Interval Estimation for Discrete-Time Linear Parameter-Varying System with Unknown Inputs - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Interval Estimation for Discrete-Time Linear Parameter-Varying System with Unknown Inputs

Résumé

This paper proposes a new interval observer for joint estimation of the state and unknown inputs of a discrete-time linear parameter-varying (LPV) system with an unmeasurable parameter vector. This system is assumed to be subject to unknown inputs and unknown but bounded disturbances and measurement noise, while the parameter-varying matrices are elementwise bounded. Considering the unknown inputs as auxiliary states, the dynamics are rewritten as discrete-time LPV descriptor dynamics. A new structure of interval observer is then used, providing more degrees of freedom than the classical change of coordinates-based structure. The observer gains are computed by solving linear matrix inequalities derived from cooperativity condition and L∞ norm. Numerical simulations are run to show the efficiency of the proposed observer.
Fichier principal
Vignette du fichier
Chevet_et_al-CDC2021.pdf (364.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03332064 , version 1 (15-02-2022)

Identifiants

Citer

Thomas Chevet, Thach Ngoc Dinh, Julien Marzat, Tarek Raissi. Interval Estimation for Discrete-Time Linear Parameter-Varying System with Unknown Inputs. 60th IEEE Conference on Decision and Control, Dec 2021, Austin, TX, United States. pp.4002-4007, ⟨10.1109/CDC45484.2021.9683335⟩. ⟨hal-03332064⟩
170 Consultations
92 Téléchargements

Altmetric

Partager

More