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Univ. Grenoble Alpes, CNRS, Grenoble INP**, TIMA
Grenoble, France

Abstract

Full-precision Floating-Point Units (FPUs) can be a source of extensive hardware overhead (power consumption, area,
memory footprint, etc.). As several modern applications feature an inherent tolerance to precision loss, a new computing
paradigm has emerged: Transprecision Computing (TC). TC proposes several tools and techniques that trade precision
for energy efficiency. However, most of these tools require developers to rewrite part or all of their existing software
stacks, which is often infeasible, complex, or requires extensive development efforts. In addition to their intrusiveness,
TC tools can only simulate the impact of precision loss, and they do not provide corresponding hardware designs that
take advantage of the simulations.

This work proposes a non-intrusive hardware-oriented approach, requiring no modification of source code that applies
approximations at the low-level in assembly. The approach can be used to approximate virtually all types of executable
binaries (bare-metal applications, single-/multi-threaded user applications, OS/RTOS, etc.). We introduce AxQEMU: a
software based on the well known QEMU dynamic binary translator. We demonstrate how our approach can determine
the effects of FP approximations on application-level Quality of Result (QoR), and how it interfaces with other tools
from the literature. A hardware-level case study on a 28-nm FD-SOI implementation is presented, demonstrating how
fine-grained energy/accuracy trade-offs can be made thanks to floating-point arbitrary reduced precision (ARP). For
instance, considering the well-known arclength FP application, FPU computation energy savings of up to 19.4% were
achieved with an accuracy threshold of 10 significant digits, and up to 60.7% with a 4-digit accuracy when using ARP.
These savings compared favorably to the limited 7.7% saving afforded by using standard variable type optimization
tools.
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1. Introduction

Approximate computing (AC) [1–3] is a paradigm based
on the idea that the numerical accuracy of data and com-
putations can be traded off against power savings, per-
formance gains, and area/resource optimization. AC is
suitable for non-critical RMS applications (Recognition,
Mining, and Synthesis) that tolerate a certain reduction
in their output precision (e.g. image/signal processing,
computer vision, machine learning).

Current trends are pushing towards more adaptive,10

variable, and mixed-precision computing known as Trans-
precision Computing (TC) [4]. This paradigm targets
mainly floating-point (FP) computations and storage, and
the goal is to design more flexible, run-time variable preci-
sion and efficient architectures where accuracy is balanced
against cost and resource savings.
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In this paper, we focus on Floating-Point Units (FPUs),
which are ubiquitous in modern hardware architectures,
including General-Purpose Processors (GPP) and Appli-
cation Specific Instruction-Set Processors (ASIP), where20

they serve to boost the performance of computationally-
intensive applications. Unfortunately, an FPU occupies a
significant proportion of the CPU’s core area and can cause
extensive power consumption and high memory bandwidth
usage. The energy consumption associated with FP arith-
metic is known to be higher than that of its integer coun-
terpart [5], making FPU optimization a priority.

One of the techniques used to optimize FPUs is bit-
width reduction, where exponent and/or mantissa lengths
are reduced to either standard bit-widths (defined in the30

IEEE 754 standard [6]), or custom arbitrary bit-widths.
Over the years, many techniques/tools/libraries have been
proposed to explore the impact of using arbitrary precision
FP arithmetic [7–10] in computational kernels targeting
many platforms (GPPs, GPUs, FPGAs, etc.).

The study presented here contributes to this goal by in-
troducing an extension to [11]. It presents a non-intrusive
methodology enabling rapid design space exploration of
reduced arbitrary precision FPUs in a CPU-based archi-
tecture context. The methodology proposed should help40
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designers select the most optimized FPU configuration (ex-
ponent and mantissa bit-widths) satisfying a Quality of
Result (QoR) threshold set for the application and input
dataset provided by the designer, without the need to
transform / rewrite / modify the source code. The
approach led to the development of a software implemen-
tation which we called AxQEMU. This implementation is
based on the dynamic binary translation of assembly in-
structions, and is built on top of the well-known functional
simulator QEMU. The methodology was assessed through50

three case studies: 1) a direct application of AxQEMU
alone, 2) using AxQEMU in conjunction with an FP vari-
able type optimization tool from the literature, and 3) a
hardware-level estimation of the energy savings provided
by our methodology.

Section 2 introduces our motivations, the terminology
used in the remainder of the paper, and the problem state-
ment. Section 3 presents a formalization of the idea. Sec-
tion 4 shows the details of the software implementation. In
Section 5, we assess the methodology developed through60

three detailed case studies. Section 6 presents a set of
related works followed by a discussion.

2. Background & Motivation

2.1. Terminology
A binary floating-point number can be written in the

form (−1)s× (1+m)×2e, where s is the sign bit, m is the
mantissa (also called significand or fraction), and e is the
exponent. Each of these components can be encoded either
following standard IEEE 754 [6] formats e.g., binary32

(32-bit single-precision format), binary64 (64-bit double-70

precision format), or using a custom bit-width representa-
tion. Variations in the mantissa bit-width change the pre-
cision of the number representation, whereas alterations
to the exponent bit-width change its dynamic range. Cus-
tom non-standard (arbitrary) formats can be defined when
some loss of precision is tolerated, or when the numbers
represented have a limited range.

For this work, we focused on the software Application
Binary Interfaces (ABI) that support FP arithmetic in
hardware (hard-float ABI). We assumed that the ABI and80

the hardware FPU support at least two standard types:
binary32 and binary64.

An FPU configuration is a 4-uple (Ef ,Mf , Ed,Md),
where Ef (resp. Ed) is the exponent bit-width for the
single-precision (resp. double-precision) operator, and Mf

(resp. Md) is the mantissa bit-width of the single-precision
(resp. double-precision) computational operator. For ex-
ample, an FPU that supports binary32 and binary64 is
represented as (8, 23, 11, 52). Typical hardware imple-
mentations contain an additional bit, or hidden bit, which90

is set to 1 by default and set to 0 when manipulating ±0.0
or denormal numbers [6], when supported. The bit-widths
Mf and Md do not consider the hidden bit.

2.2. Context of the proposed approach
A typical FP algorithm implementation scenario con-

sists mainly of three steps:

1. Algorithm design and numerical stability anal-
ysis [12–14]: establishing the mathematical foun-
dations of the algorithm and their stability w.r.t the
inputs. The main goal is to avoid instabilities such100

as round-off errors.

2. Conservative (naive) implementation: a soft-
ware implementation using all high precision formats.

3. Variable type optimization (VTO) [15–18]: the
process of migrating the maximum possible number
of variables from high-precision to lower precisions
(e.g., changing double variables to float) in a given
application source code while satisfying a Quality
of Result (QoR) constraint. The process output is
a (software) type configuration : a version of the110

original application, possibly with mixed-precision,
where some variables are declared as floats and oth-
ers as doubles.

Although VTO is necessary to optimize the memory foot-
print and energy consumption of a program, it is a coarse-
grained optimization process. It usually results in solu-
tions that are over-designed for many application classes.
In our approach, we have therefore included a fourth step
to minimize hardware FPU implementation through a fine-
grained optimization:120

4. Fine-grained optimization using Arbitrary Re-
duced Precision (ARP): this approach takes ad-
vantage of non-standard reduced operators.

In this work, we demonstrate that ARP can produce
numerical outputs that are as accurate as standard formats
while consuming less energy.

2.3. Problem statement

Given an application that takes as an input a dataset
I, and providing a numerical output resultO, our objective
was to identify the optimal FPU configuration (Ef ,Mf , Ed,130

Md) in terms of power consumption, execution time, and
overall energy consumption, subject to a Quality of Result
(QoR) constraint on the output O.

To reach this goal, we adopted a three-step method:

1 Starting from an application source code, steps 1 to
3 were performed using state-of-the-art tools [12–18]
to generate a valid type configuration.

2 Software design space exploration: for a given type
configuration, the design space must be rapidly ex-
plored to select a set of FPU bit-width configurations140

satisfying the QoR constraint target.

3 FPU hardware assessments: for each configuration,
an estimation of the overall energy savings was made
to select the best final configuration.

These different steps can be automated using specific
search algorithms. However, in this paper, for the sake of
clarity, simulations were performed exhaustively.
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3. Proposed Approach

In this section, we introduce some definitions along
with a formalization of the approach in the form of an150

FSM model, the underlying details of status flag compu-
tation, and selective approximation.

3.1. Definitions & Notations

Let A be the set of FPU registers, R be the set of avail-
able rounding modes. Let XSP = {L1, L2, ...} be the set
of Standard Precision formats supported (e.g., binary64,
binary32), and XARP = {l1, l2, ...} be a set of non-standard
ARP floating-point formats. In the following, we denote
L a format in XSP , l a format in XARP and ` a format in
XSP ∪ XARP . Let F` denote the set of FP numbers that160

can be represented in the ` format.
Let F be the set of FP instructions available for a

given ISA. This set is partitioned in two sets Fapprox and
Fexact, where Fexact represents the non-computational FP
instructions (comparison, conversion, loads/stores and sign
injection), whereas Fapprox represents the FP computa-
tional instructions: addition, subtraction, multiplication,
fused multiplication-addition, square root, and division1.

We define the precision reduction function ReduceRL,l :
FL → Fl that reduces an L-bit number to an l-bit one using170

rounding mode R ∈ R. We also define the reverse function
ExtendL,l : Fl → FL, that extends an l-bit number to
produce an L-bit one.

Let F instR` rd, rs1, . . . , rsn be an FP instruction, where
F inst is in F , and operates on n+ 1 registers rd, rs1, . . . ,
rsn, of `-bit values, using the rounding mode R. With
each F instR` we associate an arithmetic operator F opR

` :
(F`)

n → F` which performs the computation in the ` for-
mat using the rounding mode R.

To introduce selective approximation, as a means to180

apply approximations to a specific set of instructions, let
B be the Boolean domain and do approx ∈ B an enable
signal associated with F instR` which indicates whether
the instruction should be approximated at run-time.

3.2. Approach formalization

The FPU can be modeled by an FSM {I,Γ, γ0, δ} with
no output, where I = F×R×XSP ×An+1×B is the input
of the FSM, representing an instruction instance charac-
terized by its name, its rounding mode, its original FP
format, its destination and source registers, and an ap-190

proximation enable signal. Γ is the set of states2, γ0 is the
initial state where all the registers are set to zero, and δ
the state-transition function, which is defined as follows:

δ′ : I × Γ −→ Γ
(F instRL rd, rs1, . . . , rsn, do approx), γ 7−→ γ′

1Please note that in contrast to our definition, the IEEE 2008-754
Standard’s [6] computational instructions also include comparisons.

2A state is defined by the content of the FPU registers ri ∈ A.

such that ∀r ∈ A:

γ′(r) =


γ(r), if r 6= rd;

ExtendL,l

(
F opR

l (ṽ1, . . . , ṽn)
)
, if r = rd

and Finst ∈ Fapprox

and do approx == 1,

F opR
L

(
v1, . . . , vn

)
, otherwise.

where,

vi = γ(rsi) ∈ FL high-precision values.

ṽi = ReduceR
′

L,l(γ(rsi)) ∈ Fl reduced precision values.

The assembly-level approximation is introduced by per-
forming the computation using the ARP operator F opR

l ,
which operates on ARP l-bit operands , with a bit-width
shorter than L. Consequently, inputs should first be re-
duced from L to l before performing the computation, and
then extended back from l to L following the computation.

Precision reduction performs a cast using a rounding200

mode R′ equal to or different from R, depending on how it
is implemented. In most ISAs, R is encoded either in the
instruction binary code (fixed) itself, or in an FPU con-
trol status register (dynamic). Hence, an implementation
can either define a fixed reduction rounding mode R′, or
support dynamic rounding. We chose to leave the choice
to the implementation, because rounding hardware logic
is generally expensive in an FPU, and in addition double
rounding (i.e., rounding to reduced format plus rounding
the final result) may drastically affect the QoR. When the210

original format L and the reduced format l have similar
exponent bit-widths, the ReduceR

′

L,l function is simplified
to a rounding operator. Otherwise, a complete cast oper-
ator should be implemented, which may be expensive in
terms of circuit area.

Once the computation F opR
l has been performed, the

result should be converted back to the original format us-
ing the ExtendL,l function which converts the result from
l back to the L format. This operation is intended to
guarantee consistency with the non-computational FP in-220

structions Fexact, which are not approximated. The final
result is then stored in the destination register rd.

3.3. Computation of the status register

In addition to the numerical result computed, an FPU
also returns a 5-bit status register. Since the FPU is mod-
ified to take approximations into consideration, the five
flags are redefined as follows:

• Inexact bit (NX): set if the final result cannot be
represented precisely in the current representation.
If the instruction is executed approximately, the in-230

exact bit is set if at least one of the reduction opera-
tions yields an inexact reduced operand ṽi, or if the
result of F opR

l is inexact. The extension does not
affect this flag.

• Invalid bit (NV): signals an invalid FP operation
(e.g., multiplying ∞ and zero). This flag is set if

F opR
l performed an invalid FP operation. The re-

duction and extension stages do not affect this flag.
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• Division by zero (DZ): indicates an operation in-
volving division by zero. It is similar to the DZ flag240

resulting from F opR
l .

• Underflow (UF): indicates if at least one of the
reduction results or the result of F opR

l is too small
to be represented in the l format.

• Overflow (OF): indicates if the result cannot be
represented as a finite value in l. It has the same
effect as UF.

3.4. The case of iterative operators

Some FPUs implement iterative operators F opR
` , par-

ticularly for division and square root calculations [19] [20],250

to allow circuit area optimization. For such implementa-
tions, the reduction and extension stages are unnecessary
since the precision of their computations can be set at run-
time.

3.5. Selective Approximation (SA)

The signal do approx was added to support SA. This
feature allows the programmer to apply approximations to
specific parts of an application and exclude others. For in-
stance, in a software application, the functions that com-
pute error metrics should be executed precisely to avoid260

compromising the results with approximations. Hence, the
developer should be able to tag such functions or instruc-
tions.

4. Implementation

To implement a proof of concept of the approach, a
functional ISA simulator (e.g., gem5, or1k, Spike, etc.)
can be used. Here, we targeted the free and open-source
QEMU multi-ISA dynamic binary translator [21].

4.1. QEMU overview

QEMU supports most well-known architectures (RISC-270

V, ARM, x86-64, MicroBlaze, etc.). We distinguish two
machines:

1. the guest (or target) machine: the processor emu-
lated, for which an application has been compiled,
and

2. the host machine: the processor executing QEMU
itself, which simulates the execution of the target
code, even if the two processors have different archi-
tectures

Figure 1 depicts QEMU’s operation principle. Efficient280

emulation is achieved thanks to the ‘Tiny Code Generator’
(TCG), which is a sort of run-time compiler embedded in
QEMU. This generator dynamically translates blocks of
target instructions known as Translation Blocks (TB) to
TCG operations (TCGops), which constitute a machine-
independent intermediate representation (IR). Subsequently,
the TCGops will be translated into host instructions.

When a TB is translated into its corresponding host
code, the translated block is cached for later use. For
example, in the case of a loop, the TB is translated only290

once, but executed multiple times. This caching capability
is one of several optimization procedures that increase the
performance of this simulator when compared to others.

4.2. AxQEMU: a floating-point approximation-aware em-
ulator

AxQEMU Emulator

Dynamic Binary Insn. Translation

TCG IR
call helper_fadd_d <...>

Guest Code (RISC-V)
...

fadd.d fa5, fa5, fa4

...

Guest
Registers

Exec.

( Ef, Mf, Ed, Md )

Compile

Application
Source Code

Input Dataset

C Helpers

uint64_t helper_fadd_d(){

    if ( do_approx )

        approx_fadd_d(E
d
, M

d
);

    else

        standard_fadd_d();

}

uint32_t helper_fadd_s(){

    if ( do_approx )

        approx_fadd_s(E
f
, M

f
);

    else

        standard_fadd_s();

}

Host Code (x86)
fadd st0, st0

Figure 1: AxQEMU overview

TCG intermediate operations can be translated into ei-
ther a single host instruction or a C helper function (Fig.
1) that will eventually be compiled to produce several host
instructions. When translating floating-point instructions,
the corresponding TCGops can either be executed directly300

on the host hardware’s FPU or emulated using C helper
functions exploiting a backend FP software emulation li-
brary [7, 9, 10, 22]. In other words, each guest FP compu-
tational assembly instruction is associated with a custom
C function which simulates the reduced precision behavior
in the back-end.

Figure 1 shows an application source code that has
been compiled for a RISC-V target machine. Each assem-
bly instruction from the executable binary will be fed to
the TCG to generate its corresponding intermediate repre-310

sentation (TCGop). For example the RISC-V FP addition
instruction (fadd.d fa5, fa5, fa4), which should per-
form the operation fa5 = fa4 + fa5, is mapped to the C
function helper fadd d()3, which operates on the values
contained in emulated guest registers fa5 and fa4. The
helper functions were modified to implement the behavior
explained in Section 3.

3The “d” in helper fadd d refers to double-precision, whereas
the “s” in helper fadd s refers to single-precision.
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4.3. Implementation of SA

SA allows developers to specify functions that should
be executed precisely to facilitate integration with exist-320

ing flows. In our case, SA is supported by splitting the
memory address space across two regions:

1. Non-Approximable address space: a memory
region where approximations are deactivated (i.e.,
do approx = 0), and

2. Approximable address space: where approxima-
tions are enabled using ARP (i.e., do approx = 1).

To implement this split, the non-approximable func-
tions requiring precise execution are annotated using a
C macro. For instance, Listing 1 depicts a function330

compute QoR, destined to compute some QoR metric using
a numerical result result and a reference value ref. It has
been annotated with the PRECISE macro defined in lines
[1-2]. This macro tells the linker to place the annotated
function in a particular memory section, the “.precise”
section.

1 # define PRECISE __attribute__((__section__(".precise"))) \

2 __attribute__((noinline))

3 double PRECISE compute_QoR(float result, double ref){

4 // Function body here

5 }

Listing 1: Example of a C macro for function annotation

At run-time, the address of each assembly instruction
instance is fetched from the Program Counter register (PC).
If an assembly function belongs to the non-approximable
address space (i.e., the .precise memory section) then340

do approx is set to zero and the instruction is emulated
using the standard SoftFloat [22] FP emulation library.
Otherwise, do approx is asserted, and the instruction is
emulated using an ARP library [7, 9, 10], taking the FPU
configuration specified by the user into account.

As for all similar techniques, the source code must be
modified and re-compiled when using SA. However, when
using our approach, the implementation is much simpler
and light-weight than other current techniques, as well as
being minimally-intrusive.350

4.4. Key engineering decisions

For implementation, the FlexFloat library was cho-
sen for approximation emulation, since according to [9] it
demonstrates an increase in speed of up to 2.8x compared
to other mixed-precision libraries. The library provides
functions for casting from full-precision types to reduced-
precision types.

The reduction rounding mode R′ is dynamic and fol-
lows the same rounding mode R of the instruction being
approximated. The RISC-V ISA[23] was chosen for its360

design simplicity. We implemented the approach for all
the computational instructions of single-precision (F) and
double-precision (D) extensions of the ISA.

The C helpers were modified to accept two additional
arguments: the exponent and the mantissa bit-widths which

define the precision of the internal computations. These
arguments have been exposed so that the user can define
them at launch-time. This facilitates use of the simula-
tor when dealing with search algorithms to explore several
FPU configurations.370

5. Evaluation

In this section, we demonstrate the effectiveness of our
methodology through three case studies. The first one
is a direct application of the AxQEMU tool introduced in
Section 4 on a 3D gaming application. The second demon-
strates the use of AxQEMU along with a VTO tool from
the literature called PROMISE[15], whereas the last one is
a hardware-level trade-off study of the energy savings vs.
QoR loss.

5.1. Case Study 1: Direct application of AxQEMU380

With this first use case, we demonstrate the direct use
of AxQEMU alone to examine how the FP approximation
affects a computationally heavy application, Jmeint[24],
in the 3D gaming domain. This application detects the
intersection of two triangles in space and takes as an input
100,000 random pairs of 3D triangle coordinates. For this
application, all variables are declared as doubles, and the
QoR metric is the intersection detection miss rate. The
source code was instrumented with SA macros as explained
in Section 4.3. Figure 2 shows the QoR variation as a390

function of the exponent Ed and mantissa Md bit-widths.
These results show that the QoR is maximal and con-

stant for Md ≥ 22, Ed = 4 as well as for Md ≥ 18, Ed ≥ 5.
Therefore, from a software perspective, the float type is
over-designed for this application. If the hardware run-
ning the application supports other formats, such as the
IEEE half-precision 16-bit format [6] which has a 5-bit ex-
ponent and a 10-bit mantissa, a miss rate of just 6.4%
can be achieved alongside significant energy savings and
reductions in memory footprint. Using ARP, it is possible400

to trade accuracy against hardware overheads in a more
fine-grained way.

4 5 6 7 8 9 10 11
Exponent bit-widths
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2281 467 453 453 453 453 453 453
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802 128 124 124 124 124 124 124
484 64 60 60 60 60 60 60
284 31 29 29 29 29 29 29
158 15 14 14 14 14 14 14
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9 1 1 1 1 1 1 1
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Figure 2: QoR variation as a function of the exponent Ed and man-
tissa Md bit-widths.
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5.2. Case Study 2: AxQEMU applied to Mixed-Precision
applications

In this case study, we demonstrate how AxQEMU can
be used in conjunction with other VTO tools. For this
experiment, we selected the tool described in [15] which
is briefly introduced in Section 5.2.1. The software type
configurations described in [15] were instrumented with
AxQEMU to select the best hardware configurations ac-410

cording to the specified QoR constraint (Phase 2 ).

5.2.1. The PROMISE tool

PROMISE[15]4 was selected as the primary tool for
VTO (Phase 1 ). Given an application and an input
dataset, it applies a delta debugging algorithm [25] to
find a configuration that minimizes the number of high-
precision (double-precision) variables while nevertheless sat-
isfying a given QoR constraint. Internally, PROMISE
uses the CADNA library [26], which implements Discrete
Stochastic Arithmetic (DSA)[27], a technique that esti-420

mates round-off error propagation and detects numerical
instabilities in a program.

5.2.2. Benchmark QoR Metric

In the remainder of this section, we use the same QoR
metric as in [15] i.e., the number of significant digits S
computed as follows:

S = − log10

∣∣∣∣Result(8,23,11,52) −Result(Ef ,Mf ,Ed,Md)

Result(8,23,11,52)

∣∣∣∣
WhereResult(Ef ,Mf ,Ed,Md) is the numerical output com-

puted when simulating the application with the (Ef ,Mf , Ed,
Md) FPU configuration on AxQEMU, andResult(8,23,11,52)
is the golden reference result obtained using the standard430

(8, 23, 11, 52) configuration. The numerical results for these
applications are non-zero.

5.2.3. Evaluation benchmarks

The approach was evaluated using three applications
from [15]: arclength, rectangle, and squareroot. For
each application, an optimized type configuration is gen-
erated by PROMISE for various QoR thresholds (Phase
1 , Section 2.3).

Table 1 lists the benchmarks studied alongside the type
configurations generated. The 3rd (resp. 4th) column de-440

picts the number of double (resp. float) variables required
for each type configuration. Every {type configuration,
benchmark} pair achieves a maximum QoR (shaded cells
in the 5th column) when executed exclusively in full pre-
cise mode using the standard configuration (8, 23, 11, 52).
In other words, if one is limited to standard FP types, only
the conservative QoR thresholds that are highlighted can
be obtained. The last column depicts, for each {application,
type configuration, QoR threshold} tuple, a set of candi-
date FPU configurations that also satisfy the given QoR450

4http://promise.lip6.fr
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Candidate FPU
Configurations

V10

arclength 8 1

10 (8, 3, 11, 44)
8 (8, 3, 11, 36)
6 (8, 3, 11, 32)
4 (8, 3, 11, 28)

rectangle 4 3
10 (8, 3, 11, 36)
8-6 (8, 3, 11, 28)
4 (8, 3, 11, 16)

squareroot 6 2

10 (8, 3, 11, 32)
8 (8, 3, 11, 28)
6 (8, 3, 11, 20)
4 (8, 3, 11, 8)

V6

arclength 7 2
6 (8, 22, 11, 32)
4 (8, 13, 11, 28)

rectangle 3 4
8-6 (8, 3, 11, 28)
4 (8, 3, 11, 16)

squareroot 0 8
6 (8, 15, 11, 4)
4 (8, 7, 11, 4)

V4
arclength 2 7 4 (8, 22, 11, 28)
rectangle 0 7 4 (8, 16, 11, 4), (8, 13, 11, 4)

Table 1: Benchmark summary

constraint. Candidate FPU configurations (the 6th col-
umn) were selected based on a design space exploration
process which is explained in the next paragraph.

5.2.4. Design space exploration (DSE) with AxQEMU

An exhaustive DSE was performed for each type config-
uration and each application. Let us denote C = {c0, c1, ...}
a set of FPU configurations to be studied. Our objective
was to determine the most optimized FPU configuration
ci ∈ C satisfying the target QoR threshold. The DSE is a
two-step process:460

Simulation. First the source code corresponding to a type
configuration (e.g. the V10 configuration of arclength) is
compiled. Then, the binary is executed using AxQEMU
for each FPU configuration ci ∈ C. The raw QoR values
(i.e., number of significant digits) for all ci are stored in an
array M for processing in the next step. This simulation
step can be more or less time consuming depending on
the size of the input dataset, the execution time for the
application itself, and the number of FPU configurations
to be studied.470

QoR normalization. Once all the simulations have been
performed and the QoR arrayM constructed, a processing
algorithm is applied to filter out anomalous local optimums
caused mainly by error cancellation. Indeed, reducing the
operator-level precision leads to errors in the output of an
operation. However, sometimes, when multiple operations
are combined, the errors may cancel each other out leading
to an accidental increase in overall QoR rather than a de-
creased QoR. To keep results consistent, we considered the
worst-case error detected (i.e., the lowest QoR) among all480

the configurations that have an equal or greater mantissa
bit-width. Thus, for each ci = (Efi,Mfi, Edi,Mdi) we con-
sidered the minimum QoR value between the raw original
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value obtained for ci and the QoR values determined for
any higher-precision configuration cj = (Efj ,Mfj , Edj ,Mdj)
that satisfies Mdj ≥Mdi or Mfj ≥Mfi.

5.2.5. Phase (2) results

Phase 2 (from Section 2.3) consists in performing a
series of simulations using AxQEMU for each benchmark,
and for each type configuration (V10, V6, V4). Figure490

3 shows the variation of the QoR against float mantissa
bit-width Mf and double mantissa bit-width Md. Thus,

Phase 2 provides a set of candidate FPU configurations
that produce intermediate QoR levels.

5.2.6. Phase (2) analysis

Figure 3 summarizes the effects of operator-level pre-
cision (Mf and Md) on application-level results. For the
same application, the impact of bit-width sizing on overall
accuracy differs between type configurations. Moreover,
the gradient of variation of the QoR reveals some infor-500

mation about the sensitivity of each type configuration to
low-level precision. For example, for rectangle, the out-
put accuracy of the V10 type configuration is independent
of the float mantissa bit-width (Mf ). Indeed, this type
configuration considers only one float variable, the impact
of which on the QoR is negligible.

Figure 3 could be used by design engineers to guide
their selection of the best options for application imple-
mentation. Starting from a type configuration (V10 for
example), the QoR threshold (and hence the consumed en-510

ergy) can be selected by varying the underlying operator-
level precision rather than changing the variable types.
This allows a more fine-grained control of the accuracy vs.
energy comparison.

The last column of Table 1 shows the selected candi-
date FPU configurations. The most appropriate one can
be selected based on a qualitative comparison of the bit-
widths. However, a detailed hardware-level evaluation was
performed in Case Study 3 to quantitatively determine
which bit-width minimized the overall energy consump-520

tion.

5.3. Case Study 3: Hardware-level evaluation
In the previous section, we applied AxQEMU to some

benchmarks to study the effects of FP approximations
on application-level accuracy. In this section, we present
a hardware-level evaluation on the selected candidates,
which aimed to estimate the HW savings in terms of energy
consumption thanks to ARP (Phase 3 ). The methodol-
ogy was applied to many applications, but for the sake of
concision, we only present the arclength study here.530

5.3.1. HW evaluation methodology

To perform the HW-level evaluation, an approximate-
aware hardware FPU was implemented in SystemVerilog.
This FPU is based on an open-source parametrized FPU[20]
available online5. The HW design is globally paramet-
ric so that the four parameters of the FPU configuration

5https://github.com/pulp-platform/fpnew

(Ef ,Mf , Ed,Md) are variable at design time. For the sake
of concision, we have omitted the HW implementation de-
tails.

The implementation was synthesized as an ASIC, on540

a 28-nm FD-SOI technology node, in the typical corner
(Regular Vt, 1.00V, 25C, No Body Biasing) for a 200-MHz
frequency target. Synthesis has been performed on Syn-
opsys Design Compiler® with automatic clock-gating en-
abled and default effort levels. Post-synthesis simulations
were performed using Synopsys VCS®, and power con-
sumption was estimated by considering both the circuit’s
static power as well as its dynamic power associated with
the studied application using Synopsys PrimeTime®.

5.3.2. Phase (3) results550

Figure 4: Energy vs. QoR trade-offs

Figure 4 shows the estimated energy consumed by the
FPU, for each arclength type configuration (V10, V6,
V4). To evaluate and compare the savings provided by
VTO alone (Phase 1 , represented in orange) vs. VTO
+ ARP (Phase 2 , represented in blue), they are com-
pared to a reference implementation Ref (represented in
green). The latter is a conservative implementation (i.e.,
a naive one, where all variables are in double-precision).
The energy values are normalized by the Ref type configu-
ration when executed on the RV64FD6 standard architec-560

ture (8, 23, 11, 52). The numbers on top of the bar plots
indicate the number of significant digits S associated with
each {type configuration, FPU configuration} pair.

For a fair comparison, the metric evaluation functions
executed in full precision were not considered. The re-
sults presented only relate to the computational part i.e.,

6RISC-V architecture with D and F extensions.
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Float mantissa Mf
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(a) rectangle

Float mantissa Mf
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(b) arclength

Float mantissa Mf
357911131517192123

Double mantissa Md

4 8 1216202428323640 44 48 52

Significant digits S

2

4

6

8

10

12

14

V10
V6

(c) squareRoot

Figure 3: QoR results for arclength, rectangle, and squareroot.

the amount of energy spent on floating-point computa-
tions. Other microprocessor and system parameters such
as cache memory latency, memory bus contention, branch
prediction, external peripherals, etc. are beyond the scope570

of this paper.

5.3.3. Phase (3) analysis

Figure 4 shows that the type configurations generated
by PROMISE only provided 0.9%, 4.8%, and 7.7% savings
on FP computation energy compared to the Ref conser-
vative implementation when producing results with 10, 6,
and 4 significant digits, respectively. Therefore, even when
the accuracy is drastically reduced to just 4 digits, the en-
ergy saving does not exceed 7.7%. In contrast, by using
ARP, it becomes possible to save 19.4%, 49.5%, and 60.7%580

energy with the pairs {V10, (8, 3, 11, 44)}, {V6, (8, 22, 11,
32)}, {V4, (8, 22, 11, 28)}, respectively, without degrading
QoR.

For some QoR constraints, VTO tools may not be able
to identify an appropriate optimized type configuration.
This was the case for all the applications presented in Case
Study 2. No optimized type configuration can satisfy an 8-
digit QoR constraint, and the designer will therefore have
to select a configuration producing a higher QoR, such as
V10. This effect is due to the coarse granularity of the590

standard types. However, with ARP, fine-tuning can be
performed until a near-threshold, or in other words “good
enough”, configuration is found satisfying the constraint
defined.

When quality constraints are relaxed, more interesting
savings are possible, by considering both software (type
configurations) and hardware (FPU configurations). For
example, if only 4 digits are required, the pairs {V10,
(8, 3, 11, 28)}, {V6, (8, 13, 11, 28)}, and {V4, (8, 22, 11, 28)}
are all good candidates. These combinations provide equiv-600

alent energy savings: 60.7%. Other criteria, such as the
circuit area or the memory footprint, can be considered to
guide the choice of final FPU configuration. According to
our synthesis results, the best compromise for this appli-
cation would be the (8, 3, 11, 28) configuration, since it
has the lowest circuit area overhead, which is estimated to
be 27% higher than the standard RV64FD architecture.

6. Related Works

Our methodology takes advantage of ARP to improve
energy efficiency. In this section we present some related610

works from the literature.

FP Variable type optimization. Tools such as [15–17] are
designed to find, given an {application, input dataset, QoR
constraint}, a variable type configuration of the original
application that minimizes the number of high-precision
variables and maximizes the number of low-precision vari-
ables. For some of these tools [16, 17], the objective is to
optimize speed, whereas for others [15], the goal is to max-
imize the number of single-precision variables. As a conse-
quence, results produced by [15] are more reproducible.620

All these tools are based on delta-debugging heuristics
[25], which constitutes a scalability bottleneck when deal-
ing with programs with numerous FP variables. Although
[17] is relatively more scalable, the search space still de-
pends on the number of variables in the application, and
the transformations are specific to the x86 architecture. As
a result, [16, 17] are architecture- and compiler-dependant.

Non-standard/arbitrary format support. The previous tools
only support standard IEEE 754 [6] formats, although
[17] also supports extended precision formats (i.e. In-630

tel’s 80-bit format implemented as long double in C). As
explained in Section 2.2, our approach is complementary
with these and other works [12–14], since it provides fur-
ther computation power/energy/execution time optimiza-
tion thanks to ARP and it can reuse their results to de-
termine a first coarse-grained memory footprint and com-
putation optimization.

Simulation of FP approximation impact. [18] proposes an
arbitrary precision impact simulation methodology and in-
troduces an automatic source code transformation tool.640

However, since it exploits the MPFR C library [7], it only
allows variation in the mantissa bit-width. Other libraries
such as FlexFloat [9] (written in C) and FloatX [10] (its
C++ successor) were developed to make it possible to ex-
press variable precision behavior in software, to simulate
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the effects of arbitrary FP bit-width reduction on the QoR
provided by applications. Using these libraries, developers
are expected to modify all or some of their FP variable
types using arbitrary-precision types as substitutes for the
standard ones. The code transformation effort required650

can be very significant, especially for low-level special-
ized computational kernels in C/Assembly for example.
Moreover, some of the classic languages do not support
advanced features such as operator overloading. Adapt-
ing existing system stacks (hardware, compilers, standard
math, scientific libraries, operating systems, etc.) to FP
resizing consequently becomes a tremendous development
effort, especially at the production stage.

Non-intrusive impact simulation. One of the most closely
related works to the one described here is VPREC[28], a660

back-end system that enables non-intrusive variable pre-
cision simulation in the Verificarlo[29] software toolchain.
This tool was introduced to simulate in-time variable pre-
cision, specifically for iterative algorithms which benefit
from adaptive gradually-increasing precision rather than
fixed precision. Although the idea is very similar to ours,
there are some key differences: 1) Verificarlo requires a
specific instrumentation toolchain, making recompiling
mandatory, and as a consequence the instrumented ap-
plication is not “production-ready”, 2) Instrumentation is670

performed on Valgrind, which means that the application
was studied in a high-level operating system context. In
contrast, here, we support virtually all contexts (includ-
ing bare-metal). In addition, and most importantly 3)
VPREC is only designed for simulation, and its conclu-
sions cannot be readily transferred to hardware due to the
lack of the necessary hardware support.

In contrast with all these approaches, ours operates
on the final executable binary after all user-specific and
compiler optimizations and can benefit from existing VTO680

tools. It can also be directly implemented in hardware to
take advantage of the fast software design space explo-
ration. To the best of our knowledge, our methodology is
the first non-intrusive hardware-oriented approach to
simulate the impact of FP approximation.

7. Discussion

Challenges. Approximating individual assembly instruc-
tions comes with a few drawbacks. Since approximation is
applied locally, error propagation is not controlled globally
because the algorithmic structure of the original program690

is practically lost. However, our approach considers the fi-
nal production-ready executable binary as well as compiler
optimizations. This feature is unique in that it reflects the
expected production-stage behavior.

Limitations. The approach described in this paper is ag-
nostic to the language (C, Fortran, etc.), to the context
(bare-metal, OS/RTOS etc.), and to the FP analysis tools
used upstream. It is therefore very powerful when com-
pared to existing strategies. However, for a given FP pro-
gram using complex functions, the results will depend on700

the underlying standard C library implementation. In-
deed, the QoR variation behavior vis-a-vis the precision
reduction might differ slightly between two implementa-
tions. For instance, transcendental functions are imple-
mented in different ways across distinct C standard library
implementations (e.g. Newlib, Glibc, MUSL, etc.). Their
internal use of elementary FP operations (e.g., addition,
multiplication) will differ, which explains the non-identical
numerical results. The proposed methodology is thus C
library-dependant when complex functions are invoked.710

Another limitation of this approach is its data-
dependency. As for all other existing techniques, our strat-
egy provides no guarantees that the application will pro-
duce an equivalent QoR for all possible input datasets.
Hence, designers should carefully select representative data
inputs to cover all intended application behaviors.

Future work. Future studies will focus on introducing vari-
able precision in time in AxQEMU and propose an appro-
priate hardware architecture that benefits from operator-
level precision tuning. A more complete hardware-level720

evaluation taking system parameters into consideration
will also be established.

Conclusion

This work introduces a hardware-friendly and code non-
intrusive approach to optimize FPU bit-width sizing for a
given embedded application, dataset, and quality of re-
sult level (QoR). A software implementation (AxQEMU)
based on the well-known QEMU dynamic binary trans-
lator made it possible to perform a rapid evaluation of
the impact of arbitrary reduced precision (ARP) on an730

application’s QoR, without modifying the software stack.
Compared to other approaches, our methodology allows
fine-grained bit-width tuning to obtain the best QoR vs.
energy consumption trade-off. Our approach can be used
either as a standalone process or in conjunction with vari-
able type optimization tools for fine-grained tuning. The
approach was tested on several benchmarks from the liter-
ature through case studies. Several hardware FPUs were
designed on an ASIC 28-nm FD-SOI technology node to
demonstrate the proposed methodology’s efficiency. Ex-740

perimental results exhibited computational energy savings
of between 19.4% and 60.7% when using ARP, compared
to 7.7% when using the best current alternative tools.
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[26] F. Jézéquel, J. M. Chesneaux, CADNA: a library for estimating
round-off error propagation, Comput. Phys. Commun. 178 (12)870

(2008) 933–955. doi:10.1016/j.cpc.2008.02.003.
URL https://doi.org/10.1016/j.cpc.2008.02.003

[27] J. Vignes, Discrete stochastic arithmetic for validating results
of numerical software 37 (1) 377–390. doi:10.1023/B:NUMA.
0000049483.75679.ce.
URL https://doi.org/10.1023/B:NUMA.0000049483.75679.ce

[28] Y. Chatelain, E. Petit, P. de Oliveira Castro, G. Lartigue,
D. Defour, Automatic exploration of reduced floating-point rep-
resentations in iterative methods, in: R. Yahyapour (Ed.), Euro-
Par 2019: Parallel Processing, Springer International Publish-880

ing, Cham, 2019, pp. 481–494.
[29] C. Denis, P. de Oliveira Castro, E. Petit, Verificarlo: Check-

ing floating point accuracy through monte carlo arithmetic, in:
23nd IEEE Symposium on Computer Arithmetic, ARITH 2016,
Silicon Valley, CA, USA, July 10-13, 2016, 2016, pp. 55–62.
doi:10.1109/ARITH.2016.31.
URL http://dx.doi.org/10.1109/ARITH.2016.31

10




