluation results
and their comparison and analysis are presented in Section[d] We conclude and
discuss future directions in Section [Bl

2. Challenge design

In this section, we present an overview of the official challenge setup: anony-
mization task, corresponding attack models selected for the challenge, data and
evaluation methodology. Also we present an additional attack model developed
as part of the post-evaluation analysis (Tomashenko et al., 2020c).

2.1. Anonymization task and attack models

Privacy preservation is formulated as a game between wusers who shareEl
some data and attackers who access this data or data derived from it and wish
to infer information about the users (Qian et al. 2018b; |Srivastava et al.| [2020b;
Tomashenko et al., 2020b)). To protect their privacy, the users share data that
contain as little personal information as possible while allowing one or more
downstream goals to be achieved. To infer personal information, the attackers
may use additional prior knowledge.

Focusing on speech data, a given privacy preservation scenario is specified
by: (i) the nature of the data: waveform, features, etc., (ii) the information
seen as personal: speaker identity, traits, spoken contents, etc., (iii) the down-
stream goal(s): human communication, automated processing, model training,
etc., (iv) the data accessed by the attackers: one or more utterances, derived
data or model, etc., (v) the attackers’ prior knowledge: previously shared data,
privacy preservation method applied, etc. Different specifications lead to dif-
ferent privacy preservation methods from the users’ point of view and different
attacks from the attackers’ point of view.

2This data may be shared with selected individuals, with a company providing a service,
with a public cloud provider, with the general public (open data), etc.. Attackers may include
employees or subcontractors of these companies, hackers who get access to the cloud storage,
or simply other individuals who browse the open data.



Here, we consider the scenario illustrated in Figure [I| where speakers want
to hide their identity to the greatest possible extent while allowing the desired
downstream goals to be achieved, while attackers want to identify the speakers
from their utterances.

Voice
anonymization Using data in downstream tasks: Maximize:
—) —) + human communication Ty 1ol
+ automated processing : ’
Speaker Pseudo-speaker + model training
\\ [/
4 ‘ “c.c‘?ssfd lda;a: Minimize:
*a few original or/an . . q
g . anonymifed RS mmmmm)  Speaker identification Speaker
g Prior knowledge: i Identlty l
b=} « previously shared data Attacker / Adversary: information
(] « privacy preservation method human or ASV

Figure 1: Example of a privacy preservation scenario as a game between users and attackers
in the case where speaker identity is considered as personal information to be protected.

2.1.1. Anonymization task

The sentences shared by the users are called trial utterancesf| In order to
hide his/her identity, each user passes these utterances through a voice ano-
nymization system prior to sharing. The resulting utterances sound as if they
were uttered by another speaker, which we call pseudo-speaker since it may be
an artificial voice not corresponding to any real speaker.

The task of challenge participants is to develop this anonymization system.
It should: (a) output a speech waveform, (b) hide speaker identity, (¢) leave
other speech characteristics unchanged, (d) ensure that all trial utterances from
a given speaker are uttered by the same pseudo-speaker, while trial utterances
from different speakers are uttered by different pseudo-speakers.

The requirement (c) promotes the achievement of all possible downstream
goals to the best possible extent. In practice, we restrict ourselves to a few
goals corresponding to two use cases: ASR training and/or decoding, and multi-
party human conversations. The requirement (d) corresponds to the latter goal
and is motivated by the fact that, in a multi-party human conversation, the
anonymized voices of all speakers must sound natural, be distinguishable from
each other, and cannot change over time. The achievement of these goals is
assessed via a range of utility metrics.

3The terms trial and enrollment are borrowed from the speaker verification literature,
where they refer respectively to a speech signal uttered by a speaker willing to be authenticated
and a speech signal (or a model) associated with the claimed identity. Although anonymization
is a different task (there is no speaker willing to be authenticated), these terms are used here
due to the high similarity between the evaluation protocols for these two tasks.



2.1.2. Attack models

For each speaker of interest, the attacker is assumed to have access to one
or more utterances spoken by that speaker. These utterances may or may not
have been anonymized and are called enrollment utterances.

In this work, the attackers have access to: (a) one or more anonymized trial
utterances, (b) possibly, original or anonymized enrollment utterances for each
speaker. The protection of identity information is assessed via privacy metrics,
including objective speaker verifiability and subjective speaker verifiability and
linkability. These metrics assume different attack models.

The objective speaker verifiability metrics (Section assume that the
attacker has access to a single anonymized trial utterance and several enroll-
ment utterances. Two sets of metrics were computed, corresponding to the two
attack models when the enrollment utterances are original or they have been
anonymized by the user or the attacker. In the post-evaluation stage, we con-
sidered a stronger attack model where attackers also have access to anonymized
training data and can retrain an automatic speaker verification system using
this data.

For the subjective evaluation (Section , two situations are considered.
The speaker verifiability metric assumes that the attacker has access to a single
anonymized trial utterance and a single original enrollment utterance, while
the speaker linkability metric assumes that the attacker has access to several
original and anonymized trial utterances.

2.2. Datasets
Several publicly available corpora are used for the training, development and
evaluation of voice anonymization systems.

Training set. The training set comprises the 2,800 h VozCeleb-1,2 corpus (Na-
grani et all 2017, |Chung et all |2018) and 600 h subsets of the LibriSpeech
(Panayotov et al.|[2015) and LibriTTS (Zen et al.l|2019) corpora. These corpora
are among the largest and the most widely used for speaker verification, ASR,
and speech synthesis, respectively, hence they are natural choices for training
voice anonymization systems which must extract speaker identity and phonetic
information and resynthesize a speech signal which hides the former and pre-
serves the latter. The selected subsets are detailed in Table [1f (top).

Development set. The development set involves LibriSpeech dev-clean and a
subset of the VCTK corpus (Veaux et al., |2019), denoted VCTK-dev (see Ta-
ble 1} middle). With the above attack models in mind, we split them into trial
and enrollment subsets. For LibriSpeech dev-clean, the speakers in the enroll-
ment set are a subset of those in the trial set. This corpus is meant for objective
ASR performance evaluation. For VOTK-dev, we use the same speakers for en-
rollment and trial and we consider two trial subsets: common and different.
The common subset comprises utterances #1 — 24 in the VCTK corpus that are
identical for all speakers. This is meant for subjective evaluation of speaker ver-
ifiability /linkability in a text-dependent manner. The enrollment and different
subsets comprises distinct utterances for all speakers.



Table 1: Number of speakers and utterances in the VoicePrivacy 2020 training, development,
and evaluation sets.

| Subset | Female | Male [ Total | #Utter. |

VoxCeleb-1,2 2,912 | 4,451 | 7,363 | 1,281,762
%D LibriSpeech train-clean-100 125 126 251 28,539
C% LibriSpeech train-other-500 564 602 | 1,166 148,688
g | LibriTTS train-clean-100 123 124 247 33,236

LibriTTS train-other-500 560 600 | 1,160 205,044
+ | LibriSpeech | Enrollment 15 14 29 343
g dev-clean Trial 20 20 40 1,978
& Enrollment 600
€ | VCTK-dev | Trial (common) 15 15 30 695
A Trial (different) 10,677
= | LibriSpeech | Enrollment 16 13 29 438
E test-clean Trial 20 20 40 1,496
E Enrollment 600
g | VCTK-test | Trial (common) 15 15 30 70
M Trial (different) 10,748

Evaluation set. Similarly, the evaluation set comprises LibriSpeech test-clean
and a subset of VCTK called VCTK-test (see Table [I} bottom).

2.8. Utility and privacy metrics

We consider objective and subjective privacy metrics to assess speaker re-
identification and linkability. We also propose objective and subjective utility
metrics to assess the fulfillment of the user goals specified in Section 2.1}

2.3.1. Objective metrics

For objective evaluation of anonymization performance, two systems were
trained to assess the following characteristics: (1) speaker verifiability and (2)
ability of the anonymization system to preserve linguistic information in the
anonymized speech. The first system, denoted ASViya1, is an automatic speaker
verification (ASV) system based on x-vector speaker embeddings and probabilis-
tic linear discriminant analysis (PLDA) (Snyder et al., |2018), which outputs a
log-likelihood ratio (LLR) score. The second system, denoted AS Reval, is an au-
tomatic speech recognition (ASR) system which outputs a word sequence. Both
ASReva and ASV.,a were trained on the LibriSpeech-train-clean-360 dataset
using the Kaldi speech recognition toolkit (Povey et al.,[2011)). These two mod-
els were used in the official challenge setup (Tomashenko et al., 2020b)). In
addition, for post-evaluation analysis, we trained ASV and ASR systems on
anonymized speech data. Both models, denoted ASV2" and ASRIVO", were

val eval

trained in the same way as ASVeya and AS Reyal, respectivelyﬁ

4Scripts for training ASReyval and ASVeya and for evaluation are provided at https://
github.com/Voice-Privacy-Challenge/Voice-Privacy-Challenge-2020.
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For objective utility evaluation, the official challenge setup relies on the ubiqg-
uitous word error rate (WER) metric. The post-evaluation phase also considers
the gain of voice distinctiveness metric of |[Noé et al.| (2020)), which accounts for
the additional requirement that the anonymized voices of all speakers must be
distinguishable from each other.

For objective privacy evaluation, three well-established speaker verification
metrics are computed in the official challenge setup: the equal error rate (EER
and the log-likelihood ratio (LLR) based costs Cyy, and C’H“;in. As seen in Figure
these metrics are computed for 4 evaluation scenarios corresponding to different
types of attacks depending on the amount of the attackers’ knowledge. Following
the terminology of [Srivastava et al.| (2021]), we consider the following conditions.

1. Unprotected: no anonymization is performed by users; attackers have ac-
cess to original trial and enrollment data.

2. Ignorant attacker (oa): original enrollment and anonymized trial data are
used for evaluation. We refer to this scenario as (original, anonymized) or
oa in short. Users anonymize their trial data, but attackers are unaware
of it, hence they use original data for enrollment.

3. Lazy-informed (aa) anonymized enrollment and anonymized trial data are
used for evaluation. We refer to this scenario as (anonymized, anonymized)
or aa in short. This scenario reflects the situation when the enrollment
data are anonymized data produced by users, who are assumed to use the
same anonymization system but different pseudo-speakers from their trial
dataﬂ While it is unlikely that attackers have access to anonymized data
with explicit speaker identities, they may infer the identities of a subset
of the data from the spoken contents and subsequently use this data as
enrollment data. This scenario also reflects the alternative situation when
attackers have access to original enrollment data and anonymize them us-
ing the same system (which is assumed to be publicly available) so that
they become more similar to the anonymized trial data. Here again, the
data is anonymized using a different pseudo-speaker, since attackers do
not know which pseudo-speaker was picked by each user. Hence, both
situations result in the same attack model.

4. Semi-informed (aa with the model retrained on anonymized data): attack-
ers have the same knowledge as in the previous case (the anonymization
system, but not the pseudo-speaker picked by each speaker) and, in addi-
tion to this, they anonymize the training set for the ASVa model using
the same anonymization system with different pseudo-speakers and re-
train it on this data. These attackers are the strongest ones among the

5The scenario when enrollment data has been anonymized using the same pseudo-speakers
as the trial data is of little practical interest. Indeed, prior work has shown that attackers
who have access to such data can identify the speakers as well as if the data had not been
anonymized (Srivastava et al.,|2020b)). Users are therefore required to pick a different, random
pseudo-speaker for each conversation.
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Figure 2: ASV evaluation for the official challenge setup using ASV,ya trained on original
data is performed for three cases: (1) Unprotected: original enrollment and trial; (2) /gnorant
attacker (oa): original enrollment and anonymized trial; (3) Lazy-informed attacker (aa):
anonymized enrollment and trial. ASV evaluation for the post-evaluation analysis is per-

formed using ASV2RO™ trained on anonymized data for case (4) Semi-informed attacker (aa):

anonymized enrollment and trial.

considered in this paper. This evaluation scenario is part of the post-
evaluation stage.

The number of same-speaker and different-speaker trials in the development
and evaluation datasets is given in Table [2| In addition to the EER, Cy,, and
Cin | the post-evaluation phase considers one more privacy metric, namely the
de-identification metric of |Noé et al.| (2020) which assesses how different each
pseudo-speaker is from the original speaker. Note that, although this metric pro-
vides useful additional information, it does not directly match the requirements
set in Section Indeed, the requirement that the original speaker cannot be
identified from the anonymized signal does not imply that the pseudo-speaker’s
voice must be maximally different.

The objective evaluation metrics for privacy and utility are listed below.

Equal error rate (EER). Denoting by P, (0) and Ppss(0) the false alarm and
miss rates at threshold 6, the EER corresponds to the threshold fggr at which
the two detection error rates are equal, i.e., EER = Py, (0ggr) = Pumiss(OrER)-

Log-likelihood-ratio cost function (Cy,. and C{Zf" ). Chy is computed from
PLDA scores as defined by Brummer & Du Preez| (2006]) and Ramos & Gonzalez-
Rodriguez (2008). It can be decomposed into a discrimination loss (Ciim) and



Table 2: Number of speaker verification trials.

‘ Subset ‘ Trials ‘ Female ‘ Male ‘ Total ‘
. | LibriSpeech | Same-speaker 704 644 | 1,348
g | dev-clean Different-speaker 14,566 | 12,796 | 27,362
é Same-speaker (common) 344 351 695
S -
= Same-speaker (different) 1,781 | 2,015| 3,796
o _ ) i i
% VOTK-dev Different-speaker (common) 4,810 4,911 | 9,721
A Different-speaker (different) | 13,219 | 12,985 | 26,204

LibriSpeech | Same-speaker 548 449 997
g | test-clean Different-speaker 11,196 | 9,457 | 20,653
= Same-speaker (common) 346 354 700
=] T
= Same-speaker (different) 1,944 | 1,742| 3,686
&) _ ) ) )
S | VOTR-test i ent-speaker (common) | 4,838 | 4,952 | 9,790

Different-speaker (different) | 13,056 | 13,258 | 26,314

a calibration loss (Cy, — CJI™). O i estimated by optimal calibration using
monotonic transformation of the scores to their empirical LLR values.

De-identification and gain of wvoice distinctiveness. To visualize ano-
nymization performance across different speakers in a dataset, voice similarity
matrices have been proposed by |[Noé et al.| (2020). A voice similarity matrix
M = (M(%,5))1<i<ni<j<n is defined for a set of N speakers using similarity
values M (i, j) computed for speakers i and j as follows:

> LLR(z}”, z{") (1)

nj
1<k<n; and 1<I<n;
k#Lif nj=n;

M (3, j) = sigmoid o

where LLR(x,(j), 2 )) is the log-likelihood-ratio obtained by comparing the k-th
segment from the i-th speaker with the [-th segment from the j-th speaker, and
n; and n; are the numbers of segments for these speakers. Three matrices are
computed: M, on original data, M,, on anonymized data, and M, on original
and anonymized data. For computing the entries M (4, j) of M,,, we use original
data for speaker i and anonymized data for speaker j.

Using voice similarity matrices, two additional metrics can be computed:
de-identification (DeID) and gain of voice distinctiveness (Gyp) (Noé et al.)
2020). They are computed based on the ratio of diagonal dominance for two
pairs of matrices: {Mea, Moo} or { Moo, Moo}, respectively. The diagonal dom-
inance Dygiag(M) is defined as the absolute difference between the mean values
of diagonal and off-diagonal elements:

M(i,1) M4, k)
Duwi=| 3o MED > MGR L
1<i<N 1<j<N and 1<k<N
Jj#k

The de-identification metric is defined as DeID = 1—Dagiag(Moa)/Dadiag(Moo)
and it is expressed in percent. DelD = 100% means perfect de-identification,
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Figure 3: ASR evaluation for the official challenge setup using ASReya1 trained on original
data is performed for two cases: (1) original trial data and (2) anonymized trial data. ASR
evaluation for the post-evaluation analysis is performed using ASR2°" trained on anonymized
data for case (3) anonymized trial data.

while DeID = 0% means no de-identification. Gain of voice distinctiveness is
defined as Gyp = 10log; (Daiag(Maa)/Ddiag(Moo)), where 0 means that the
voice distinctiveness remains globally the same after anonymization, and a gain
above or below 0 corresponds respectively to a global increase or a loss of voice
distinctiveness.

Word error rate (WER). ASR performance is assessed using AS Ry, which
is based on the adapted Kaldi recipe for LibriSpeech involving an acoustic mo-
del with a factorized time delay neural network (TDNN-F) architecture (Povey
et al., 2018; Peddinti et al.| |2015)), trained on the LibriSpeech-train-clean-360
dataset, and a trigram language model. As shown in Figure 3] the (1) original
and (2) anonymized trial data is decoded using the pretrained ASReya model
and the WERs are calculated. For the post-evaluation analysis, we also per-
form decoding of anonymized trial data using the ASRZ" model trained on
anonymized data (Figure |3} case 3).

2.3.2. Subjective metrics

We consider two subjective privacy metrics (speaker verifiability and speaker
linkability), and two subjective utility metrics (speech naturalness and speech
intelligibility). The speaker verifiability and speech intelligibility metrics are
subjective counterparts to the EER/CY,/ H”;in and WER metrics, and aim to
assess how human perception differs from objective evaluation. The speaker
linkability metric provides a closer account of the way humans perceive voice
characteristics and distinguish voices as belonging to certain speakers. Finally,
the speech intelligibility metric is motivated by the requirement that the ano-
nymized voices should sound natural, for which no established objective metric

10
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Figure 4: Subjective evaluation test for speech naturalness, intelligibility, and speaker verifi-
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exists.

Subjective speech naturalness, intelligibility, and speaker verifiability.
These three metrics were evaluated using the unified subjective evaluation test
illustrated in Figure |4l Each evaluator was asked to rate one original or anony-
mized test set trial at a time. For naturalness, the evaluator assigned a score
from 1 (‘totally unnatural’) to 10 (‘totally natural’). For intelligibility, the eval-
uator assigned a score from 1 (‘totally unintelligible’) to 10 (‘totally intelligible’).
For speaker verifiability, the evaluator was required to listen to one original en-
rollment utterance from the same or a different speaker and rate the similarity
between the trial and enrollment voices using a scale of 1 to 10, where 1 denotes
‘different speakers’ and 10 denotes ‘the same speaker’ with highest confidence.
The evaluator was instructed to assign the scores through a role-playing gameﬁ

Every evaluator was required to evaluate 36 trials in one session, following
the procedures in Figure He or she could also evaluate more than one ses-
sion. The trials were randomly sampled from the speakers in the three test
sets. The ratio of anonymized vs. original trials was roughly 1:1. So was the
ratio of enrollment-trial pairs from the same vs. different speakers. Among the
anonymized trials, the proportion of trials from each submitted anonymization
system was also balanced. 47 native English speakers participated in the eval-
uation and evaluated 16,200 trials. The decomposed numbers of trials over the
three test sets are listed in Table [Bl

To reduce the perceptual bias of each evaluator, the scores were subject to
normalized-rank normalization (Rosenberg & Ramabhadran, 2017). The nor-
malized scores are real-valued numbers in [0,1]. The Mann-Whiteney-U test
(Rosenberg & Ramabhadran, |2017) was used to assess statistical significance.

6Details are given by [Tomashenko et al.| (2021b}, Section 4.1).
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Table 3: Number of trials for the subjective evaluation of speech naturalness, intelligibility,
and speaker verifiability. The anonymized trials are from 9 anonymization systems (2 baselines
and 7 primary participants’ systems). The number of speakers is 30 (15 male and 15 female)
in each dataset, i.e., with respect to Table [I} 2 male speakers were re-sampled and 1 female
speaker was discarded for LibriSpeech.

’ Test set \ Trials \ Female \ Male \ Total ‘

LibriSpeech Original 1,330 | 1,330 | 2,660
test-clean | Anonymized 1,330 | 1,330 | 2,660

VCTK-test Original 1,380 | 1,380 | 2,760
(common) | Anonymized 1,380 | 1,380 | 2,760
VCTK-test Original 1,340 | 1,340 | 2,680

(different) | Anonymized 1,340 | 1,340 | 2,680

Perception of speaker identity and speaker linkability. Evaluating the
perception of speaker identity by humans is not simple. The subjective verifia-
bility and intelligibility scores described above closely mimic the corresponding
objective metrics. Yet, the question whether they suffer from perceptual biases
like the memorisation bias (the evaluator recalls hearing the same voice previ-
ously) or the well-known priming effect (exposure to a stimulus inconsciently
influences the response to a subsequent stimulus) remains open. In order both
to assess speaker linkability (i.e., the ability to cluster utterances into speakers)
and to decrease as much as possible the influence of such biases, we designed
a clustering-based perceptual experiment and the corresponding metrics. We
developed a specific software tool for this purpose (O’Brien et al., 2021)E]

Due to the time-consuming nature of this experiment, only the two baseline
anonymization systems were evaluated. 74 evaluators were recruited: 29 are na-
tive English speakers and the others are either bilingual or hold a high level of
English. Each evaluator did only one session composed of three panels, result-
ing in a total of 222 panels. Each panel includes 16 utterances from 3 reference
speakers (2 to 6 utterances each) and 1 distractor speaker (1 utterance only).
Including a distractor helps to verify that the evaluators focus on speaker speci-
ficities and are not disturbed by other acoustic differences. The anonymized
distractor speaker was used to examine whether anonymization systems affect
speaker discrimination performance, e.g., the evaluator either correctly identi-
fied the speaker as unique or incorrectly included it in a reference cluster.

For each panel, the evaluators were asked to group the 16 utterances into 1
to 4 clusters according to subjective speaker voice similarity. In order to avoid
perceptual biases as much as possible, during a given session, each speaker was
encountered in only 1 panel, and all speakers were of the same gender. For
the control panel, original speech was used for all utterances; for the two other
panels, half of the utterances were anonymized using the same anonymization
system. The data used in the speaker clustering task come from the VCTK-

Thttps://demo-lia.univ-avignon.fr/voiceprivacy /instructions
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test (common) corpus. Unlike all other experiments, only the first 3 s of each
utterance were used. The motivation for this length restriction was to provide
evaluators with excerpts that were short enough to not induce complex cognitive
processes that involve complex syntactic, semantic, and pragmatic analysis. If
the evaluators were provided longer excerpts, they could become distracted by
attempting to complete and understand text narratives. In addition, limiting
the duration of the excerpts reduces the risk of evaluator fatigue.

As a primary metric, we use the macro-average F-measure (F1), a classical
metric for such a task. We also use a secondary metric called clustering purity.
Clustering purity associates each cluster with a unique ground truth speaker
and focuses only on precision, while F; allows two clusters to correspond to the
same ground truth speaker and is the harmonic mean of precision and recall.
Clustering purity is defined as

. 1
pumty(C) - I?Eag,( N EZC |C n 5c|v (3)

where C' is the set of estimated clusters, ¢ is an individual cluster in C, S is the
set of all possible combinations of unique speakers assigned to each cluster, s,
is the speaker label assigned to cluster ¢ in combination s, and NV is the number
of utterances in the panel. In addition, we consider a clustering change (CC)
metric, that is the number of times an evaluator (re-)assigns an utterance to a
cluster.

3. Anonymization systems

We now describe the two baseline systems provided by the challenge orga-
nizers as well as those prepared by challenge participants.

3.1. Baseline systems

Two different anonymization systems were provided as challenge baselinesﬂ
to help the participants tackle this relatively new task and explore a wide range
of solutions. The first baseline offers more flexibility in the choice of the pseudo-
speaker and provides state-of-the-art objective privacy and utility, but it requires
significant development efforts and big computational resources. In contrast, the
second baseline is simpler and provides good subjective speech naturalness and
intelligibility, but it results in weaker privacy preservation.

The primary baseline, denoted B1, is shown in Figure It is inspired
from |[Fang et al. (2019) and performs anonymization using x-vectors (Snyder
et al) [2018) and neural speech synthesis. It comprises three steps: (1) x-
vector, pitch (F0) and bottleneck (BN) feature extraction; (2) x-vector ano-
nymization; (3) speech synthesis (SS) using the anonymized x-vector and the

8https://github.com/Voice-Privacy-Challenge/Voice-Privacy-Challenge-2020
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original FO and BN features. Step (1) encodes the spoken content by 256-
dimensional BN features extracted using a TDNN-F ASR AM trained on the
LibriSpeech train-clean-100 and train-other-500 datasets and speaker informa-
tion by a 512-dimensional x-vector extracted using a TDNN trained on the
VoxCeleb-1,2 dataset. Both extractors are implemented with the Kaldi toolkit.
Step (2) computes an anonymized x-vector for every original x-vector. It is gen-
erated by averaging a set of N* x-vectors selected at random from a larger set of
N x-vectors, itself composed of the N farthest x-vectors in the LibriTTS train-
other-500 dataset, according to PLDA distanccﬂ Step (3) uses a SS AM to
generate Mel-filterbank features from the anonymized x-vector and the original
FO and BN features, and a neural source-filter (NSF) waveform model
|& Yamagishi, 2019)) to synthesize a speech signal from the anonymized x-vector
and the FO and Mel-filterbank features. The SS AM and NSF models are both
trained on the LibriTTS train-clean-100 dataset. With respect to the work
by [Fang et al.| (2019), the differences in baseline Bl include using PLDA dis-
tance instead of cosine distance and using a different x-vector selection strategy.
Also, the model architectures for each step and the training datasets differ. Full
details are provided by [Tomashenko et al.| (2020a)). |Srivastava et al.,| (2020al)
evaluate these design choices against other possible choices.

FO Fo

extractor

4

BN features Mel-fbanks {2 NSF

— U

SSAM model
X-vector || x-vector ‘8 A ; .
Input speech || extractor Anonymizaton nonymized Anonymized
x-vector speech

Pool of x-vectors
1%
alsla
[—

Figure 5: Primary baseline anonymization system (B1).

In contrast to the primary baseline, the secondary baseline, denoted B2,
does not require any training data and is based upon traditional signal pro-
cessing techniques (Patino et al., [2021)). It employs the McAdams’ coefficient
(McAdams, 1984) to achieve anonymization by shifting the pole positions de-
rived from the linear predictive coding (LPC) analysis of speech signals. The
process is depicted in Figure[6] It starts with the application of frame-by-frame
LPC source-filter analysis to derive LPC coefficients and residuals. The resid-
uals are set aside for later resynthesis, whereas LPC coefficients are converted
into pole positions by polynomial root-finding. The McAdams’ transformation
is then applied to the angles of the poles (with respect to the origin in the z-
plane), each one of which corresponds to a peak in the spectrum (resembling

9In the baseline, we use N = 200 and N* = 100.
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Figure 6: Secondary baseline anonymization system (B2).

formant positions). While real-valued poles are left unmodified, the angles ¢ of
the poles with a non-zero imaginary part (with values between 0 and 7 radians)
are raised to the power of the McAdams’ coefficient « so that the transformed
pole has new, shifted angle ¢®. The value of « implies a contraction or expan-
sion of the pole positions around ¢ = 1. For a sampling rate of 16 kHz, i.e. for
data used in the challenge, ¢ = 1 corresponds to approximately 2.5 kHz which is
the approximate mean formant position (Ghorshi et al., [2008). Corresponding
complex conjugate poles are similarly shifted in the opposite direction and the
new set of poles, including original real-valued poles, are then converted back to
LPC coefficients. Finally, LPC coefficients and residuals are used to resynthesise
a new speech frame in the time domain. This technique shares some similarities
with the frequency warping based methods previously explored by
(2018a) and |Srivastava et al.| (2019) except that, for the sake of simplicity, it
modifies only the spectral envelope (not the pitch). Full details are provided by
[Patino et al.| (2021)).

8.2. Submitted systems

The VoicePrivacy Challenge attracted 45 participants from both academic
and industrial organizations and 13 countries, representing 25 teams. Among
the 5 allowed submissions by each team, participants were required to designate
one as their primary system with any others being designated as contrastive
systems. With full descriptions available elsewhere, we provide only brief de-
scriptions of the 16 successful, eligible submissions, a summary of which is pro-
vided in Table 4| which shows system identifiers (referred to below) in column 3.
Most systems submitted to the VoicePrivacy 2020 challenge were inspired by

the primary baseline (see Section 3.2.1). One submission is based upon the sec-

ondary baseline (see Section [3.2.2)) whereas two others are not related to either

(see Section [3.2.3 E E

10There is also one non-challenge entry work related to the challenge (Huang} 2020). This
team worked on the development of stronger attack models for ASV evaluation.
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Table 4: Teams, organizations, and submitted systems. The submission identifier (ID) for each
system in the last column comprises: <team id: first letter of the team name><submission
deadlinﬂ 1 or 2><c, if the system is contrastive><index of the contrastive system>. The
symbol * in the first column indicates that the team submitted the anonymized training data
for post-evaluation analysis. The colors @ and @ indicate systems that were developed from
B1 or B2, respectively, while O indicates other systems.

‘ Team (Reference) ‘Organization(s). [Sys. |
Nlaillansl;rll?l;tJaAlISgo 50 eJapan Advanced Institute of Science and Technology, Japan | Al
eNECTEC, National Science and Technology Development|A2

Agency, Thailand

DA-IICT Speech Group
' 2020) eDhirubhai Ambani Institute of Information and Communica-|p1
©

tion Technology, India

Idiap-NKI eldiap Research Institute, Martigny, Switzerland
‘ 2020 eEcole Polytechnique Fédérale de Lausanne (EPFL), Switzer- n
land

eNetherlands Cancer Institute (NKI), Amsterdam, Netherlands

Kyoto Team eKyoto University, Kyoto, Japan
*2020}3 eNational Institute of Information and Communications Tech- K2

nology, Kyoto, Japan

- M1
MultiSpeech Milcl

QChampion et al.”Q(JQOab eUniversité de Lorraine, CNRS, Inria, LORIA, Nancy, France | pf1¢2

@ N eLe Mans Université, LIUM, France Mlc3
Mlc4
Oxford System Security Lab o1
eUniversity of Oxford, UK Olcl
Sigma Technologies SLU ) . ) ) 2}01
QEspinoza—Cuadros ot al_l |202()a} oSlg'ma Technologws S..L.U.7 Madﬁld, Sp;%m ©
©* eUniversidad Politecnica de Madrid, Spain
S2cl
PingAn PATT Tnc., Palo Alto, CA, USA
(Hu;mgl 2020 : o T T e e

8.2.1. Submissions derived from Baseline-1

Teams A, M, O and S (see identifiers in column 3 of Table@land column 1 of
Table [5)) submitted systems derived from the primary baseline. Tableprovides
an overview of the modifications made by each team to the baseline modules
shown in Figure 5} None of the teams modified the x-vector extraction module
(#3 in Table , whereas two systems modified the x-vector anonymization
module (#6). Details of specific modifications are described in the following.
We focus first on differences made to specific modules, then on specific system
attributes.

Hdeadline-1: 8th May 2020; deadline-2: 16th June 2020.
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Table 5: Summary of the challenge submissions derived from B1. ' v and | blue color indicate
the components and speaker pool data that were modified w.r.t. B1.

Sys. |Description of modifications 112 3]41516 Data for
= speaker pool
= |5 2], |5 |2
E (< |X|©n |z |<
. . . . LibriTTS:
A2 using singular value modification train-other-500
Al different FO vxlummE] x-vector anonymization using v LibriTTS:
variability-driven ensemble regression modeling train-clean-100
M1 |End-to-end ASR AM v ViV
Micl E.]nd—Fo—'end ASR AM;‘ semi—adyersarial tra'ining to l'earn v 7 v
linguistic features while masking speaker information
M1c2 |copy-synthesis (original x-vectors) v
Milc3 x-vectors provided to SS AM are anonymized, x-vectors v
provided to NSF are original
Micd x-vectors provided to SS AM are original, x-vectors pro- v
vided to NSF are anonymized
keeping original distribution of cosine distances between
o1 speaker x-vectors; GMM for sampling speaker vectors LibriTTS:
in a PCA-reduced space followed by projection to the train-other-500
original x-vector dimension
Olcl O1 with forced dissimilarity between original and gen- v VoxCeleb - 1,2
erated x-vectors
s1 S1cl applied on the top of the B1 x-vector anonymi- v
zation
domain-adversarial training; autoencoders: using gen-
Slcl |der, accent, speaker id outputs corresponding to adver- v
sarial branches in ANN for x-vector reconstruction
$9 52?1 applied on the top of the B1 x-vector anonymi- v
zation
S2cl |Slcl with parameter optimization v

FO:. Only team A (Mawalim et al., [2020) modified the pitch extractor. They
replaced the baseline FO extractor with WORLD (Morise et al.| 2016) and by
SPTKE’-] alternatives. While no significant impact upon ASR performance was
observed, SPTK F0 estimation was found to have some impact, albeit inconsis-
tent, upon the ASV EER. Consequently, the final system used the baseline FO
extractor. Post-evaluation work conducted by |(Champion et al.| (2020b)) showed
improved anonymization performance when F0 statistics of the original speaker
are replaced with those of a pseudo-speaker, without significant impact upon
the ASR performance.

ASR AM, speech synthesis AM and NSF model:. Instead of the base-
line hybrid TDNN-F ASR acoustic model, systems M1 and M1cl (Champion
et al.l 2020al) used an end-to-end model with a hybrid connectionist temporal
classification (CTC) and attention architecture (Watanabe et al.| [2017) for BN

12Different FO extractors were used in experiments, but the baseline FO in the final A1.
138peech Signal Processing Toolkit (SPTK): http://sp-tk.sourceforge.net/
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feature extraction. The SS AM and NSF models were then re-trained using the
new BN features. In addition, the M1cl contrastive system relied on semi-
adversarial training of the ASR AM to learn linguistic features while masking
speaker information.

X-vector anonymization:. All teams explored different approaches to x-
vector anonymization. They are described in the following:

0A2. Singular value modification (Mawalim et all [2020). The singular value
decomposition (SVD) of the matrix constructed from the utterance-level speaker
x-vectors was used for anonymization. The target x-vector was obtained from
the least similar centroid using x-vector clustering. Anonymization was per-
formed through modification of the matrix singular values. A singular value
threshold parameter determines the dimensionality reduction used in the mod-
ification and determines the percentage of the kept non-zero singular values.

oA 1. Variability-driven decomposition with regression models (Mawalim et al.,
2020). The speaker x-vector was decomposed into high- and low-variability com-
ponents which were separately modified using two different regression models.
It was argued that speaker-specific information is mostly contained in the low-
variability component, which is hence the component upon which the anonymi-
sation must focus.

001. Distribution-preserving x-vector generation (Turner et al., 2020). Base-
line B1 performs anonymization through x-vector averaging. As a result, the
anonymized voices are less diverse than the original voices and the resulting
differences in the distribution of original vs. anonymized x-vectors leaves the
anonymization system vulnerable to inversion. Turner et al.[(2020) investigated
the use of GMMs to sample x-vectors in a PCA-reduced space in a way that
retains the original distribution of cosine distances between speaker x-vectors,
thereby improving robustness to inversion.

001cl. Forced dissimilarity between original and anonymized x-vectors (Turner
et al.;[2020). In a slight variation to the O1 system, the Olcl contrastive system
generates a new x-vector in the case when the original and anonymized x-vectors
are not sufficiently dissimilar.

oS1cl1 & S2c1. Domain-adversarial training (Espinoza-Cuadros et al.,|2020a)).
Domain adversarial training was used to generate x-vectors with separate gen-
der, accent, and speaker adversarial branches in an autoencoder adversarial
network. For system S2cl, the parameters of the adversarial branches were
tuned to optimise the trade-off between the autoencoder and the adversarial
objectives.

0S1 & S2. Domain-adversarial training on top of B1 (Espinoza-Cuadros et al.|
2020a). The primary systems S1 and S2 are based upon the application of the
contrastive systems S1lcl and S2cl to the anonymized x-vectors generated by
baseline B1.
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oM1c2. Copy-synthesis (Champion et al., 2020a). This contrastive system
is essentially the B1 baseline, but without explicit x-vector anonymization, It
provides some insights into the added benefit of the latter, beyond simple copy-
synthesis.

oM1c8. Original x-vectors for NSF. Another contrastive system for which the
NSF model receives original x-vectors while the SS AM receives anonymized
x-vectors.

oMl1c4. Original xz-vectors for SS AM. A variation on the above contrastive
systems whereby the SS AM receives original x-vectors but the NSF model
receives anonymised x-vectors.

oA and O. Speaker pool augmentation. In addition to their respective mod-
ifications made to x-vector anonymization, some teams also investigated the
augmentation of the x-vector pool using additional datasets, namely LibriTTS-
train-clean-100 (team A) and VoxCeleb-1,2 (team O).

3.2.2. Submission derived from Baseline-2

oD1. Modifications of the pole radius (Gupta et al.|[2020)). Team D investigated
modifications of the pole radius (distance from the origin) in addition to the shift
in phase operated by baseline B2. This approach further distorts the spectral
envelope. Pole radii were reduced to 0.975 of the original values whereas the
McAdams’ coefficient was set to 0.8 as in baseline B2.

3.2.3. Other submissions

oK2. Anonymization using x-vectors, SS models and a voice-indistinguishability
metric (Han et al. 2020b). Similar to the primary baseline B1, system K2 is
also based on x-vector anonymization, but the anonymization process and SS
models (and corresponding input features) are quite different from those of
baseline B1. Other differences include using the test dataset for creating the
speaker pool. The speech synthesis framework uses two modules: (1) an end-to-
end AM implemented with ESPne@ which produces a Mel-spectrogram from
filterbank features and speaker x-vectors; (2) a waveform vocoder based on the
Griffin-Lim algorithm (Griffin & Lim| (1984) which produces a speech waveform
from the Mel-spectrogram after conversion to a linear scale spectrogram. A
voice indistinguishability metric (Han et al.l |2020a)) inspired by differential pri-
vacy concepts (Dworkl 2009)) was applied during x-vector perturbation to select
target speaker x-vectors.

ol1. Modifications to formants, FO and speaking rate (Dubagunta et al., [2020).
The I1 system is based upon a signal-processing technique inspired from [van
Son| (2020)). The playback speed was adjusted to linearly shift formant frequen-
cies. Individual formants were then shifted to specific target values chosen from

Mhttps://github.com/espnet/espnet/tree/master/egs/librispeech/tts1
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a set of randomly chosen speakers in the LibriSpeech-train-other-500 dataset.
The FO and the speaking rate were also adjusted using a pitch-synchronous
overlap-and-add method (Moulines & Charpentier| [1990). Additional process-
ing includes exchanging the F4 and F5 bands using a Hann filter method and
adding modulated pink noise to the speaker F6-F9 bands for formant masking.

4. Results

In this section we report the evaluation results for the systems described in
Section [3] The results obtained as part of the challenge and those obtained as
part of the post-evaluation analysis are both presented without distinction.

4.1. Objective evaluation results

We first present and discuss the objective evaluation results.

4.1.1. Privacy: objective speaker verifiability

Speaker verifiability results are shown in Figure[7]in terms of EER averaged
across all test datasets for the ignorant (oa) and lazy-informed (aa) attack
models described in Section Without anonymization, the EER is 3.29%.
Anonymization is expected to increase the EER.

When only trial data is anonymized (oa condition, light bars in Figure E[),
the EER increases for all anonymization systems: from 22.56% for M1c4 to
53.37% for M1cl. Better anonymization is achieved by using x-vector based
anonymization systems (K2, A*, S* M*, B1, O*) than signal processing
based ones (B2, D1, I1). Systems M1c2 and M1lc4 perform worst as ex-
pected, because they provide non-anonymized x-vectors to the speech synthesis
AM, but they still result in an increased EER compared to original speech due
to the acoustic mismatch between original and synthesised speech. Systems
K2, A*, Mlcl, M1, B1 all produce EERs above 50%, indicating that the
anonymization requirement against ignorant attackers is fully met.
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Figure 7: Average EER over all test datasets for all anonymization systems and for original
data, against ignorant (oa) or lazy-informed (aa) attackers. Blue and red colors in the system
IDs indicate systems developed from B1 or B2, respectively. Higher EER corresponds to
better privacy.
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Anonymization of both enrollment and trial utterances (aa condition, darker
bars in Figure@ results in universally lower EERs for all systems. While system
rankings are different for each attack model, the general trend is consistent: B1
based systems outperform others. Some results are of particular interest. The
EER of 3.75% for system K2 is only marginally above the original EER of
3.29%, despite it being the 3rd best performing system for the oa condition.
Even the best O1cl system achieves an EER of only 37.79%, which is far away
from the 50% which indicates successful anonymization. These results highlight
the importance of designing anonymization systems under the assumption of a
strong attack model. Without it, results may provide a false sense of protection.

Overall, taking confidence intervals (not shown in the figure) into account,
baseline B1 is outperformed by systems A1, A2, M1, Milcl, and K2 in the
oa condition and by systems S2, S2cl, O1, and Olcl in the aa condition.
These two sets of systems do not intersect and no single system works best in
both conditions. This highlights the difficulty of designing and optimising an
anonymization system that works well under different attack scenarios. The
results for system K2 are also of note. This system achieves a very high ano-
nymization performance in the oa condition due to the fact that anonymized
utterances are acoustically very different from the original ones. At the same
time, it achieves a very poor performance in the aa condition since, instead of
generating anonymized x-vectors from a dataset with many speakers (relative
to the evaluation dataset), it generates them from the evaluation dataset itself.
This results in distinct confusions between some speakers, however the number
of such confusions is very low, especially for some test sets (see, for example,
the speaker similarity matrix M,, for female speakers on the LibriSpeech-test
set in Figure .

The results for other privacy metrics are consistent with those for the EER.
See, for example, Figure [§ which illustrates EER vs. CIi" results for ignorant
and lazy-informed attack models for different datasets and systems. Due to
space constrains, we therefore focus on the EER in the following. Results for
other metrics are reported by [Tomashenko et al.| (2021b, Section 3).
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Figure 9: Average EER over all test datasets for all anonymization systems and for original
data, depending on the attack model and the original speaker’s gender.
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Figure 8: EER vs. C’“mrin results for the ignorant and lazy-informed attack models. Each
point corresponds to the result of one anonymization system on one dataset among the 12
development and evaluation datasets. Higher EER and CJ[}'" correspond to better privacy.

Anonymization performance differs at the gender level. Gender-dependent
results averaged over all datasets in both evaluation conditions are given in
Figure [0] On the original data, the EER is lower for male speakers than for
female speakers. With only few exceptions (e.g., A2), the opposite is observed
after x-vector based anonymization. Systems M1c2 and M1c4, for which the
SS AM is fed with original x-vectors, are two of the exceptions, indicating that
gender-dependent differences are the result of x-vector anonymization rather
than any extraneous influence, e.g., acoustic mismatch between original and
synthesized data. In contrast, signal processing based approaches show the
same gender-dependent trend as the original data.

4.1.2. Utility: speech recognition error

Figure [10| shows the ASR performance in terms of the WER. Since we ob-
served substantial disparities in the results, they are illustrated separately for
the LibriSpeech-test and VCTK-test datasets. The WER on original data (no
anonymization) is 4.14% and 12.81%, respectively. This difference in the WER
is explained as follows: with the ASR system being trained on the LibriSpeech-
train-clean-360 dataset, performance is better on the matched LibriSpeech-test
dataset than on the mismatched VCTK-test set.

All anonymization systems degrade the WER. In other words, any improve-
ment in privacy comes at the expense of lower utility. The relative WER in-
crease is more substantial on the LibriSpeech-test dataset (40-217%) than on
the VCTK-test dataset (14-120%).

22



I LibriSpeech-test

25 I VCTK-test

20
16.4

152 152 153 152 155

WER,%
=
52

1

o

Original 11 M1lc4 Bl S2cl A2

S2 Olcl Al Ol Slcl S1 D1 M1 Milcl B2 Mlc3 Mlc2 K2

Figure 10: WER on LibriSpeech-test and VCTK-test for all anonymization systems and for
original data. Lower WER corresponds to better utility.

After anonymization, the best WER of 5.83% on the LibriSpeech dataset is
obtained by the signal processing based system I1. Compared to other systems,
however, it performs poorly on the VCTK-test dataset. Other signal processing
based systems based upon baseline B2 fair even worse on this dataset. On
average, on both test sets, x-vector based anonymization techniques related
to the primary baseline (B1, S2c1, A2, S2) obtain better results than other
systems (and very close to each other).

Of note is the high WER of system M1c2, which retains the original x-
vectors, on the LibriSpeech-test dataset. Systems M1lc3 and M1lc4, which
partially retain the original x-vectors, yield a higher WER than original data on
that dataset too. This suggests that resynthesis by itself significantly degrades
ASR performance. The results for systems M1 and M1cl (vs. B1) indicate
that using an end-to-end ASR AM for BN feature extraction degrades ASV
performance on both datasets. For signal processing based techniques (11, D1,
B2) the relative WER degradation is similar across the datasets, while for x-
vector based techniques it is much larger on in-domain data with respect to the
data used to train the ASR model (LibriSpeech) than on out-of-domain data.

4.1.8. Using anonymized speech data to assess privacy

The results reported in Section [I.1.1] were obtained using an ASV system
trained on original data. We now report evaluation results using ASV systems
trained on anonymized data, according to the semi-informed attacker scenario
in Section [2.3.1] Four teams submitted anonymized LibriSpeech-train-clean-360
training data for their primary systems O1, M1, S2, and K2, and we trained
four new corresponding ASV22" models on this data. In addition, we trained

eval
two ASVE2™ models on the training data anonymized by the baseline systems
B1 and B2. Models were trained in the same way as before, and have the same
topology as the ASViya model trained on original data.

Figure compares the average EERs obtained for the semi-informed (dark,
lower bars), lazy-informed, and ignorant attack models. For all anonymization

systems, training the ASV evaluation model on anonymized data significantly
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decreases the EER: EERs are substantially lower against semi-informed than
ignorant or lazy-informed attackers. Thus, assessing the performance of ano-
nymization systems using an ASV system trained on original data leads to a
false impression of protection; if the ASV system is retrained on similarly ano-
nymized data, the level of protection becomes closer to (but still better than)
that for original, unprotected data.

50 ] 2043

401 oa - Ignorant
- W= aa - Lazy-informed
EEN aa - Semi-informed

0.
Original K2 B2 Bl S2 o1 M1

Figure 11: Average EER over all test datasets for a subset of anonymization systems and for
original data, against the three attack models.

4.1.4. Using anonymized speech data to assess utility
Similarly, Figure [12| compares the WERs obtained by ASR systems trained
on anonymized speech data (ASR21°") with those obtained by the ASR sys-

eval

tem trained on original data (ASReva). The WERs for ASR2" (dark, lower
bars, a) are consistently lower than for ASReya (light, upper bars, o). In some
cases, the WER decreases to a level close to that of ASRe. on original data.
This implies that degradations to utility can be offset simply by retraining using
similarly anonymized data. This substantially improves the trade-off between
privacy and utility; there is potential to protect privacy with only modest im-

pacts upon utility.
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Figure 12: WER on LibriSpeech-test and VCTK-test for a subset of anonymization systems
and for original data, evaluated using ASReya) (0) or ASR21OM (a).
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4.1.5. De-identification and gain of voice distinctiveness

Figure illustrates the voice similarity matrices obtained for all primary
systems. The distinct diagonal in My, (top left submatrix of each matrix M)
points out the speaker discrimination ability in the original data. The two
other submatrices, M,, (top right) and M,, (bottom right), show substantial
differences across the systems. In M,, the diagonal disappears if the pseudo-
speakers differ from the original speakers, while in M,, the diagonal emerges
if the pseudo-speakers can be distinguished from each other .
The matrices for signal processing based systems and for system K2 exhibit
a distinct diagonal in M,,, indicating that voices remain distinguishable after
anonymization. For x-vector based systems, this diagonal is much weaker.

7 (g) A2 (h) K2 () B2 () D1 (k) I1

Figure 13: Voice similarity matrices for all primary systems on the female speakers of the
LibriSpeech-test dataset. The global matrix M for each system is composed of the three

submatrices Moo, Moa and Ma, defined in Section as M = (%EZ %ZZ)

The scatter plots in Figure [14] show the gain of voice distinctiveness (Gyp)
against de-identification performance (DelD) for the LibriSpeech-test (left) and
VCTK-test (right) datasetsm The results show that systems based upon base-
line B1 provide close to perfect de-identification, while signal processing based
solutions tend to better preserve voice distinctiveness. For the latter, de-
identification performance varies across the datasets. Only system K2 achieves
high de-identification with only modest degradation to voice distinctiveness.
The results for systems M1lc4 and M1c2 which use original x-vectors show
that copy-synthesis alone also degrades voice distinctiveness. Interestingly, de-
identification performance for both systems is comparable to that for signal-
processing based methods. These observations are consistent with EER and

min

I results.

15For more details, see Tomashenko et al.l q2021bl Sections 3.4 and 3.5)
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Figure 14: De-identification (DeID) vs. gain of voice distinctiveness (Gyp) for all anonymiza-
tion systems. Higher DelD corresponds to better privacy, higher Gyp to better distinctiveness
of anonymized voices.

The results in Figure [I4] also show that different systems lead to differences
in voice distinctiveness for different genders. In particular, systems S2 and
S2c1 better preserve distinctiveness for female speakers, while system A2 better
preserves distinctiveness for male speakers.

4.1.6. Relation between privacy and utility metrics

As we observed above, all anonymization systems reduce the utility of speech
data. Therefore, it is important to consider the trade-off between privacy and
utility. Figure [L5| demonstrates the relation between objective privacy and util-
ity in the form of scatter plots with WER and EER values for all anonymiza-
tion systems, evaluated using AS Reya) and ASVeya1 systems trained on original
data. The best anonymization system should have maximum EER and mini-
mum WER, i.e., be close to the top-left corner. We can see that there is no
system which provides the best results for both metrics. On the LibriSpeech-test
dataset, the best anonymization is achieved using x-vector based systems, while
the lowest WER corresponds to system I1 which is a signal processing based
system. However on VCTK-test, the results for this system are different and
better results for both metrics are obtained using x-vector based systems.
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Figure 15: WER vs. EER on LibriSpeech-test and VCTK-test for all anonymization systems
and for original data, evaluated using ASR.ya1 and the lazy-informed attack model.

4.2. Subjective evaluation results

This section presents subjective evaluation results for speech naturalness,
intelligibility, and speaker verifiability (Sections and , and speaker

linkability (Section [4.2.3).

4.2.1. Distribution of naturalness, intelligibility, and verifiability scores

The distributions of normalized naturalness, intelligibility, and speaker simi-
larity scores obtained from the unified subjective test are displayed in Figure [I6]
as violin plots (Hintze & Nelson), 1998)@ The similarity scores for same-speaker
and different-speaker pairs are plotted separately, since they are expected to be
different.

The results for naturalness and intelligibility are as expected. Anonymized
samples from all systems are inferior to the original data, and the differences
are statistically significant at p < 0.01. This performance gap exists in both
methods based on the primary baseline (B1, O1, M1, S2, and A2) and the
secondary baseline (B2, D1). While I1 outperforms the other anonymization
systems in terms of naturalness, it is still far from perfect in terms of both natu-
ralness and intelligibility. More efforts are necessary to address the degradation
caused by existing anonymization methods.

Concerning speaker similarity, the anonymized trial data from a given speaker
are perceptually much less similar to the original enrollment data of that speaker
than the original trial data of that speaker. This indicates that all systems
achieve a good degree of anonymization according to human perception.

16Statistical significance test results are reported by [Tomashenko et al.| (2021b, Tables 16
and 17).
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Figure 16: Violin plots of normalized subjective speech naturalness, intelligibility,
and speaker similarity scores pooled over LibriSpeech-test and VCTK-test. The dotted
line indicates the median for B1. Numbers indicate mean values. Higher naturalness and
intelligibility scores correspond to better utility, and lower similarity scores to better privacy.

4.2.2. Naturalness, intelligibility, and verifiability DET curves

To further investigate the difference across systems, we plot detection error
trade-off (DET) curves (Martin et all |[1997)). These curves assume a detection
task, where the decision for a given trial is made by comparing the score with
a threshold. The false alarm and miss rates are computed as a function of the
threshold and plotted against each other. For naturalness and intelligibility the
task is to detect original data, while for speaker similarity the task is to detect
whether the trial utterance is from the same speaker as the enrollment utterance.
The closer the DET curves are to the top-right corner of each plot, the higher
the naturalness, intelligibility, and privacy preservation. Once again, the DET
curves for same-speaker and different-speaker pairs are plotted separately, since
they are expected to be different.

The four types of DET curves are plotted in Figure Concerning natu-

7For separate results over LibriSpeech-test and VOTK-test, see Tomashenko et al.| (2021b),
Figure 26).
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Figure 17: DET curves based on subjective evaluation scores pooled over LibriSpeech-test and
VCTK-test.

ralness and intelligibility, the DET curves for anonymized data are far from the
top-right corner, suggesting that anonymized data are inferior to original data
in terms of naturalness and intelligibility. The naturalness DET curves of I1
and K2 seem to deviate from the other anonymization systems. While other
systems are based on either B1 or B2, I1 uses a different signal processing
based approach, and K2 uses a different deep learning method. As such, I1
avoids several errors such as ASR AM errors in B1, which may contribute to
its naturalness. However, it is interesting to note how different signal process-
ing algorithms result in different perceptual naturalness and intelligibility. Also
note that none of the systems except I1 outperforms B2.

Concerning speaker similarity, both in the same-speaker and different-speaker
cases, the DET curves of original data are close to the bottom-left corner while
those of anonymized data are close to the top-right corner. In other words,
anonymization of the trial utterances makes it difficult to decide whether the
original enrollment utterance comes from the same speaker or not. The simi-
larity DET curves of K2, S2, and I1 in the same-speaker case are closer to the
top-right corner than others. However, these three systems behave quite differ-
ently in terms of naturalness and intelligibility, with I1 and K2 achieving the
highest and lowest median score, respectively. This implies that an anonymized
trial may sound like the voice of a different speaker simply because of the severe
distortion caused by anonymization.
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To sum up, all the submitted anonymization systems can conceal the per-
ceived speaker identity to some degree. However, none of them can produce
anonymized speech that is as natural and intelligible as original speech. One
signal processing based anonymization method (I1) degrades the naturalness
and intelligibility less severely, but it still degrades them to some extent.

4.2.8. Perception of speaker identity and speaker linkability

We report speaker linkability results for the two baseline systems in terms
of the F-measure (Fy), clustering change (CC), and clustering purity metrics.
To measure the effects of anonymization for each evaluator, we calculated the
difference between the values of the F; and CC metrics on the control panel
(original data only) and their average values over the two other panels (half of
the data anonymized by B1 or B2).

‘We observed a main effect on the mean F; difference of the evaluator’s native
language Fi 64 = 6.5, p < 0.05, 7]2 = 0.09, but no effects of the anonymization
system nor the original speaker’s gender, p > 0.05. B1 evaluators exhibited
a greater mean F difference (0.24 + 0.02) than B2 evaluators (0.21 + 0.02).
Post-hoc t-tests showed that non-native English speaking evaluators were more
affected by linking natural and anonymized utterances (0.26 4-0.02) than native
English speaking evaluators (0.19 + 0.022) (Figure [L8h).

For the mean CC difference, we found a main effect of the original speaker’s
gender I g4 = 4.45, p < 0.05, 773 = 0.06, and interactions for anonymization
system x language Iy g4 = 4.26, p < 0.05, 7712, = 0.06 and anonymization sys-
tem x language x original gender Fy g4 = 8.75, p < 0.01, n2 = 0.11. Post-hoc
t-tests revealed that evaluators showed a greater mean CC difference when pre-
sented male utterances (0.07 = 0.03) in comparison to female (—0.03 £ 0.04)
(Figure ) Native English speaking evaluators also exhibited a greater mean
CC difference than B2 evaluators (Figure ) These results suggest that the
evaluators were able to use the anonymized utterances to aid their performance
when grouping female utterances, whereas performance diminished when they
listened to anonymized male utterances. Non-native English speaking evalua-
tors achieved a lower accuracy when presented with anonymized stimuli from
either system. Overall, the above results suggest that the perceptual effective-
ness of an anonymization system can depend on the users as well as on the
attacker (here, the evaluator).

The distribution of clustering purity for the three panels is displayed in
Figure The Mann-Whitney test shows an effect of the panel (control vs.
other) on the purity: x? = 82,688 (p < 0.001) for female speakers and x? =
41,344 (p < 0.001) for male speakers, which indicates that the distributions
for the original and the anonymized panels are different. As expected, the
evaluators achieve a higher average purity (86.40%) on the original panel than on
the two other panels (61.68% and 62.58%). These results indicate that linking
an anonymized voice to its original counterpart is not as easy as clustering
original voices. The distribution of the clustering purity is similar to that of F
for all panel types (see Figure . No significant difference between the two
baselines is noticed for both metrics.
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Figure 19: (a) density distributions for clustering purity; (b) cumulative density for clustering
purity and Fi on the original (control) trials.

4.3. Comparison of objective and subjective evaluation results

In this section, we compare objective and subjective evaluation results. Fig-
ureplots the EER against the median subjective speaker verifiability (similar-
ity) score for all primary anonymization systems and for original data (blue star)
on the three test sets. The results indicate that anonymizing the trial increases
the EER and decreases the same-speaker subjective similarity score, while it
leaves the different-speaker similarity score roughly unchanged. The precise im-
pact depends on the anonymization system and the test set. This suggests that
the considered anonymization systems can hide the speaker identity to some
degree from both ASV system and human ears. This is an encouraging message
from the challenge. Similar results can be observed for other privacy metrics,
as shown by [Tomashenko et al.| (2021bl Section 5).

Figure [21] plots the WER against the median subjective naturalness and
intelligibility scores, averaged over all test datasets. The results reinforce the
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Figure 20: Objective EER (ignorant attack model) vs. subjective same- or different-speaker
speaker similarity scores on LibriSpeech-test and the two subsets of VCTK-test.

observation made earlier that all anonymization systems degrade the objective
and subjective utility metrics. On LibriSpeech-test, the best results for all utility
metrics is achieved by the signal processing based system I1, and the worst one
by system K2. However, on VCTK-test, there is no system that performs best
(or worst) for all metrics. This is mostly due to the fact that the WER is
less consistent across datasets than the subjective naturalness and intelligibility
scores.

5. Conclusions

The VoicePrivacy 2020 Challenge was conceived to promote private-by-design
and private-by-default speech technology and is the first evaluation campaign
in voice anonymization. The voice anonymization task is defined as a game be-
tween users and attackers, with three possible attack models each corresponding
to adversaries with different knowledge of the applied anonymization methods.
The paper describes a full evaluation framework for the benchmarking of dif-
ferent anonymization solutions, including datasets, experimental protocols and
metrics, as well as two open-source baseline anonymization solutions in addi-
tion to the comprehensive objective and subjective evaluation of both baseline
systems and those submitted by challenge participants. These indicate the po-
tential for successful anonymization and serve as a platform for future work in
what is now a burgeoning research field.

5.1. Summary and findings
The challenge attracted participants from both academia and industry, in-
cluding experts already working on anonymization and people new to the field.
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Figure 21: Objective WER vs. subjective naturalness and intelligibility scores averaged over
LibriSpeech-test and VCTK-test.

The submitted anonymization systems can be broadly classified into two classes:
x-vector based systems relying on speech synthesis (such as the primary baseline
B1) and signal processing based systems (relating to the secondary baseline B2
and system I1). X-vector based systems provide the best objective results on
average@ In contrast, subjective evaluation shows that signal processing based
systems tend to yield higher naturalness and intelligibility.

More consistent findings show that anonymization produced by all systems
degrade naturalness and intelligibility, as well as the WER. Furthermore, the
best systems in terms of WER are based on x-vector anonymization whereas
the best system in terms of intelligibility is system I1.

Anonymization is also achieved only partially and always at the cost of util-
ity; no single system gives the best performance for all metrics and each system
offers a different trade-off between privacy and utility, whether judged objec-
tively or subjectively. This finding holds irrespective of the attack model. While
for the ignorant attack model, many systems achieve EERs above 50%, the best
results are in the range of 33 — 43% for the lazy-informed attack model, and in
the range of 16 — 26% for the semi-informed attack model. System rankings are

18There are some exceptions, related to the WER results for system I1 and the LibriSpeech
dataset in particular.
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also different in each case, demonstrating the difficulty of designing an anony-
mization system that performs well across the range of different VoicePrivacy
attacks models.

Challenge participants investigated the proposed anonymization approaches
and suggested improvements in some test-cases over the baseline anonymization
solutions. They found out, that (1) resynthesis alone degrades utility, while also
improving privacy; (2) there is potential for privacy leakage not only in x-vector
embeddings, but also in phonetic features and pitch estimates (Champion et al.|
2020a; Mawalim et al.| [2020); (3) the distribution of anonymized x-vectors dif-
fers from that of original x-vectors (Turner et al., |2020). Recent work shows
the potential to reduce privacy leakage in pitch estimates while also protecting
utility (Champion et al.l [2020b; [Srivastava et al., |2021)). Other findings show
that degradations to utility can be mitigated by retraining models used for
downstream goals, such as ASR, using anonymized data. Lastly, we identified
some differences or bias in performance across different datasets and for differ-
ent speaker gender. The scale of these differences is one factor, among others
discussed below, that warrants further attention in future research.

5.2. Open questions and future directions

A common understanding of VoicePrivacy is still in its infancy. For one, com-
municating the achievements in layperson terms remains a challenge to better
integrate the larger speech community and for outreach to the public at large;
for another, VoicePrivacy cannot remain at scratching the surface of privacy
issues related to speech and language technology. While considering biometric
identity as sensitive information in the first edition, there are other types of
sensitive information encoded and transported through speech as a communi-
cation medium. Moreover, by constraining the first edition to the operability of
speech recognition, linguistic features still allow for extracting biometric charac-
teristics to identify authorship. Depending on the context, the settings of ASV
and ASR systems, one might argue that for prompted speech in automated call
centers, there is less subjective variability in what is said; let alone, the goal of
VoicePrivacy as a community is speech technology as a whole.

Future editions of the VoicePrivacy Challenge will include stronger baseline
solutions, possible extensions of the tasks, and re-visited evaluation protocols:

e Improved anonymization methods for stronger baseline solutions. For the pri-
mary baseline and related approaches, perspective improvements in x-vector
based anonymization include adversarial learning (Espinoza-Cuadros et al.,
2020a) and design strategies based on speaker space analysis, gender, dis-
tance metric, etc. (Srivastava et al., 2020aj [2021). Sensitive information
can be further removed from prosodic and other features, in particular, from
pitch (Srivastava et al.,2021; (Champion et al. [2020b; |Gaznepoglu & Peters|
2021) and phonetic (BN) features. Improved algorithms to use the speaker
pool should take into account not only speaker characteristics before anony-
mization but also voice distinctiveness after anonymization. Moreover, the
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quality of the synthesized speech using unseen x-vectors has room for im-
provement. For the secondary baseline, we will consider its extension using
a stochastic choice of McAdams’ coefficient (Patino et al., [2021)).

Stronger and more realistic attack models. Development and investigation of
stronger attack models is another potential direction. A knowledgeable and
experienced adversary will improve the ASV system and adapt it to make
better decisions, i.e., to yield better class discrimination alongside accurate
forecasts. Contrary to the conventional experimental validation based on
error rates, an adversary actually needs to put a specific threshold and might
want to change this threshold, depending on the settings of the ASV systems.
In other words, priors and costs that determine the decision policy of an
adversary need to be highly adaptable.

Alternative privacy and wutility metrics and datasets. The ongoing work on
privacy preservation assessment is focusing on the development of new eval-
uation frameworks, anonymization metrics, and investigation of their corre-
lation and complementarity. This includes the ZEBRA framework (Nautsch
et al.l 12020; |[Noé et al.| 2022), and objective and subjective linkability met-
rics (Maouche et al., 2020). Also one may be interested in evaluation that
is close to real industry applications and tasks, for example, speaker label-
ing for diarization, analysis of time and quality required for annotation of
real vs. anonymized speech (Espinoza-Cuadros et all |2020b). The metrics
considered in the challenge do not evaluate fully the requirement that all
characteristics in the speech signal except the speaker identity should be in-
tact. Relevant utility metrics depend on the user’s downstream goals, and
for additional downstream goals other utility metrics should be considered.
This will require additional datasets for which these goals have been anno-
tated. Datasets collected in real usage conditions should also be considered
to assess the impact of acoustic conditions (reverberation, noise, overlapping
speech) and full conversations.

Attributes. Besides the speaker identity information, speech also conveys
other attributes that can be considered as sensitive, such as emotional state,
age, gender, accent, etc. Selective suppression of such attributes is a possible
task extension. Except for age and gender which are available in LibriSpeech,
this will require additional datasets for which these attributes have been
annotated.

Privacy vs utility trade-off. The privacy is often achieved at the expense of
utility, and an important question is how to set up a proper threshold be-
tween privacy and utility (Li & Li, [2009). When developing anonymization
methods, a joint optimization of utility gain and privacy loss can be per-
formed by incorporating them into the criterion for training anonymization
models (Kai et al., [2021]).

Integrated approach to voice privacy and security. In the bigger picture, se-
curity and privacy need to be thought of together and not as opposing forces:
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positive-sum solutions (Cavoukian) 2017) need to be sought to design tech-
nology for better products and services. In other words, while one might
draw inspiration from machine learning, forensic sciences, and biometrics,
integrated privacy designs for speech and language technology must sacri-
fice neither security, business interests, nor privacy. Developing of adequate
VoicePrivacy safeguards demands future directions that empower capacity for
their credible and adequate use in integrated privacy designs which beyond
technology include organisational measures.
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