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Charged colloidal particles -both on the nano and micron scales -have been instrumental in enhancing our understanding of both atomic and colloidal crystals. These systems can be straightforwardly realized in the lab, and tuned to self-assemble into body-centered cubic (BCC) and face-centered cubic (FCC) crystals. While these crystals will always exhibit a finite number of point defects, including vacancies and interstitials -which can dramatically impact their material properties -their existence is usually ignored in scientific studies. Here, we use computer simulations and free-energy calculations to characterize vacancies and interstitials in both FCC and BCC crystals of point-Yukawa particles. We show that, in the BCC phase, defects are surprisingly more common than in the FCC phase, and the interstitials manifest as so-called crowdions: an exotic one-dimensional defect proposed to exist in atomic BCC crystals. Our results open the door to directly observing these elusive defects in the lab.

I. INTRODUCTION

Suspensions of charged colloids are among the most fundamental systems in colloidal science. These systems, consisting of charged colloidal spheres suspended in a solvent containing salt, which screens the Coulombic repulsions between the spheres, have been extensively studied using experiments, simulations, and theory [START_REF] Alexander | Charge renormalization, osmotic pressure, and bulk modulus of colloidal crystals: Theory[END_REF][START_REF] Kremer | Phase diagram of yukawa systems: model for charge-stabilized colloids[END_REF][START_REF] Robbins | Phase diagram and dynamics of yukawa systems[END_REF][START_REF] Monovoukas | The experimental phase diagram of charged colloidal suspensions[END_REF][START_REF] Sirota | Complete phase diagram of a charged colloidal system: A synchro-tron x-ray scattering study[END_REF][START_REF] Hamaguchi | Triple point of Yukawa systems[END_REF][START_REF] Hynninen | Phase diagram of hard-core repulsive Yukawa particles with a density-dependent truncation: a simple model for charged colloids[END_REF][START_REF] Yethiraj | A colloidal model system with an interaction tunable from hard sphere to soft and dipolar[END_REF][START_REF] Hsu | Charge stabilization in nonpolar solvents[END_REF][START_REF] Royall | Re-entrant melting and freezing in a model system of charged colloids[END_REF][START_REF] Masri | Measuring colloidal forces from particle position deviations inside an optical trap[END_REF][START_REF] Smallenburg | Phase diagrams of colloidal spheres with a constant zeta-potential[END_REF][START_REF] Kanai | Crystallization and reentrant melting of charged colloids in nonpolar solvents[END_REF][START_REF] Arai | Surface-assisted single-crystal formation of charged colloids[END_REF][START_REF] Chaudhuri | Triple junction at the triple point resolved on the individual particle level[END_REF] . In the case of singlecomponent, spherical colloids, the bulk phase behavior is extremely well understood, with impressive quantitative comparisons between theory and experiment [START_REF] Monovoukas | The experimental phase diagram of charged colloidal suspensions[END_REF][START_REF] Sirota | Complete phase diagram of a charged colloidal system: A synchro-tron x-ray scattering study[END_REF][START_REF] Kanai | Crystallization and reentrant melting of charged colloids in nonpolar solvents[END_REF] . These quantitative comparisons have been facilitated by the highly tunable nature of experimental systems of charged colloids [START_REF] Yethiraj | A colloidal model system with an interaction tunable from hard sphere to soft and dipolar[END_REF][START_REF] Van Gruijthuijsen | Sterically stabilized colloids with tunable repulsions[END_REF][START_REF] Kodger | Precise colloids with tunable interactions for confocal microscopy[END_REF] . From these studies we know that for sufficiently high densities or strongly charged particles, identically charged colloids self-assemble into one of two crystal structures, depending on the degree of screening. Broadly, for low salt concentrations, where the screening is weak, the system forms a bodycentered-cubic (BCC) crystal, while high salt concentrations result in a face-centered-cubic (FCC) crystal.

In equilibrium, such crystalline phases always feature a finite concentration of defects. These defects, like vacancies and interstitials, can have a profound impact on the mechanical, optical, and electronic properties of crystalline materials. In the realm of colloid science, where the creation of new materials to manipulate light is one of the overarching goals, the presence of defects strongly affects optical properties [START_REF] Yan | Incorporation of point defects into self-assembled three-dimensional colloidal crystals[END_REF][START_REF] Rengarajan | Effect of disorder on the optical properties of colloidal crystals[END_REF][START_REF] Nelson | Epitaxial growth of three-dimensionally architectured optoelectronic devices[END_REF] . It is therefore perhaps surprising, that despite the massive body of literature on crystals formed by charged colloids, little is known about how defects manifest in their 3d crystalline phases.

In three dimensions, some of the earliest work on defects in colloidal crystals focused on point defects (vacancies and interstitials) in single-component hard-sphere crystals [START_REF] Bennett | Studies in molecular dynamics. IX. Vacancies in hard sphere crystals[END_REF][START_REF] Pronk | Point defects in hard-sphere crystals[END_REF][START_REF] Pronk | Large effect of polydispersity on defect concentrations in colloidal crystals[END_REF] . This colloidal model system forms an FCC crystal, with relatively few point defects in equilibrium: at melting the crystal a) l.c.filion@uu.nl is predicted to have approximately 10 -4 vacancies and 10 -8 interstitials per lattice site. Subsequent studies have explored e.g. the local structural impact of defects [START_REF] Lin | Measuring nonlinear stresses generated by defects in 3d colloidal crystals[END_REF][START_REF] Van Der Meer | Diffusion and interactions of point defects in hard-sphere crystals[END_REF][START_REF] Vansaders | Strain fields in repulsive colloidal crystals[END_REF] , the diffusion of vacancies and interstitials [START_REF] Van Der Meer | Diffusion and interactions of point defects in hard-sphere crystals[END_REF][START_REF] Bennett | Persistence of vacancy motion in hard sphere crystals[END_REF] , and the emergence of stacking faults [START_REF] Hoogenboom | Stacking faults in colloidal crystals grown by sedimentation[END_REF][START_REF] Pronk | Can stacking faults in hard-sphere crystals anneal out spontaneously?[END_REF][START_REF] Marechal | Stacking in sediments of colloidal hard spheres[END_REF][START_REF] Pusey | Structure of crystals of hard colloidal spheres[END_REF] in hard-sphere systems. However, in general, defects in 3d colloidal crystals have received relatively little attention due, at least in part, to the expectation that they do not occur in large quantities in equilibrium.

A notable exception is the relatively recent prediction that simple cubic crystals of repulsive particles frequently exhibit large numbers (≈ 0.06 per lattice site) of vacancies that are spread over a row of lattice sites in one dimension [START_REF] Van Damme | Phase and vacancy behaviour of hard "slanted" cubes[END_REF][START_REF] Van Der Meer | Revealing a vacancy analog of the crowdion interstitial in simple cubic crystals[END_REF][START_REF] Smallenburg | Vacancystabilized crystalline order in hard cubes[END_REF] . These 1d vacancies, predicted for simple cubic crystals, are reminiscent of so-called interstitial crowdions. This intriguing type of interstitial defect was proposed by Paneth in 1950 [START_REF] Paneth | The mechanism of self-diffusion in alkali metals[END_REF] , to explain anomalous self-diffusion in BCC crystals of alkali metals. In this picture, the defect is expected to spread out over multiple lattice sites arranged along a one-dimensional line, resulting in preferential diffusion along that direction. In the atomic realm, explorations of these defects has been largely focused on simulations [START_REF] Derlet | Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals[END_REF][START_REF] Nguyen-Manh | Self-interstitial atom defects in bcc transition metals: Group-specific trends[END_REF][START_REF] Osetsky | Onedimensional atomic transport by clusters of self-interstitial atoms in iron and copper[END_REF][START_REF] Han | Self-interstitials in V and Mo[END_REF][START_REF] Zepeda-Ruiz | Strongly non-arrhenius self-interstitial diffusion in vanadium[END_REF] , and simple theoretical models used to capture their behaviour [START_REF] Kontorova | On the theory of plastic deformation and twinning[END_REF][START_REF] Landau | Model of interacting atomic chains and its application to the description of the crowdion in an anisotropic crystal[END_REF][START_REF] Kovalev | Theoretical description of the crowdion in an anisotropic crystal based on the Frenkel-Kontorova model including and elastic three-dimensional medium[END_REF][START_REF] Braun | Nonlinear dynamics of the Frenkel-Kontorova model[END_REF][START_REF] Dudarev | Coherent motion of interstitial defects in a crystalline material[END_REF][START_REF] Fitzgerald | Peierls potential for crowdions in the bcc transition metals[END_REF] .

To date, an analogue to these defects in a colloidal realization of a BCC crystal -which would allow for direct observation in real time using e.g. confocal microscopy -is lacking. It is therefore intriguing to explore how interstitials manifest in colloidal BCC crystals, and in particular in systems that can be directly, and even quantitatively, reproduced in an experimental setting.

Here we use computer simulations to explore both the concentration and structure of point defects in both BCC and FCC crystals of one of the most fundamental models for screened charged particles -the point Yukawa model. Our results predict that this fundamental system forms a direct colloidal realization of crowdion interstitials in BCC crystals. Moreover, we find that BCC exhibits significantly higher concentrations of point defects, and hence expect that these crowdions play an important role in controlling the material properties of the crystal. Importantly, given the substantial concentration of crowdions predicted to occur in equilibrium, our results pave the way to directly observing these rare and elusive defects in colloidal experiments.

II. MODEL

We consider a system of N charged colloids of diameter σ suspended in a solvent containing ions characterized by an inverse Debye screening length κ D and Bjerrum length λ B . Within Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the effective potential between the colloids is given by

β φ (r) = ε r e -κ D r , (1) 
where

ε = Z 2 λ B e κ D σ (1 + κσ /2) 2 (2)
with Z the charge of the colloids in electron charges, and β = 1/k B T , with k B the Boltzmann constant and T the temperature. Note that this so-called Yukawa potential describes, not only charged colloids, but also has been widely applied in the study of dusty plasmas [START_REF] Ivlev | Complex plasmas and colloidal dispersions: particle-resolved studies of classical liquids and solids[END_REF] . Conveniently, the phase behaviour of this system can be fully characterized by two dimensionless parameters, namely

Γ = ε ak B T , κ = aκ D , with a = 4πN 3V - 1 
3 the Wigner Seitz radius. The phase diagram for this system has been explored extensively using theory, simulations, and experiments. In Fig. 1, we show the phase behavior, using the phase boundaries approximated in Refs. 6 and 7. It consists of a fluid phase and two crystal phases: face-centered cubic (FCC) and bodycentered cubic (BCC), with all phase boundaries corresponding to first-order phase transitions. Note that the coexistence regions here are all small and have been simply presented as lines, similar to Refs. 6 and 7. In this paper we will explore the behaviour of point defects associated with the crystals that appear in this 2d phase diagram.

III. METHODS

A. General Simulation Details

We used Monte Carlo simulations in the NV T -ensemble with periodic boundary conditions [START_REF] Frenkel | Understanding molecular simulation: from algorithms to applications[END_REF] , where the particles interact via the point Yukawa potential (Eq. 1). The potential was truncated and shifted such that the shift was never more than 10 -5 k B T . The system size was chosen to always be large enough to accommodate this choice, such that the cutoff range is less than half the box length.

The system sizes were chosen depending on the phase in question. For studying defect concentrations we used systems containing between 250-1500 particles. For select points of the smallest systems we examined whether doubling the system size mattered, and in all cases it had no discernible effect on the defects concentrations. For studying the shape of the defects, we used system ranging from 1000-3500 particles and again ensured that the system size was not affecting the results.

B. Concentration of defects

To determine the vacancy concentration, we make the assumption that the defect concentration is sufficiently low that i) the defects are not interacting, ii) the equation of state of the crystal is unaffected by the presence of defects. In this case, the free energy of a system of N particles in a volume V at temperature T , can be written

β F vac (N,V, T ) = β M f df (N,V, T ) + β (M -N) f vac +N log N M + (M -N) log M -N M , (3) 
where M > N is the number of lattice sites, f df is the free energy per particle of the defect-free crystal, and f vac is the free energy associated with creating a single vacancy at a specific lattice site.

Taking the Legendre transform to turn this Helmholtz free energy into a Gibbs free energy, and minimizing with respect to the number of lattice sites M, we find that the equilibrium concentration of vacancies is given by

n vac ≡ M -N N = exp[-β µ vac ], (4) 
where µ vac is defined as f vac (ρ M , T ) + µ df (P, T ) with µ df (P, T ) the chemical potential of a defect-free crystal and ρ M = M/V the density of lattice sites. Note that P is the pressure.

For a crystal containing interstitials, where M < N, we use a similar approach yielding an equilibrium concentration of interstitials

n int ≡ N -M N = exp[-β µ int ], (5) 
with

µ int = f int (ρ M , T ) -µ df (P, T ). Here f int (ρ M , T )
is the free energy associated with creating an interstitial at a specific lattice site. In order to obtain the concentration of point defects for various points along the phase boundary of the Yukawa crystal, we thus need to measure f vac (ρ M , T ), f int (ρ M , T ) and µ df (P, T ) in a Yukawa crystal. Because it is not possible to measure these free energies directly in a Monte Carlo simulation, we use thermodynamic integration as described below.

To obtain the chemical potential µ df of the defect-free crystals, we first use the Frenkel-Ladd method [START_REF] Frenkel | New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres[END_REF] to obtain the Helmholtz free energy. We then combine this with the pressure, measured via the virial expression [START_REF] Frenkel | Understanding molecular simulation: from algorithms to applications[END_REF] , to determine the chemical potential.

We now turn our attention to the method for finding the free energies f int (ρ , T ) and f vac (ρ M , T ), associated with creating point defects. In the case of a vacancy, we break f vac up into two contributions: f vac = f shrink + f remove , where f shrink is associated with turning one of the particles of a defect-free crystal into a non-interacting particle, and f remove is associated with removing this non-interacting particle. Similarly, in the case of an interstitial we first compute the free energy, f add , associated with inserting a non-interacting particle and then calculate the free energy, f grow , associated with turning this non-interacting particle into a normal-interacting particle. Note that in all cases, the particle associated with a defect is confined to a single Wigner-Seitz cell.

We then calculate the total free energy for the interstitial using f int = f grow + f add . The free energies associated with f add and f remove are given by:

f add = -k B T ln V W S Λ 3 . (6) 
and

f remove = k B T ln V W S Λ 3 , (7) 
where V W S is the volume of the Wigner-Seitz cell and Λ is the thermal DeBroglie wavelength.

To calculate f shrink , we use thermodynamic integration with an auxiliary Hamiltonian

U λ = (1 -λ )U 0 + λU non-int , (8) 
with U 0 the normal interaction potential of our system, and U non-int the potential energy of a system where one particle is non-interacting. Following standard thermodynamic integration, the free-energy difference between a crystal with one non-interacting particle and a defect-free crystal is then given by,

f shrink = F non-int -F df = 1 0 dλ U non-int -U 0 λ , (9) 
with F non-int the Helmholtz free energy of a crystal containing one non-interacting particle. The ensemble average, ... λ is evaluated using the auxiliary potential given in Eq. ( 8). The free energy f grow is determined following the same method. Note that in both cases, we evaluate the integral numerically using 34 different values of λ . However, while in theory this method works fine, in practice the sampling can become very slow. When the system is at λ = 0 we are evaluating the energy difference in Eq. 9 using the potential U λ =0 = U non-int . This means that without any energy penalty, the non-interacting particle can come very close to other particles if those particles are near their Wigner-Seitz cell boundary. Because we compute the potential energy difference with the system where our particle does have interactions, the term U non-int -U 0 λ =0 can become very largein the interstitial case even infinitely large. Due to these large energy differences, the simulation needs a long time to get a reliable answer for the value U non-int -U 0 λ =0 .

To circumvent this problem we alter the potential. Instead of letting it diverge at r = 0 as it normally would do, we assume that the potential increases linearly below a certain defined value r alter . By doing so the potential has a finite value, U max , at r = 0. If we evaluate U non-int -U 0 λ =0 for higher λ 's this altered potential will not have any influence as the particles will never have a distance r with r < r alter due to the energy penalty. However for small λ , we avoid the large energies. Because in the end we integrate over the energy difference (see Equation ( 9)), this alteration to the potential has no influence on the final free energy. We find that the precise values for U max and r alter do not matter, as long as we make sure r alter is sufficiently small that for higher values of λ , r will almost never be smaller than r alter . We checked this by running the same simulation twice for different values of U max and r alter .

IV. RESULTS

We start our investigation by exploring the equilibrium concentration of vacancies and interstitials in both crystals. As a starting point we focus on state points in the vicinity of the fluid-crystal phase boundary -the region on the phase diagram that is expected to have the highest concentration of defects. To predict these concentrations we make the assumption that the defects do not interact, and that their effect on the pressure of the system is negligible. We can then use a combination of Monte Carlo simulations and thermodynamic integration to extract the defect concentrations. The result is shown in Fig. 1b 50 .

Clearly, along the fluid-crystal line, BCC appears to have more defects of both types than FCC. More specifically, for BCC both the vacancy and interstitial concentrations are on the order of 10 -4 , while for FCC the concentrations are closer to 10 -5 . For vacancies, these concentrations are similar to those found for hard spheres at coexistence (10 -4 ) [START_REF] Pronk | Point defects in hard-sphere crystals[END_REF] . However, the interstitial concentration in both cases is orders of magnitude higher than the 10 -8 predicted for interstitials in hard-sphere crystals at the fluid-crystal phase boundary [START_REF] Pronk | Point defects in hard-sphere crystals[END_REF] .

To make a more direct comparison of the behaviour of the two crystals, we then calculated the defect concentrations along the FCC-BCC phase line. From Fig. 1c we observe again that BCC generally has more defects than FCC; while the difference in the interstitial concentration is small, the difference in vacancy concentration varies from two to eight orders of magnitude. Clearly, BCC generally exhibits more equilibrium point defects than FCC.

To explore the large differences we observe between FCC and BCC, we now turn our attention to the structure of the point defects in these two crystals. To determine the structure, we performed NV T MC simulations with a single vacancy or interstitial present. To prevent the defect from hopping during our analysis, we confined all particles to their Wigner-Seitz cells [START_REF] Van Damme | Phase and vacancy behaviour of hard "slanted" cubes[END_REF][START_REF] Van Der Meer | High antisite defect concentrations in hard-sphere colloidal laves phases[END_REF] and then measured the average location of each particle during the simulation.

The results for a vacancy in FCC are shown in Fig. 2 ab, while e-f depict the average deformation associated with a vacancy in a BCC crystal. In both crystals, as expected, the largest deformation is associated with the first shell of neighbours -however, it is approximately twice as large in the case of the BCC crystal (note the different scaling on the color bars). This likely arises due to the lower number of particles in the first shell of BCC, 8 in comparison to the 12 in FCC. In the BCC crystal, the particles are less strongly caged by their neighbors, and hence more free to move into the space opened up by the vacancy. More interesting is the behaviour of the second shell of neighbours. While in FCC all particles again deviate in the direction of the vacancy, in BCC half the particles move towards the vacancy while the other half move away from the defect. The end result is a much larger change in energy of the crystal upon removing the particle: in the system shown in Fig. 2, the average difference is β ∆U FCC = -35.6 and β ∆U BCC = -42.9 in the FCC and BCC crystals, respectively. This difference contributes directly to the difference in free-energy cost for creating a vacancy in the two crystals. In short, the BCC structure is better able to take advantage of the vacancy to reduce its local potential energy, which helps to alleviate the cost of creating a vacancy and hence makes them more prevalent.

The interstitials turn out to be an even more interesting case. In Fig. 2 c-d, and g-h we plot the average displacement of particles from their lattice sites in FCC and BCC crystals, respectively. In comparison to the vacancy case, these defects appear at first rather similar: in both crystals the average deviations due to the interstitial are mainly along the lines pointing along the nearest-neighbour directions, and decay slowly through a number of neighbouring shells. In the FCC crystal this means that particles lying along the six 110 lines are displaced the most, similar to what was found in hard-sphere crystals [START_REF] Van Der Meer | Diffusion and interactions of point defects in hard-sphere crystals[END_REF] . In the BCC crystals it is the particles lying along the four 111 lines.

Interestingly, however, the averaged displacements do not tell the full story. If we examine the instantaneous realization of an interstitial, there is a spontaneous symmetry breaking in the displacement of neighboring particles along different directions, especially in the case of BCC. One clear way of demonstrating this is to quench a system containing an interstitial to high values of Γ, such that the system minimizes its potential energy. As shown in Fig. 4, this quench has a particularly remarkable effect on the BCC crystal. While in the case of FCC (Fig. 4a), the defect takes on a normal dumbbell structure with a 3d displacement field around it, in BCC the defect becomes one-dimensional (Fig. 4b): only particles along one of the four 111 lines are displaced significantly. With this knowledge in mind, we can recalculate the average displacement field for an interstitial by first rotating each configuration so that the defect is always oriented along the same axis. The result is shown in Fig. 4 for the quenched system and in Fig. 3 for the system at finite Γ.

This one-dimensional configuration strongly resembles a so-called crowdion: an exotic 1d defect proposed to exist in some metallic BCC crystals [START_REF] Paneth | The mechanism of self-diffusion in alkali metals[END_REF] . In order to characterize the structure of the defects, we measure the average particle displacements u n = x na 111 n near the interstitials along the defect direction, where x n is the position of particle n along the defect, and a 111 is the crystal lattice spacing along the 111 direction. We choose n = 0 to correspond to the particle just before the defect center and use "standard" boundary conditions: u n=-∞ = a 111 , u n=∞ = 0. We plot this displacement field for a BCC crystal with κ = 3.5 and Γ = 2400 in Fig. 3, along with the displacement field along the three other 111 lines. Clearly, particle positions along the defect direction are strongly affected by the presence of the interstitial, while along the other 111 directions they remain essentially unperturbed -indicating that the defect is one-dimensional.

A classic characteristic of a crowdion is that the defect shape can be well captured by the Frenkel-Kontorova model [START_REF] Kontorova | On the theory of plastic deformation and twinning[END_REF][START_REF] Dudarev | Coherent motion of interstitial defects in a crystalline material[END_REF] . This model described a one dimensional chain of particles that are connected to their neighbours via springs, and embedded in a periodic external potential. Defects are included as missing or extra particles with respect to the number of external periodic wells. In the continuum limit, the average particle positions near a defect follow the soliton so- 
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▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ lution to the sine-Gordon equation, which has a single free parameter that captures the extent of the defect. Hence, to further confirm that the interstitials are realizations of crowdions we compare our results to the soliton solution of the sine-Gordon equation (black dashed line in Fig. 3b), using the extension of the defect as a fit parameter. We observe excellent agreement. Curious as to how the shape of the defect is dependent on where we are on the phase diagram, we performed the same analysis for a range of different state points with different values of κ and Γ. Remarkably, in the area of the phase diagram close to the melting line, we see very little effect of either parameter on the structure of the crowdion. In Fig. 3c, we show the displacement fields along the defect axis for 15 different state points, and obtain essentially the same curve every time. This indicates that in this regime, the extension of the defect is largely independent of both the interaction strength and screening parameter. We note, however, that the crowdions do slowly get longer as Γ is increased far beyond the melting point. This can be observed from the shape of the quenched defects, as shown in Fig. 4d.
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V. CONCLUSIONS

In summary, we have characterized the point defects that appear in crystals of charged colloids, an archetypical colloidal model system. Surprisingly, we found dramatic differ-ences between the two -fairly similar -crystal phases FCC and BCC. As a first observation, the BCC crystals contain dramatically more vacancies, as well as more interstitials, than their FCC counterparts. One logical explanation for this is the relatively small number of nearest-neighbors in the BCC crystals, which makes it easier for particles to partially emerge from their cages and make use of the extra room opened up by a vacancy -or adapt to the encroachment of a nearby interstitial.

BCC not only exhibits significantly more defects, but its interstitials manifest as exotic one-dimensional defects called crowdions [START_REF] Paneth | The mechanism of self-diffusion in alkali metals[END_REF] . The delocalized nature of such defects would be expected to promote fast and strongly anisotropic diffusion of the defects through the crystal [START_REF] Derlet | Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals[END_REF][START_REF] Han | Self-interstitials in V and Mo[END_REF][START_REF] Zepeda-Ruiz | Strongly non-arrhenius self-interstitial diffusion in vanadium[END_REF][START_REF] Dudarev | Coherent motion of interstitial defects in a crystalline material[END_REF] . In combination with the relatively large concentration of interstitials in BCC near melting, these defects are expected to strongly impact the transport properties of the crystal, including self-diffusion and the diffusion of dopants [START_REF] Tauber | Anomalous dynamics of interstitial dopants in soft crystals[END_REF] .

The observation of a crowdion defect in an easy-to-realize and highly tunable colloidal system is not only important for our understanding of this system itself, but also for understanding the nature of crowdions. In atomic systems, crowdions are both rare and hard to observe directly (almost all studies are based on simulations and theory [START_REF] Derlet | Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals[END_REF][START_REF] Nguyen-Manh | Self-interstitial atom defects in bcc transition metals: Group-specific trends[END_REF][START_REF] Osetsky | Onedimensional atomic transport by clusters of self-interstitial atoms in iron and copper[END_REF][START_REF] Han | Self-interstitials in V and Mo[END_REF][START_REF] Zepeda-Ruiz | Strongly non-arrhenius self-interstitial diffusion in vanadium[END_REF][START_REF] Dudarev | Coherent motion of interstitial defects in a crystalline material[END_REF] ). In contrast, charged colloids can be studied in real space and real time using e.g. confocal microscopy, and hence are an ideal experimental playground for studying these defects. Surprisingly, despite decades of intense study, it appears that this fundamental colloidal model system has not yet given up all of its secrets.
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 1 FIG. 1. a) Phase diagram of Yukawa systems in the (κ, Γ) plane, with the phase boundaries from Refs. 6 and 7. Vacancy and interstitial concentrations plotted along b) fluid-crystal phase boundaryand c) BCC-FCC phase boundary. We estimate an error of up to 0.2k B T in our calculation of the µ vac(int) , leading to an approximate error of a factor of 1.2 in the concentrations.
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 2 FIG. 2. Average lattice deformation due to a point defect in a-d) the FCC crystal at κ = 3.5 and Γ = 2565 and e-h) the BCC crystal at κ = 3.5 and Γ = 2400. a-b,e-f) Deformation due to a vacancy (indicated by red or a dotted sphere) and c-d,g-h) deformation due to an interstitial (indicated by a black sphere). Left: 3d representation of part of the simulation box. The gray points represent the lattice sites. Right: projection of the displacement vectors on two (100) planes on top of each other. The black points represent the lattice sites that lie in the plane of the defect and the gray points the lattice sites in the neighboring plane. In all figures the size of the arrows is exaggerated, but the color of the arrows indicates the deformation in terms of the Wigner Seitz radius a.
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FIG. 3

 3 FIG. 3. a) Lattice deformation due to an interstitial in the BCC crystal at κ = 3.5 and Γ = 2400. The gray points represent the lattice sites of part of the simulation box and the black spheres represent the positions of the interstitial and its companion. The size of the arrows is exaggerated, but the color of the arrows indicates the deformation in terms of the Wigner Seitz radius a. Note that these deformations are averaged over multiple configurations which have been rotated so that the defect always points along the same direction. b) Displacement u n along the four 111 directions for the same system as a). The blue dots indicate u n along the direction of the crowdion and the dashed line represents the corresponding fitted soliton solution. c) u n along the direction of the crowdion for κ = 2.0 and Γ = 1000, 1100, 1205 (blue dots), κ = 2.5 and Γ = 1000, 1100, 1205 (yellow squares), κ = 3.0 and Γ = 1205, 1400, 1600 (green diamonds), κ = 3.5 and Γ = 2200, 2300, 2400 (orange triangles), κ = 4.0 and Γ = 4000, 4100, 4200 (purple triangles). The lines represent the corresponding fitted soliton solutions.

FIG. 4 .

 4 FIG. 4. Quenched lattice deformation due to an interstitial in a) the FCC crystal and b) the BCC crystal, both at κ = 3.5. The gray points represent the lattice sites of part of the simulation box and the black spheres represent the actual positions of the interstitial and its companion. The size of the arrows is exaggerated, but the color of the arrows indicates the deformation in terms of the Wigner-Seitz radius a. c) Displacement u n along the four 111 directions for the same system as b). The blue dots indicate u n along the direction of the crowdion and the dashed line represents the corresponding fitted soliton solution. d) u n along the direction of the crowdion for five different κ. The lines represent the corresponding fitted soliton solutions.
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