Thomas Chevet 
email: thomas.chevet@onera.fr
  
Ngoc Thach 
email: ngoc-thach.dinh@lecnam.net
  
Julien Dinh 
  
Tarek Marzat 
  
Raïssi 
  
T N Dinh 
  
T Raïssi 
  
J Marzat 
  
  
  
  
  
Interval Estimation for Discrete-Time Linear Parameter-Varying System with Unknown Inputs
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This paper proposes a new interval observer for joint estimation of the state and unknown inputs of a discrete-time linear parameter-varying (LPV) system with an unmeasurable parameter vector. This system is assumed to be subject to unknown inputs and unknown but bounded disturbances and measurement noise, while the parametervarying matrices are elementwise bounded. Considering the unknown inputs as auxiliary states, the dynamics are rewritten as discrete-time LPV descriptor dynamics. A new structure of interval observer is then used, providing more degrees of freedom than the classical change of coordinates-based structure. The observer gains are computed by solving linear matrix inequalities derived from cooperativity condition and L∞ norm. Numerical simulations are run to show the efficiency of the proposed observer.

I. INTRODUCTION

Linear parameter-varying (LPV) systems are a powerful tool to develop control algorithms for nonlinear systems, since many of them can be represented as LPV systems. Due to their partial linearity, LPV dynamics allow for the use of methods developed for linear systems [START_REF] Shamma | An overview LPV systems[END_REF]. Most control algorithms are based on the knowledge of the system's state at all time. However, in real-life applications, the vector of scheduling parameters is not always available, the system is subject to perturbations, the state is not completely measured, and measurements are noisy. Observers are then needed to reconstruct the system's state from this incomplete and biased information. In addition, real-life systems can be subject to model uncertainties or faults, which can be represented by additive unknown inputs in their dynamics [START_REF] Varga | Solving Fault Diagnosis Problems[END_REF]. To mitigate such faults, it is often necessary to also reconstruct these unknown inputs [START_REF] Frank | Survey of robust residual generation and evaluation methods in observer-based fault detection systems[END_REF]. In this case, an unknown input observer (UIO) [START_REF] Hou | Design of observers for linear systems with unknown inputs[END_REF]- [START_REF] Mammar | On unknown input observers for LPV systems[END_REF] is used. However, these works do not consider the presence of external perturbations or measurement noise, which limits the performance of the proposed UIOs in a more general context [START_REF] Robinson | Prognosis of uncertain linear time-invariant discrete systems using unknown input interval observer[END_REF].

To overcome this issue, set-based estimation algorithms have been developed, based on the assumption that the noise, perturbations and initial state of the systems are unknown, but bounded. These algorithms can be separated into two categories: set-membership estimation [START_REF] Combastel | A state bounding observer for uncertain non-linear continuous-time systems based on zonotopes[END_REF]- [START_REF] Li | Unknown input observer design for linear parameter-varying systems in a bounded error context[END_REF], where the set of all states consistent with the system's dynamics and the uncertainties' bounds is approximated by a geometrical set; and interval observers [START_REF] Mazenc | Interval observers for linear time-invariant systems with disturbances[END_REF]- [START_REF] Li | Interval observer design for discrete-time uncertain Takagi-Sugeno fuzzy systems[END_REF], where two sub-observers provide an upper and a lower bound for the state consistent with the dynamics and uncertainties' bounds. Due to its computational efficiency, this paper considers interval observers to provide guaranteed bounds to both the state of a LPV system and the unknown inputs acting on it. Moreover, interval observers are ideal to deal with unavailable scheduling parameters [START_REF] Efimov | Design of interval observers for estimation and stabilization of discrete-time LPV systems[END_REF].

In the literature, several unknown input interval observers have been proposed for linear time-invariant systems [START_REF] Robinson | Prognosis of uncertain linear time-invariant discrete systems using unknown input interval observer[END_REF], [START_REF] Gucik-Derigny | A note on interval observer design for unknown input estimation[END_REF], [START_REF] Li | Interval estimation of state and unknown input for linear discrete-time systems[END_REF], but relatively few have been proposed for LPV systems [START_REF] Meyer | Interval observer for LPV systems with unknown inputs[END_REF], the other observers being mainly based on setmembership strategies [START_REF] Li | Unknown input observer design for linear parameter-varying systems in a bounded error context[END_REF], [START_REF] Rotondo | State estimation and decoupling of unknown inputs in uncertain LPV systems using interval observers[END_REF]. These strategies are based on a change of coordinates decoupling the state from the unknown input. Considering a second change of coordinates to satisfy the cooperativity condition (i.e. the estimation error state matrix is elementwise nonnegative), an interval observer for the state is then designed. The resulting interval is then used to compute an interval bounding the unknown inputs. The performance of such an observer is heavily influenced by the choice of target coordinates [START_REF] Chambon | Overview of linear timeinvariant interval observer design: towards a non-smooth optimisationbased approach[END_REF]. For these reasons, [START_REF] Li | Interval estimation of state and unknown input for linear discrete-time systems[END_REF] and [START_REF] Li | Unknown input observer design for linear parameter-varying systems in a bounded error context[END_REF] propose a different approach by augmenting the state vector with the unknown input vector, thus considering descriptor dynamics. Then, based on the TNL approach (named after the notation for the different matrices used) introduced in [START_REF] Wang | Interval observer design for uncertain discrete-time linear systems[END_REF], additional gain matrices are introduced to ensure the cooperativity condition of the interval observer that provides guaranteed bounds simultaneously for the state and the unknown inputs. This approach provides more degrees of freedom for the observer design than the ones proposed, for example, in [START_REF] Robinson | Prognosis of uncertain linear time-invariant discrete systems using unknown input interval observer[END_REF] or [START_REF] Meyer | Interval observer for LPV systems with unknown inputs[END_REF].

This paper then proposes an unknown input interval observer providing guaranteed bounds to the state and unknown inputs of a discrete-time linear parameter varying system with an unavailable vector of scheduling parameters and subject to unknown but bounded perturbations. Following [START_REF] Li | Unknown input observer design for linear parameter-varying systems in a bounded error context[END_REF], [START_REF] Wang | Interval observer design for uncertain discrete-time linear systems[END_REF] and [START_REF] Efimov | Design of interval observers for estimation and stabilization of discrete-time LPV systems[END_REF], the main contributions of this study are twofold: (i) a novel interval observer structure for a class of discrete-time LPV systems with unmeasurable parameters, allowing for more degrees of freedom in the computation of the observer's gains thanks to the TNL approach; (ii) a new modular gain design procedure based on the cooperativity of the dynamics and L ∞ norm of the estimation error.

The remainder of this paper is organized as follows. General prerequisites and assumptions are given in Section II. Section III presents the proposed structure and design procedure for the interval observer. In Section IV, numerical simulation results are introduced to assess the efficiency of the proposed estimation strategy. Finally, Section V draws concluding remarks and perspectives.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notations

The sets of positive integers and real numbers are denoted respectively by N and R. The matrix I n is the identity matrix of size n ∈ N. The vector 1 n is the column vector of size n ∈ N filled with ones. The matrix 0 is the matrix of appropriate size filled with zeros. The matrices A and A † , with A ∈ R n×m , denote respectively the transpose and the Moore-Penrose pseudo-inverse of matrix A. The notations A 0 and A 0 (respectively A 0 and A ≺ 0) mean that A is positive or negative semidefinite (resp. positive or negative definite). The matrix diag(A 1 , . . . , A n ) is the block diagonal matrix with diagonal blocks A 1 , . . . , A n . Given a signal x : N → R n , its Euclidean norm is defined as

x k 2 2 = x k x k and its L ∞ norm is the supremum over time of its Euclidean norm, i.e. x ∞ = sup { x k 2 |k ∈ N}. The set of all signals x : N → R n satisfying x ∞ < ∞ is denoted by L n ∞ .
The Kronecker product of two matrices A and B is denoted by A ⊗ B. Finally, is a placeholder denoting the transpose of a term placed symmetrically in a matrix.

B. Preliminary results on interval analysis

Let A 1 , A 2 ∈ R n×m be two matrices. Then, the relation A 1 ≤ A 2 is understood elementwise. Moreover, a matrix A ∈ R n×m can be decomposed into two nonnegative matrices A + = max {0, A} (where the maximum is understood elementwise) and A -= A + -A. The matrix A is said to be nonnegative if A -= 0. The same decomposition can be applied to any vector x ∈ R n .

Lemma 1 ([21]). Let x ∈ R n be a vector satisfying x ≤ x ≤ x, with x, x ∈ R n .
1) Let A ∈ R m×n be a constant matrix. Then

A + x -A -x ≤ Ax ≤ A + x -A -x. 2) Let A ∈ R m×n be a matrix satisfying A ≤ A ≤ A, with A, A ∈ R m×n . Then A + x + -A + x --A -x + + A -x -≤ Ax ≤ A + x + -A + x --A -x + + A -x -.
Remark 1. If x is a constant vector and A a matrix satisfying A ≤ A ≤ A, the first item of Lemma 1 becomes 

Ax + -Ax -≤ Ax ≤ Ax + -Ax -. Lemma 2 ([22]). Let F (z, ρ) = M (ρ)
≤ M (ρ) ≤ M and F (z, z) ≤ F (z, ρ) ≤ F (z, z) then F (z, z) -F (z, ρ) 2 ≤ l F z -z 2 + l F z -z 2 + m F F (z, z) -F (z, ρ) 2 ≤ l F z -z 2 + l F z -z 2 + m F
where m F and m F are positive constants depending on the values of M and z, and

     l F = M + 2 + M + 2 l F = M - 2 + M - 2 
C. Problem formulation Consider the following discrete-time LPV system

x k+1 = A(ρ k )x k + B(ρ k )u k + Dd k + D w (ρ k )w k y k = Cx k + D v v k (1) 
where 

x k ∈ R nx is the state vector, u k ∈ R nu is the known input vector, y k ∈ R ny is the output vector, d k ∈ R n d is the unknown input vector, w k ∈ R nw and v k ∈ R
M (ρ k ) = M 0 + ∆M (ρ k ), (2) 
with M ∈ {A, B, D w }.

Assumption 1. The initial state vector x 0 , the disturbance vector w k and the measurement noise vector v k are unknown but bounded and satisfy

x 0 ≤ x 0 ≤ x 0 , w k ≤ w k ≤ w k and v k ≤ v k ≤ v k , ∀k ≥ 0, with w k , w k ∈ L nw ∞ and v k , v k ∈ L nv ∞ .
Moreover, since the parameter vector ρ k is unmeasurable, some conditions have to be imposed to the matrices ∆A, ∆B and ∆D w to design an observer. Assumption 2. The matrices ∆A, ∆B and ∆D w are unknown but bounded and satisfy

∆A ≤ ∆A(ρ k ) ≤ ∆A, ∆B ≤ ∆B(ρ k ) ≤ ∆B and ∆D w ≤ ∆D w (ρ k ) ≤ ∆D w , ∀k ≥ 0.
Finally, a condition has to be imposed on the evolution of the state vector over time.

Assumption 3. The known input vector u k , the unknown input vector d k and the state vector

x k are such that u k ∈ L nu ∞ , d k ∈ L n d ∞ and x k ∈ L nx ∞ . As a direct consequence, y k ∈ L ny ∞ .
The goal of the present paper is to propose a new interval observer derived from the interval estimation strategies for discrete-time LPV systems proposed in [START_REF] Efimov | Design of interval observers for estimation and stabilization of discrete-time LPV systems[END_REF] and the unknown input interval observer for discrete-time linear time invariant system proposed in [START_REF] Li | Interval estimation of state and unknown input for linear discrete-time systems[END_REF]. The proposed interval observer must provide simultaneously guaranteed bounds x k , x k and d k , d k to the state vector and the unknown input vector such that

x k ≤ x k ≤ x k and d k ≤ d k ≤ d k , ∀k > 0.
III. MAIN RESULT This section presents the proposed framer for the linear parameter-varying system as well as the L ∞ -based design strategy for the interval observer gains.

A. System augmentation

In [START_REF] Robinson | Prognosis of uncertain linear time-invariant discrete systems using unknown input interval observer[END_REF], [START_REF] Gucik-Derigny | A note on interval observer design for unknown input estimation[END_REF], [START_REF] Meyer | Interval observer for LPV systems with unknown inputs[END_REF] are proposed different strategies using a change of coordinates to decouple the state and the unknown inputs. Guaranteed bounds can then be computed for the state vector and this information is used to compute bounds for the unknown inputs. In this paper, the dynamical system (1) is instead rewritten into a discrete-time LPV descriptor system by considering the unknown inputs as auxiliary states [START_REF] Li | Interval estimation of state and unknown input for linear discrete-time systems[END_REF]. Then, consider the equivalent system

Ez k+1 = F (ρ k )z k + G(ρ k )u k + W (ρ k )w k y k = Hz k + D v v k (3) 
where

z k = x k d k-1 , H = C 0 , E = I nx -D 0 0 , G(ρ k ) = B(ρ k ) 0 , F (ρ k ) = A(ρ k ) 0 0 0 , W (ρ k ) = D w (ρ k ) 0 ,
and, for the definition of z 0 , d -1 is chosen to be 0. The matrices F (ρ k ), G(ρ k ) and W (ρ k ) can then be decomposed into two parts as in ( 2) and the bounds of ∆F (ρ k ), ∆G(ρ k ) and ∆W (ρ k ) are immediately deduced from Assumption 2.

Assumption 4. The matrices E and H satisfy the rank condition

rank I nx -D C 0 = n x + n d = n z .
With the descriptor formulation given in (3), the goal of the proposed strategy is to find two bounds z k and z k for the augmented state vector z k such that

z k ≤ z k ≤ z k , ∀k ∈ N.
The interval observer design is then based on the following lemma.

Lemma 3 ([23]). Given matrices X ∈ R n×m , Y ∈ R m×p and Z ∈ R n×p with rank Y = p, the general solution X of the equation XY = Z is X = ZY † + Ξ I m -Y Y †
where Ξ ∈ R n×m is an arbitrary matrix.

With Lemma 3 and Assumption 4, there exist pairs of matrices (T, N ) satisfying

T E + N H = I nz , (4) 
where

T = Θ † α 1 + ΞΨα 1 , N = Θ † α 2 + ΞΨα 2 , ( 5 
) with Ξ ∈ R nz×(nz+ny) a free matrix, and

Θ = E H , Ψ = I nz+ny -ΘΘ † , α 1 = I nz 0 , α 2 = 0 I ny .
Assumption 5. The pair (T F 0 , H) is observable.

B. Framer for LPV systems

The proposed framer for system (3) obeys the dynamics

         z k+1 = (T F 0 -LH) z k + T G 0 u k + N y k+1 + Ly k + φ k + χ k + ψ k + ω k z k+1 = T F 0 -LH z k + T G 0 u k + N y k+1 + Ly k + φ k + χ k + ψ k + ω k (6) 
where

φ k = T + δ k (F, z) -T -δ k (F, z) φ k = T + δ k (F, z) -T -δ k (F, z) (7 
)

ω k = T + δ k (W, w) -T -δ k (W, w) ω k = T + δ k (W, w) -T -δ k (W, w) (8) 
χ k = T + ∆Gu + k -∆Gu - k -T -∆Gu + k -∆Gu - k χ k = T + ∆Gu + k -∆Gu - k -T -∆Gu + k -∆Gu - k (9)            ψ k = (T W 0 ) + w k -(T W 0 ) -w k + (N D v ) -v k+1 -(N D v ) + v k+1 + (LD v ) -v k -(LD v ) + v k ψ k = (T W 0 ) + w k -(T W 0 ) -w k + (N D v ) -v k+1 -(N D v ) + v k+1 + LD v -v k -LD v + v k (10) 
and, for given matrix M and vector a,

δ k (M, a) = ∆M + a + k -∆M + a - k -∆M -a + k + ∆M -a - k δ k (M, a) = ∆M + a + k -∆M + a - k -∆M -a + k + ∆M -a - k
with L and L two observer gains such that T F 0 -LH and T F 0 -LH are nonnegative matrices.

Theorem 1. Let Assumptions 1 and 2 hold, T F 0 -LH, T F 0 -LH be nonnegative matrices and d -1 = 0. Then, z k and z k obeying the dynamics (6) satisfy

z k ≤ z k ≤ z k , ∀k ≥ 0. (11) 
Proof. Let e k = z kz k and e k = z kz k be the upper and lower estimation errors. Using equation (4), the descriptor vector z k satisfies

z k+1 = (T F (ρ k ) -LH) z k + T G(ρ k )u k + N y k+1 + Ly k + T W (ρ k )w k -LD v v k -N D v v k+1 , (12) 
Using the difference equation ( 12), the dynamics of the lower estimation error are then

e k+1 = (T F 0 -LH) e k -φ k + T ∆F (ρ k )z k -χ k + T ∆G(ρ k )u k -ω k + T ∆W (ρ k )w k -ψ k + T W 0 w k -N D v v k+1 -LD v v k . ( 13 
)
Replacing L by L in [START_REF] Raïssi | Interval state estimation for a class of nonlinear systems[END_REF], the dynamics of the upper estimation error are

e k+1 = T F 0 -LH e k + φ k -T ∆F (ρ k )z k + χ k -T ∆G(ρ k )u k + ω k -T ∆W (ρ k )w k + ψ k -T W 0 w k + N D v v k+1 + LD v v k (14) 
By Lemma 1, knowing that Assumptions 1 and 2 hold, it is immediate that

β k = T ∆G(ρ k )u k -χ k + T ∆W (ρ k )w k -ω k + T W 0 w k -N D v v k+1 -LD v v k -ψ k ≥ 0, (15a) 
β k = χ k -T ∆G(ρ k )u k + ω k -T ∆W (ρ k )w k + ψ k -T W 0 w k + N D v v k+1 + LD v v k ≥ 0. (15b)
With Assumptions 1 and 2, for k = 0,

ε k = T ∆F (ρ k )z k -φ k ≥ 0, (16a) 
ε k = φ k -T ∆F (ρ k )z k ≥ 0. ( 16b 
)
Given that T F 0 -LH, T F 0 -LH ≥ 0, then e 1 , e 1 ≥ 0 so that z 1 ≤ z 1 ≤ z 1 and (16a) and (16b) are true for k = 1.

Then, given that (15a) and (15b) are true at all time k ≥ 0, by induction, ( 11) is satisfied at all time k ≥ 0.

C. Interval observer with L ∞ performance

In order for the framer ( 6) to be an interval observer for the system (3), the dynamics of the estimation errors e k and e k have to be input-to-state stable [START_REF] Dinh | Optimal interval observers for discrete-time linear switched systems[END_REF]. To guarantee this and, in addition, to reduce the impact of the system's uncertainties on the bounds z k and z k , a L ∞ -based design procedure is given in the following theorem to obtain the gain matrices.

Theorem 2. Let all the conditions of Theorem 1 hold. For a given scalar µ satisfying 0 < µ < 1, if there exists a scalar γ ≥ 0, a positive definite diagonal matrix P ∈ R 2nz×2nz , and a block diagonal matrix X ∈ R 2nz×2ny such that S ≥ 0 (17a)

P µI 2nz (17b)     (µ -1)P + γQ 0 -γI 2nz 0 0 -γI 2nz S P P -P     0 (17c)
where S = P (I 2 ⊗T )(I 2 ⊗F 0 )-XΥ, Υ = I 2 ⊗H, and

Q = 6 • diag l 2 φ I nz , l 2 
φ I nz , with l φ and l φ defined in Lemma 2, then (6) is a robust interval observer for system (1). This interval observer satisfies the performance

e k 2 2 ≤ (1 -µ) k µ V 0 + γ µ 2 β 2 ∞ + η (18) 
where e k = e k e k , V 0 = e 0 P e 0 ,

β k = β k β k , with β k and β k defined in (15), β ∞ is the L ∞ norm of β k
over time as defined in Section II-A, and η = 3 m 2 φ + m 2 φ , with m φ and m φ defined in Lemma 2.

Proof. Since P 0, all its diagonal elements are strictly positive. Defining the matrix X = P diag(L, L), condition (17a) is then equivalent to the nonnegativity of T F 0 -LH and T F 0 -LH.

Moreover, the dynamics of e k is

e k+1 = Πe k + ε k + β k where Π = (I 2 ⊗ T ) (I 2 ⊗ F 0 ) -LΥ and ε k = ε k ε k , with L = diag(L, L
) and ε k and ε k defined in [START_REF] Gucik-Derigny | A note on interval observer design for unknown input estimation[END_REF]. Consider the candidate Lyapunov function

V k = e k P e k . The increment of V is V k+1 -V k = e k (Π P Π -P )e k + ε k P ε k + β k P β k + e k Π P ε k + e k Π P β k + ε k P Πe k + ε k P β k + β k P Πe k + β k P ε k = e k (Π P Π -(1 -µ)P )e k -µe k P e k + ε k (P -γI 2nz )ε k + γε k ε k + β k (P -γI 2nz )β k + γβ k β k + e k Π P ε k + e k Π P β k + ε k P Πe k + ε k P β k + β k P Πe k + β k P ε k . However, ε k ε k = ε k ε k + ε k ε k . The functions T ∆F (ρ k )z k , φ k
and φ k satisfy the assumptions of Lemma 2 so that ε k and ε k are globally Lipschitz. Moreover, by Lemma 2

ε k ε k ≤ l φ z k -z k 2 + l φ z k -z k 2 + m φ 2 ε k ε k ≤ l φ z k -z k 2 + l φ z k -z k 2 + m φ 2 where z k -z k 2 2 = e k e k and z k -z k 2 2 = e k e k . Then, by Cauchy-Schwarz inequality,    ε k ε k ≤ 3 l 2 φ e k e k + l 2 φ e k e k + m 2 φ ε k ε k ≤ 3 l 2 φ e k e k + l 2 φ e k e k + m 2 φ so that ε k ε k ≤ e k Qe k + η. (19) 
With inequality [START_REF] Rotondo | State estimation and decoupling of unknown inputs in uncertain LPV systems using interval observers[END_REF], the increment of V now satisfies

V k+1 -V k ≤   e k ε k β k   Λ   e k ε k β k   -µV k + γ β k 2 2 + γη (20) 
where

Λ =   Λ 11 Π P Π P P Π P -γI 2nz P P Π P P -γI 2nz   (21) 
with

Λ 11 = Π P Π -(1 -µ)P + γQ.
If Λ 0, inequality [START_REF] Rotondo | State estimation and decoupling of unknown inputs in uncertain LPV systems using interval observers[END_REF] implies that the estimation error e k remains bounded over time [START_REF] Jiang | Input-to-state stability for discrete-time nonlinear systems[END_REF] since, by Assumption 1, β k 2 < ∞, ∀k ≥ 0. Then, the framer ( 6) is a robust interval observer for the descriptor LPV system [START_REF] Frank | Survey of robust residual generation and evaluation methods in observer-based fault detection systems[END_REF].

By using the Schur complement [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF], the linear matrix inequality (LMI) Λ 0 is equivalent to the condition (17c).

Finally, since Λ 0, the quadratic term in the right hand side of ( 19) is negative. Therefore, there exists a scalar µ such that 0 < µ < 1 satisfying the inequality

V k+1 -V k ≤ -µV k + γ β 2 ∞ + γη where β ∞ is the L ∞ norm of β k over time. Then, V k+1 ≤ (1 -µ) k+1 V 0 + k i=0 (1 -µ) i γ β 2 ∞ + η . (22) Since 0 < µ < 1, it is immediate that 0 < 1 -µ < 1.
Therefore, the inequality ( 22) can be rewritten as

V k+1 ≤ (1 -µ) k+1 V 0 + γ µ β 2 ∞ + η .
With condition (17b), µ e k 2 2 ≤ V k , hence the performance [START_REF] Meyer | Interval observer for LPV systems with unknown inputs[END_REF]. With Theorem 2, the matrices L and L can be obtained as diag(L, L) = P -1 X while minimizing γ.

Remark 2. Due to the symmetry of the constraints, if the observer gains are obtained by minimizing γ subject to the constraints (17a) to (17c), L and L might be equal. However, the problem has a modular structure, allowing for the introduction of additional constraints. The constraints on the upper estimation error can then be different from the constraints on the lower estimation error, leading to two different sets of gains.

IV. SIMULATION RESULTS

To assess the efficiency of the proposed interval observer, an academic example adapted from [START_REF] Efimov | Estimation and control of discrete-time LPV systems using interval observers[END_REF] is used. The considered system is

A 0 = 0.1   -6 5 4 7 5 2 1 5 3   , B 0 =   0 0 1   , D =   0 1 0   C = 0 1 1 1 0 0 , D w0 = I 3 , D v = I 2 , ∆B = 0, ∆D w = 0, and 
∆A(k) = 0.02 •   0.1s(ω 1 k) s(ω 2 k) c(ω 1 k) c(ω 2 k) s(2ω 1 k) 0.1c(2ω 1 k) s(ω 1 k/2) 0.1c(ω 2 k/2) s(ω 1 k)c(ω 2 k)  
where c(x) and s(x) stand for cos(x) and sin(x), ω 1 = 0.02 and ω 2 = 0.1/3. With this definition of ∆A(k),

∆A = -∆A = 0.02 •   0.1 1 1 1 1 0.1 1 0.1 1   .
Moreover, the unknown input signal is d k = 0.5c(0.2k), the known input signal is u k = -0 1 0 y k , and the disturbance and measurement noise vectors are two uniformly distributed random vectors so that w = -w = 0.1 • 1 3 and v = -v = 0.1 • 1 2 . Finally, the bounds for the initial state are x 0 = 5 • 1 3 and x 0 = -2 • 1 3 , with x 0 = -1 4 2 , so that z 0 = x 0 0 and z 0 = x 0 0 .

The value of the matrix Ξ is a design parameter of the observer. It could be chosen so as to minimize the values of l φ , l φ , m φ , and m φ or any other use case dependent criterion. For the sake of simplicity, the value Ξ = 0 is chosen so that 

T =     0.5 0 0 0 0 0 -1 0 0 0 1 0 0 -1 -1 0     , N =     0 0.5 1 0 0 0 1 0     ,
L =     0.2 -0.3006 -0.5 -0.1 0.3 0.1 -1 -0.8     .
The intervals obtained with the proposed observer for the three states are presented in Figure 1 and the interval for the unknown inputs is presented in Figure 2. The real states and unknown inputs are contained in the computed intervals. Moreover, the interval width is not constant due to the effect of the parameter uncertainties as well as of the known and unknown input vectors.

V. CONCLUSION

This paper presents a new interval observer for discretetime linear parameter-varying systems with unmeasurable parameter vector subject to unknown inputs and unknown but bounded disturbance and measurement noise. This observer is used to compute simultaneously guaranteed bounds for the system's state and the unknown inputs. By considering the unknown inputs as auxiliary states, the system is rewritten as a linear parameter-varying descriptor system, allowing for the introduction of additional gains compared to the classical interval observers. These gains are tuned by enforcing the cooperativity of the observer and the effect of the perturbations is attenuated by considering a L ∞ norm criterion. All these conditions are written as linear matrix inequalities (LMI), such that additional constraints for the tuning of the observer's gains can be easily introduced as long as they can be written as LMIs. Numerical simulation results are presented to assess the efficiency of the proposed method. In future work, this method could be adapted to linear-parameter varying descriptor systems subject to unknown inputs or to linear parameter-varying systems with parameter dependent output matrix. In addition, the tuning of the weighting matrices could be integrated into the proposed ∞ design procedure.
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 1 Fig. 1. States and guaranteed bounds from the proposed observer.
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 2 Fig. 2. Unknown input and guaranteed bounds from the proposed observer.
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