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Monodisperse patchy particle glass former
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1)Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay,
France.
2)Department of Physics, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome,
Italy

Glass-formers are characterized by their ability to avoid crystallization. As monodisperse systems tend to rapidly crys-
tallize, the most common glass formers in simulations are systems composed of mixtures of particles with different
sizes. Here, we make use of the ability of patchy particles to change their local structure to propose them as monodis-
perse glass formers. We explore monodisperse systems with two patch geometries: a 12-patch geometry that enhances
the formation of icosahedral clusters and an 8-patch geometry that does not appear to strongly favor any particular
local structure. We show that both geometries avoid crystallization and present glassy features at low temperatures.
However, the 8-patch geometry better preserves the structure of a simple liquid at a wide range of temperatures and
packing fractions, making it a good candidate for a monodisperse glass former.

I. INTRODUCTION

When a fluid is subjected to extreme conditions of low tem-
peratures or high densities, but manages to avoid crystalliza-
tion, its dynamics become glassy. In this glassy regime, the
system is structurally similar to a liquid, in that it lacks long-
range order, but relaxation of the system occurs over much
longer time scales, due to the increasing difficulty of perform-
ing local rearrangements. For purely repulsive particles, for
example, we can picture this difficulty as coming from parti-
cles being strongly confined to their positions by the cage of
neighbors formed around them.

To reach the glassy regime, a glass former needs to re-
main disordered, which is usually unfavorable compared to
crystallization at sufficiently low temperatures. A good glass-
former, then, is a system that can be deeply cooled down, to
the point where dynamics become extremely slow, while reli-
ably avoiding crystal formation. Different methods have been
proposed to enhance the ability of a system to avoid crystal-
lization. For example, in Ref. 1, three routes for the design
of an optimal glass former system were proposed: a kinetic, a
thermodynamic and a topological route. The kinetic one aims
at slowing down the crystal nucleation rate: even if a fluid is
metastable with respect to the crystal (and hence supercooled),
when the typical nucleation time is much longer than the time
scale of the experiment or simulation, crystallization is effec-
tively avoided. The thermodynamic route suggests to act on
thermodynamically stability field of the crystal, by shifting it
to more extreme conditions of temperature and density. This
can be done, for example, by tuning the composition of a bi-
nary mixture to create a eutectic mixture, with a freezing tem-
perature that is lower than any other composition 2,3. Simi-
larly, for network glasses valence can be used to destabilize
the crystal phase4. Following this route, an ideal glass former
would have a melting point located below its glass transition
temperature5. Finally, the topological mechanism relies on
reinforcing local structures that are incompatible with crystal
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lattices and can not be replicated in 3-dimensions leading to
geometrical frustration6,7. This is done by modifying the in-
teraction between the components of the system or by chang-
ing the shape of the particles1,6. In practice, this last route
will overlap with the other two, as changing interactions to
favor different local structures will invariable also impact the
thermodynamics and kinetics of the system. However, it does
represent a very promising route to design a good glass for-
mer, that we will draw on in this work.

Most simulation studies of supercooled liquids rely on the
use of mixtures of particles of different sizes in order to avoid
crystallization8–10.

However, while multicomponent or polydisperse systems
have been the most common subjects of simulation studies
in glass physics, it is clear that a monodisperse model would
represent a more ideal testing ground. For example, detailed
mode-coupling theory (MCT) predictions have been devel-
oped for monodisperse cases11, but the window in which it
was possible to test this prediction in a real monoatomic case
is strongly limited12. Clearly, MCT predictions have been
generalized to mixtures13, but non-trivial mixing effects can
alter the dynamics14. In general, binary (and multicomponent)
systems display thermodynamic fluctuations in both density
and concentration and this can have important consequences
for the dynamics. For instance, as the different species typi-
cally have different diffusion constants, we can expect differ-
ent dynamical behaviour for each component. Recently, it has
also been shown that the interplay between mass diffusion and
concentration diffusion could result in effects that are specific
to mixtures and are not observed in monodisperse glass form-
ers15. Although these effects may be weaker in systems with
a continuous size distribution, polydisperse systems can lead
to crystallization effects facilitated by size segregation. This
may also affect the dynamics of the system in ways that are
still to be completely grasped16.

Metallic glasses are generally obtained in multicomponent
melts and it was only recently that monodisperse glasses have
been experimentally obtained17,18. In fact, the observation of
a monoatomic metallic glass was realized in part thanks to
a model introduced to suppress crystallization19. Since the
seminal work of Pusey and Van Megen, colloidal hard spheres
have become one of the gold standards in testing glass theo-
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ries20–22. However, monodisperse hard spheres undergo crys-
tallization well before their dynamics become glassy. It is
now well established that a polydispersity of around 10% is
needed to avoid crystallization23. For practical reasons, this
is the route that is typically followed in experiments while in
computer simulations binary mixtures of hard spheres with
different radii are more commonly used.

If we want to avoid the use of multicomponent mixtures,
the topological route to avoid crystallization suggests tun-
ing the interactions such that the locally favored structures
are incommensurate with crystallization. Indeed, it has been
found that carefully designed interactions in monodisperse
systems can suppress crystallization in the fluid6,19,24. This
can be achieved by adding many-body interactions to the po-
tential17,19,24 or with oscillatory interactions25–31. In particu-
lar, these potentials are designed to promote local structures
that are typically icosahedral25–27 or tetrahedral 17,19,29: mo-
tifs that cannot be used to tile an infinite three dimensional
space. However, both many-body interactions and oscillatory
interaction potentials are difficult to tune in experimental se-
tups of for example colloidal particles. Here, we draw inspira-
tion from recent advances in colloid synthesis32–34 and focus
on systems of patchy particles: spherical particles with a lim-
ited number of attractive spots on the surface.

The idea of using patchy particles as a monodisperse glass
former is based on the observation that patchy particles have
proven to be a great tool for exploring and controlling the in-
terplay between local structure and dynamics of supercooled
liquids35,36 and gels37. We will show that the directionality
embedded in the interaction potential is capable of drastically
modifying the local structure of the fluid, which aids in avoid-
ing crystallization. In particular, it has been shown previously
that in binary mixtures of patchy particles with an icosahe-
dral geometry, the number of icosahedral local structures in
the system is boosted with a consequent slowdown of dynam-
ics35. This geometry, however, might result in a local order
that is not representative of a typical liquid structure. There-
fore, we have also investigated the 8-patch case, a geometry
that still aids in avoiding crystallization, but does not impact
the fluid structure to the same degree. We propose that this 8-
patch model is therefore a good candidate for a monodisperse
glass former.

The paper is organized as follows. In section II we de-
scribe the model we use to simulate patchy particles and the
details of the simulations. In section III we compare the crys-
tallization behaviour of our patchy-particle systems with that
of a monodisperse square-well system, and show that both ge-
ometries are capable of avoiding crystallization at low tem-
peratures. Since the 8-patch geometry better conserves the
structure of a simple liquid, from there we move to a detailed
characterization of the structural and the dynamical behaviour
of the 8-patch case at different temperatures and packing frac-
tions. We finish the results section by discussing the nature of
the relaxation behaviour of this particular geometry. Finally,
in Section IV we conclude and summarize the main results of
the paper.

II. METHODS

A. Model

To simulate patchy particles we use the Kern-Frenkel
model38. This model consists of hard-sphere particles deco-
rated with n attractive patches on their surface. Two particles
interact attractively, with a fixed bonding energy ε , when the
vector that joins their centers passes through a patch in each
particle. Hence, the interaction potential is given by:

Ui j =UHS +∑
α

∑
γ

USW f
(
ri j, n̂α , n̂γ ,

)
, (1)

where the sums are taken over all patches α and γ of the two
particles. Additionally, UHS is the hard-sphere potential:

UHS
i j =

{
∞, ri j ≤ σ

0, ri j > σ ,
(2)

and USW corresponds to a square-well potential:

USW
i j =

{
−ε, ri j ≤ rc,

0, ri j > rc
(3)

where σ is the particle diameter, ri j the distance between two
particles i and j, rc the interaction range and ε the strength of
the attraction. Finally, f

(
ri j, n̂α , n̂β ,

)
takes a value of 1 when

two patches are face to face and 0 otherwise, where n̂α(γ) de-
notes the direction of a patch α(γ) in each particle. Specifi-
cally, two patches are considered to be facing each other when
for both patches the angle between n̂ and the vector connect-
ing the centres of two particles is smaller than the patch open-
ing angle θ . Finally, we define the fraction of the surface cov-
ered by the patches as χ . As long as patches do not overlap,
χ =n(1− cosθ)/2, with n the number of patches.

We model two cases: particles with n=8 and 12 patches.
We choose the location of the patches on the surface of the
particle such that the distance between them is maximized.
This corresponds to the vertices of a square antiprism39 for
the former case and an icosahedron for the latter. Following
Ref. 7,we fix the surface coverage χ = 40% and cutoff ra-
dius rc = 1.031σ for both systems.The short interaction range
is chosen partially to allow for easy comparison with earlier
work on binary mixtures7,40,41, and partially to be compatible
with the typical short-range interactions found in experimen-
tal realizations of patchy colloids42–44.

B. Simulation

We use event-driven molecular dynamics (EDMD) simula-
tions4 to explore monodisperse systems of patchy particles.
Each system consists of N = 700 particles and we initially fix
the packing fraction η = π

6 ρσ3 = 0.56. Additionally we ex-
plore the behavior of the 8-patch case at higher packing frac-
tions η =0.57 and 0.58. Finally, as a reference point we sim-
ulate a monodisperse system of purely square-well particles



3

with the same attractive range as the patchy particle systems,
at the same state points.

We present our results in reduced units, where the σ is the
unit of length, ε is the unit of energy and the particle mass m
is the unit of mass. Moreover, we set kB = 1. With this choice
of units, the unit of time is τ = σ

√
m/ε . We start each simu-

lation from an initial configuration that was generated from an
EDMD simulation of N hard spheres where the particles start
off much smaller than their final size, but rapidly grow with
time until a disordered configuration at the desired packing
fraction is reached. Subsequently, we equilibrate the systems
at fixed temperature for at least t = 104, and finally perform
our measurements over simulations of at least t = 105.

In addition to EDMD simulations, we also make use of
Floppy Box Monte Carlo (FBMC) simulations to check for
the possibility of fully-bonded crystal structures in the 8-patch
model45. This method has proven effective at finding optimal
packings and ground states for a variety of model systems, in-
cluding patchy particles46,47. Specifically, we simulate a sin-
gle unit cell containing up to 12 particles in a periodic box
whose shape is allowed to vary during the simulation. By
slowly reducing the temperature the system is annealed into a
highly bonded state. We perform this simulation 20 times for
system sizes N ∈ 1 . . .12 and a range of choices for the ratio
between pressure at temperature (P/T ). The resulting library
of annealed snapshots provides a set of candidate structures
for the ground state of our model.

Finally, to calculate the gas-liquid critical point and the gas-
liquid coexistence we use successive umbrella sampling48,
previously applied to study the phase coexistence of numer-
ous patchy particle models49,50 as well as particles interact-
ing with strong directional interactions51,52. Specifically, the
box size was fixed to 9σ along all three dimensions, and the
density fluctuations were calculated splicing together 700 in-
dependent grand-canonical simulations, in which the number
of particles was constrained to fluctuate between N and N+1,
with N = 0 . . .699.

C. Analysis

We characterize the global structure of each system via the
static structure factor:

S(q) =
1
N
〈ρ(−q, t)ρ(q, t)〉 , (4)

where ρ(q, t) is the Fourier component of the microscopic
density at time t for a given wave vector q. The average is
performed over snapshots taken at different times in the same
simulation.

To detect crystallization in our system, we also calculate the
structure factor S(q) in the xy-plane. This projection, equiv-
alent to the measured pattern in a small angle scattering ex-
periment, gives a clear blueprint of the structure. For a homo-
geneous liquid, we find an arrangement of rings correspond-
ing to the isotropic and homogeneous structure of the sample,
while a crystallized system shows well-defined peaks reflect-
ing the anisotropy of the structure. In addition to the structure

factor, an extra indicator of the phase are the bond orienta-
tional order parameters53,54. These order parameters charac-
terize the environment of each particle, based on its nearest
neighbors. As we are primarily concerned with crystallization
into close-packed lattices, we focus here on the six-fold order
parameter Q6. This quantity is defined as:

Q6(i) =

√√√√4π

13

6

∑
m=−6

∣∣Q̄6m(i)
∣∣2, (5)

where

Q̄6m(i) =
1

Nb

Nb

∑
j=1

Y6m (θ(ri j),φ(ri j)) , (6)

where the sum is taken over all Nb the neighbors of particle
i. Y6m are the spherical harmonics of order 6, and θ(ri j) and
φ(ri j) are the polar and azimuthal angle associated with the
vector ri j connecting particles i and j53,54. The global aver-
age Q6 of this bond order parameter, taken over all particles
in the system, then gives an indication of the crystalline order
in the system. For a perfect face-centered cubic (FCC) lat-
tice, Q6 = 0.57452 and for a perfect hexagonal close-packed
(HCP) lattice Q6 = 0.48476, while typical values in the fluid
phase are much lower53,54. Crystallization of the system is
accompanied by a discontinuous jump in Q6 across the transi-
tion.

In order to characterize the local environment of parti-
cles, we also use the Topological Cluster Classification al-
gorithm55. This algorithm defines a set of nearest neighbors
for each particle based on a modified Voronoi construction
and subsequently uses these nearest-neighbor bonds to iden-
tify predefined local clusters, ranging from simple clusters of
3 particles to more complex clusters of up to 13 particles. In
this paper we focus in particular on icosahedral and defective
icosahedral clusters that have proven to play an important role
in supercooled liquids7,56–58.

We explore the glassy dynamics of our systems by cal-
culating the mean-square displacement (MSD) as 〈r2〉 =
1
N

〈
∑

N
i=1 [ri(t)− ri(0)]

2
〉

, where the average is performed on
equilibrium trajectories. Additionally, to quantify the struc-
tural relaxation time of our systems, we calculate the time-
dependent intermediate scattering function (ISF):

F(q, t) =
〈ρ(−q, t)ρ(q,0)〉
〈ρ(−q,0)ρ(q,0)〉 . (7)

We extract a relaxation time from the long time decay of
F(q, t) by fitting it with a sum of two stretched exponential
functions:

f (t) = (1− fq) exp
[
−
(

t
τa

)γa]
+ fq exp

[
−
(

t
τb

)γb
]
, (8)

where fq, γa(b) and τa(b) are fitting parameters. This procedure
is also used to identify the non-ergodicity parameter fq. We
define the relaxation time τ0.3 as the time where F(q, t) has
decayed to 0.3 fq.
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FIG. 1. Q6 as a function of temperature for a monodisperse of square
well at packing fraction η = 0.56. Yellow regions correspond to a
fluid phase and green regions to a crystallized phase. The dashed
line is the Q6 value of a perfect FCC lattice. Below each region we
illustrate the phase with a corresponding snapshot. Note that at the
lowest temperature we see signs of phase separation.

III. RESULTS

A. Square Well

As a starting point, we explore the behavior of a monodis-
perse short-range square-well (SW) system with a fixed pack-
ing fraction η = 0.56. As discussed below, the SW model has
been studied in great detail in the literature and the purpose of
this section is solely to have a benchmark case for the original
results that we will discuss in the rest of the paper. This will
allow us to compare our patchy-particle models directly to a
similar monodisperse system with isotropic interactions.

Square-well models with short interaction ranges have been
studied extensively in the past as they represent a good model
for colloidal systems. They have a phase diagram that differs
from the typical van der Waals picture, showing a metastable
liquid-liquid phase separation59 and an isostructural solid-
solid transition60. From the dynamical point of view, they are
known to show reentrant behavior in both their dynamics and
crystallization as a function of temperature41,60–65. In partic-
ular, a number of studies have demonstrated reentrant dynam-
ical behavior resulting from a crossover between an attractive
and a repulsive glass. Although both of these glass states are
arrested, the mechanism driving the arrest is different. At high
temperatures the arrest is mainly due to the high packing frac-
tion of the system, while at low temperatures attractions dom-
inate. In between these regimes, the attractive interactions are
not yet strong enough to drive arrest, but do help to reduce
the pressure, recovering some freedom of movement for the
particles and hence speeding up dynamics.

A similar mechanism affects crystallization. Upon lower-
ing the temperature, the crystal transform from being rela-
tively loosely packed, with few bonds, to a tightly bound crys-
tal where particles are within bonding range of their neigh-
bors. At intermediate temperatures, the crystal phase is less
favored, opening up a window where crystallization is more
difficult60. To see how this affects spontaneous crystallization,
we plot in Fig. 1 the behavior of the bond order parameter Q6
as a function of temperature for the square-well system. At
high temperatures, the system readily crystallizes into an FCC

crystal, as indicated by the high values of Q6. Note that the
spontaneous crystallization typically results in the presence of
grain boundaries and other defects, which tend to decrease Q6.
At lower temperatures (yellow region in Fig. 1), crystalliza-
tion is avoided, resulting in a glassy disordered state. At even
lower temperatures, we again observe crystallization, favored
by the strong attractions. In this regime, the resulting crys-
tal phase is packed more densely than the original system to
accommodate strong bonding between the particles, resulting
in a coexistence with a lower-density fluid or gas66. This is
seen most clearly at the lowest temperature investigated, and
illustrated in the snapshot in Fig. 1.

It is important to note here that we rely on spontaneous
crystallization here to determine the phase behavior. Hence,
even in the regime where the system remains fluid, it is likely
that the thermodynamically stable phase is crystalline, but that
its formation is prevented on the time scales accessible to our
simulations. However, for the purposes of designing a good
glass former, the observation that the system does not crystal-
lize on the longest possible simulation run-time is sufficient:
many traditional glass forming models have been shown to
have a stable crystal phase in the temperature regime of inter-
est (see e.g. Refs. 16, 67–69).

In Fig. 2 a) we show the structure factor of the SW sys-
tem for the low temperature crystal and for a liquid at inter-
mediate temperature. The structure factor of the SW liquid
displays the standard features of a simple liquid and, there-
fore, it will be our reference point of a ‘normal’ liquid. As
one might expect, the crystal phase presents strong peaks at
specific wavelengths due to the translational order in the crys-
tal. Note that the high degree of noise in the S(q) is related
to the defects and dislocations in the (spontaneously formed)
crystal. In Fig. 2 b) and c) we show the structure factor in the
xy-plane for the crystal and the liquid respectively. Indeed,
the anisotropic ordering of the crystal phase is clearly visible
in Fig. 2b whereas the liquid presents the usual ring pattern of
a liquid (Fig. 2c)).

B. Patchy particle systems

We now turn our attention to the patchy models. First, we
analyze the phase behavior of the monodisperse system with
n = 12 patches by calculating the S(q) for all investigated
temperatures. As one might expect, at high temperatures,
where the patches have little effect, the system still crystal-
lizes into an FCC structure. However, upon cooling below
T ≤ 0.6, the directional attractions imposed by the patches
allow the system to remain as a fluid for all remaining tem-
peratures that were investigated. This phase behavior is re-
flected in the calculation of Q6 shown in Fig. 3 a). At low
temperatures Q6 is close to 0, while at higher temperatures
the corresponding values of Q6 are significantly higher, indi-
cating crystallization. Clearly, the directional interactions ef-
fectively aid in suppressing crystallization. We attribute this to
the changes in local structure caused by the anisotropic inter-
actions, which interfere with the crystallization mechanism.
However, this does raise the question: does this mechanism
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FIG. 2. a) Structure factor of the square well system with potential
range of rc =1.03σ of a crystallized system at T =0.5 and a liquid
system at T =0.6. b) Projection of the structure factor of the same
crystallized system in the plane xy. c) Projection for the correspond-
ing liquid state.
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FIG. 3. Q6 as a function of temperature for the two patchy cases
a) n= 12 patches and b) n= 8 patches at a packing fraction corre-
sponding to η = 0.56. Yellow regions correspond to a fluid phase
and green regions to a crystallized phase, dashed line is the Q6 value
of a perfect FCC lattice.

enforce an “atypical” liquid structure? To answer this ques-
tion, in Fig. 4 we show the structure factor of each of the
temperatures where the system is in the fluid phase. In com-
parison to the isotropic case, the structure factor develops a
split second peak upon cooling, a feature previously linked to
icosahedral order25. This indeed indicate that the fluid struc-
ture undergoes strong changes due to the directionality im-
posed by the attractions and in particular it can be related to
the formation of icosahedral clusters, as will be shown later
on. These changes in the structure are strong enough to dis-
rupt the formation of crystalline order.

To also explore a model which does not strongly enforce
icosahedral order, we also particles with n = 8 patches. Sim-
ilarly to the previous case, the 8-patch particles also avoid
crystallization in the low-temperature regime, although this
regime is reached only for temperatures T . 0.4 as shown in
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FIG. 4. Structure factor of the 12-patch system corresponding to
temperatures where the system has not crystallized. The inset shows
the projection of the structure factor in the xy-plane at T = 0.3.
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FIG. 5. a) Structure factor of 8-patch fluids. The inset shows the
two-dimensional structure factor in the xy-plane at T = 0.3. b) Com-
parison between S(q) of the 8-patch system and a SW liquid.

Fig. 3 b). However, the local structure of the 8-patch particles
is much less strongly affected by the directional interactions
than in the 12-patch case. We show in Fig. 5 a) the structure
factor at the temperatures where the system is in a fluid phase.
Note that in this case we reach lower temperatures: as we will
show later, the dynamics of the 8-patch system are faster than
the 12-patch system at equal temperatures. The 8-patch struc-
ture factor shows little change as a function of temperature,
suggesting that the structure remains close to that of a ‘typi-
cal’ liquid. In particular, we do not observe a split of the sec-
ond peak, and even at low temperatures, the structure factor
remains highly similar to that of the square-well fluid (taken
at the lowest temperature that avoids crystallization, see Fig. 5
b).

To explore the structural features of these different mod-
els (8-patch, 12-patch, and SW) in more detail, we charac-
terize their local structure.7. We use the Topological Cluster
Classification (TCC)55 algorithm to detect the prevalence of
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different local clusters of particles in the fluid. In particular,
we focus our attention on icosahedral and defective icosahe-
dral clusters, which have both been linked to slow dynamics
in glass formers7,56–58. In Fig. 6 a) and b) we show the frac-
tion of particles involved in icosahedral and defective icosa-
hedral clusters respectively as a function of temperature for
the three studied cases. As expected, at low temperature, we
find a sharp increase of the number of icosahedral clusters
and defective icosahedral in the n = 12 case. Indeed, in the
12-patch fluid at low temperatures, almost all particles are
involved in at least one defective icosahedral cluster, which
is likely linked to the strong changes in the structure factor.
This is significantly higher than is typically observed in com-
mon glass forming models7,70. More importantly, as shown in
the Supplemental Information (SI), the high concentration of
icosahedral and other polytetrahedral local clusters strongly
differentiates the 12-patch fluid from the metastable fluids of
both the monodisperse SW model and simple hard spheres. In
contrast, the 8-patch and the SW case show little icosahedral
order, and this order tends to decrease with decreasing tem-
perature. This demonstrates that, while both the 8-patch and
12-patch geometries are able to avoid crystallization at suffi-
ciently low temperatures, the two patch geometries have dra-
matically different effects on the local structure. Remarkably,
none of the clusters captured by TCC become more preva-
lent when going to lower temperatures in the 8-patch case (see
SI). By its nature, TCC only detects a limited number of lo-
cal configurations (based on low-energy packings associated
with several different model systems). Hence, any local struc-
tures that emerge in the 8-patch system are not ones that are
detected by TCC. Nonetheless, the absence of strong changes
in the structure factor suggests that the changes in the local
structure made by the n = 8 geometry are subtle in compar-
ison to the n = 12 case, such that the overall liquid structure
remains largely unchanged by going to lower temperatures.
While there is no “ideal” structure for a glass former, the fact
that the 8-patch system does not drastically disrupt the liq-
uid structure, as the 12-patch system does, makes it a more
attractive candidate as a monodisperse simple glass former.
For this reason, the rest of this paper will be focused on a de-
tailed characterization of the 8-patch model at different pack-
ing fractions.

C. Detailed characterisation of the 8-patch system

We now explore the thermodynamic and dynamic behavior
of the 8-patch system in more detail. We start this investiga-
tion by measuring the temperature dependence of the energy
and pressure for three different packing fractions (η = 0.56,
0.57 and 0.58). The results are shown in Fig. 7. Note that at
higher packing fractions, the system crystallizes for tempera-
tures above T = 0.3. In the fluid phase, as shown in Fig. 7 a),
the potential energy U of the system is not strongly dependent
on the packing fraction. Note that the quantity U/N is exactly
−1/2 times the average number of bonds formed by a parti-
cle in the system. For all investigated packing fractions, the
number of bonds increases monotonically as the temperature

FIG. 6. a) Fraction of particles in an icosahedral cluster as a func-
tion of temperature for the temperatures where the system is a fluid.
b) Fraction of particles in a defective icosahedral cluster. The in-
set shows an illustration of the icosahedral and defective icosahedral
cluster respectively.

is reduced. At the lowest temperature, most particles are in-
volved in at least 6 bonds (U/N < −3), and around 20% of
the particles are fully bonded, i.e, all eight of their patches are
bonded to a neighbor. Although the potential energy of the
system is still decreasing at the lowest investigated tempera-
ture for all packing fractions, some saturation of the number
of bonds is visible, especially for η = 0.58. As such, it is not
clear whether the bonding geometry of these particles permits
the formation of a fully bonded disordered fluid state in the
low-temperature limit4. In contrast, this system can in prin-
ciple form at least one fully bonded crystal phase. In partic-
ular, using FBMC simulations45, we found fully bonded unit
cells for crystal phases for packing fractions above η = 0.649.
The densest version of this phase corresponds to a face cen-
tered cubic (FCC) crystal, as shown in the inset of Fig. 7 a),
which deforms into a body-centered tetragonal (BCT) struc-
ture at lower pressures. To examine the stability of this crystal
structure at low temperatures, we performed simulations in
which this crystal phase coexisted directly with a low-density
fluid, and estimated the coexistence density of both phases.
Below a temperature of approximately T ' 0.28, we indeed
find a broad coexistence region, indicating that in the glassy
regime, the fluid is indeed metastable with respect to crys-
tallization. At higher temperatures, the coexistence region is
expected to become more narrow, and other crystal phases (in-
cluding plastic crystals) will take over. Since the details of the
crystal phase are not relevant for the glassy behavior, we do
not perform an exhaustive search here. In any case, from our
simulations it is clear that in the low-temperature regime, crys-
tallization is kinetically avoided due to the strong dynamical
slowdown induced by the patchy interactions.

In Fig. 7 b), we plot the pressure P for the same systems.
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FIG. 7. a) Average energy per particle as a function of tempera-
ture of the n = 8 patches. Inset shows a fully bonded face-centered
cubic crystal structure at close packing. Each particle is bonded to
eight neighbors. b) Dimensionless pressure, note that at tempera-
tures lower than the ones studied here (T ≈ 0.18 or lower) the system
might present phase separation.

As expected, the pressure decreases with decreasing tempera-
ture. A linear extrapolation to lower T (below the investigated
range) would suggest that the pressure comes close to vanish-
ing for T ≈ 0.18, at least for the two lower packing fractions.
This suggests that these isochores hit the gas-liquid binodal
close to this temperature. Thus for T < 0.18, at these two
packing fractions, we expect the system to attempt to phase
separate into coexisting gas and liquid phases. However, the
extremely slow dynamics at these state points will likely lead
to gelation. For the higher packing fraction η = 0.58, both
the pressure and the energy level off near T = 0.20 and hence
this scenario may be avoided. Note that such a transition has
also been noted for glassy binary mixtures of square-well par-
ticles71,72 as well as for polydisperse systems66. The critical
temperature associated with this binodal is strongly dependent
on the range of the attraction73.

To locate the gas-liquid curve for our model, we use Suc-
cessive Umbrella Sampling (SUS) simulations48. In Fig. 8,
we show the gas-liquid coexistence and the estimated critical
point corresponding to Tc = 0.1996 and ηc = 0.26. Addition-
ally, we draw in the same plot the estimated gas-crystal co-
existences in the low-temperature regime, which we estimate
from direct coexistence simulations starting from a seed of
the fully bonded crystal from Fig. 7 placed in contact with
a vacuum. Under these conditions, particles evaporate from
the crystal surface until the chemical potential of the parti-
cles in the gas phase equals the one in the crystal phase. We
find that both the gas-liquid binodal and the glassy regime
occur in the part of the phase diagram that is metastable
with respect to gas-crystal phase separation. Indeed, short-
ranged attractive interactions tend to make the gas-liquid criti-

0.50
0.75
1.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

η

0.20

0.22

0.24

0.26

T

FIG. 8. Phase diagram of the 8-patch system. The gas-liquid region,
obtained from Successive Umbrella Sampling simulations, is colored
in orange. The coexisting densities are marked by black filled cir-
cles and the location of the critical point by a red filled square. The
low-temperature gas-crystal coexistence, estimated from direct coex-
istence simulations, is denoted with green circles. Green stars corre-
spond to simulations where the system crystallizes and orange ones
to simulations in the fluid phase.

cal point metastable with respect to crystallization, as has been
previously demonstrated for both SW74 and patchy model
systems75. Note that we here assume that the relevant crystal
structure is the fully bonded one found in Floppy Box Monte
Carlo simulations. While this assumption is reasonable in the
limit of low temperatures, other crystal structures may appear
at higher temperatures, resulting in shifts in the coexistence
lines. However, any more stable crystal structure will only
enlarge the gas-crystal coexistence region. The presence of
other relevant crystal (or plastic crystal) phases becomes more
likely with increasing temperature. As these structures are not
relevant to the glassy behavior as long as the system remains
fluid, we do not further explore crystallization here.

Despite the presence of a stable crystal phase, in the time
window examined here our systems behave as a metastable
fluid. Indeed many monodisperse and binary glass models
have been shown to be metastable with respect to a crys-
talline or quasicrystalline phase16,68,69. However, within their
metastable liquid phase these systems still behave as good
glass former.

In the phase diagram, we immediately notice a large portion
of the parameter space with T ≤ Tc and η > ηc where a glassy
(meta)stable liquid can be produced. The advantage of the di-
rectional patchy interaction aids in enlarging this region for
two reasons: both by suppressing crystallization and by mov-
ing the location of the critical point to lower packing fractions
and temperatures in comparison to isotropic interactions76.

Having obtained a clear idea of the location of the
(meta)stable liquid region for the 8-patch case, we turn our
attention to its dynamical behavior. To do so, we calculate the
intermediate scattering function (ISF) and the mean-squared
displacement (MSD). In Fig. 9 a) we show the MSD for a fixed
packing fraction η = 0.56 and for some of the temperatures
where the system is a fluid. As expected, at short times, the
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FIG. 9. a) Mean-squared displacement of the 8-patch fluid at a fixed
packing fraction η = 0.56. b) Corresponding Intermediate Scattering
Function. The inset shows a close-up of the region where the first
decay in the ISF happens.

particles undergo ballistic motion. At intermediate times, the
particles are caged and we observe the typical two-step relax-
ation of glassy fluids. Decreasing the temperature, however,
we observe that the localization length decreases, as indicated
by the reduced height of the plateau. This a clear indication
that the particles are strongly localized by the bonds with their
neighbours41. Finally, at long time scales, the dynamics be-
come diffusive. Note that the dynamics for the case T = 0.2
are extremely slow, and the system did not fully relax on the
time scale of our simulation. In Fig. 9 b) we plot the ISF.
Even at this relatively low packing fraction, the system dis-
plays glassy behavior at all temperatures where the system is
fluid, as evidenced by the two-step relaxation of the ISF. Note,
however, that at low temperatures the plateau in the ISF is very
close to 1, again pointing at the strong localization of the par-
ticles at short time scales. As expected for a glass former,
we see a dramatic increase in the structural relaxation time as
the temperature is decreased. The behavior at higher packing
fractions is qualitatively the same as the one at η =0.56 but
shifted to longer time scales as the system goes deeper into
the glassy regime.

In order to investigate the importance of collective rear-
rangements in the monodisperse glass we calculate the self
ISF and we compare it with the total ISF. From both inter-
mediate scattering functions we extract the relaxation times
τ0.3 and τS

0.3 respectively. With the last one corresponding to
the relaxation time extracted from the self ISF. In Fig. 10 we
show both relaxation times for all the packing fractions and
temperatures of the 8-patch case. The two relaxation times are
consistently on the same order, suggesting that single-particle
diffusion is the main driving force behind structural relaxation

0.20 0.25 0.30 0.35 0.40 0.45

T

102

104

t

τ0.3

τS0.3

η=0.56
η=0.57
η=0.58

FIG. 10. Relaxation times of the n=8 case for all the investigated
packing fractions. Dashed lines and empty symbols correspond to
the ones extracted from the self intermediate scattering function and
continuous lines to the collective one. Both set of data refer to qσ =
7.1.

on the nearest neighbor length scale.
Consistent with the increasing relaxation times, the diffu-

sion becomes slower as the packing fraction increases. In
Fig. 11 a) we show the diffusion coefficient D calculated
from the MSD through the Einstein diffusion equation: D =

limt→∞
1

6Nt

〈
∑

N
j=1 [r j(t)− r j(0)]

2
〉

. Based on the diffusion
coefficient we define the diffusion time τD = 1/D, associated
with the typical time it takes a particle to diffuse one diameter.
In Fig. 11 b), we plot this diffusion time against the collective
relaxation time τ0.3 for all the packing fractions studied and
the temperatures where the system is in a fluid state. Inter-
estingly, although the dynamics are extremely slow in all in-
vestigated systems, the two time scales grow at the same rate,
consistent with the Stokes-Einstein relation. This is in con-
trast to most glass-forming liquids, where this relation tends
to break down in the glassy regime77,78.

We note, however, that one downside of the model pre-
sented here is its relatively high computational expense. In
comparison to e.g. the isotropic square-well potential, simu-
lating patchy particles comes at a significant additional com-
putation cost. In particular, the simulation has to take into
account the rotational motion of the particle, and numerically
predict collisions between the patches4. As a result, the sim-
ulations of patchy systems are approximately a factor 10-20
times slower than simulations of a comparable hard-sphere
system, when we compare the time it takes to simulate one
Brownian time unit τB = σ

√
m/kBT . This limits our ability

to equilibrate the system deep inside the supercooled regime.
Hence, we cannot exclude the possibility that the Stokes-
Einstein relation will break down at deeper supercooling.

In order to better characterize the relaxation of the systems
over different length scales, we also determine the behavior
of the relaxation time τ0.3 as a function of the wavelength q.
The results are shown in Fig. 12 a), where we plot τ0.3(q) for
the three different packing fractions and two different temper-
atures. The relaxation time shows a peak at the wavelength
q corresponding to the first peak of the S(q). This effect is
in contrast with the one seen for binary mixtures where the
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FIG. 11. a) Dimensionless diffusion of the n= 8 patch for differ-
ent packing fractions. b) Relaxation times τ0.3 as a function of the
diffusion time τD.

low q limit is where the maximum of the relaxation time is
attained as a mixing effect15,79. We clearly see here the ad-
vantage of having a monodisperse glass former where these
mixing effects are not present.

Finally, more information about the nature of the glass can
be obtained by the non-ergodicity parameter fq. We show in
Fig. 12 b) the fq for the two lowest temperatures and pack-
ing fractions. Broadly speaking, the values of fq are close to 1
over a wide range of length scales, indicating that the structure
of the system is highly rigid until bonds start breaking. As
one might expect, this is particularly true at the lowest tem-
perature, where the number of bonds in the system is highest.
This is a typical characteristic of an attraction driven glass,
where the dynamical arrest of the system is driven by strong
short-ranged attractions. However, it has been argued that at-
tractive glasses are always an idealization and that in reality
they represent a transient regime of a repulsively dominated
glass41,66,80. This regime, however, remains relevant under
many experimental conditions, due to its long relaxation time.

IV. CONCLUSIONS

We have exploited the anisotropic interactions of patchy
particles to design a monodisperse glass-former. In general,
a good glass-former preserves a liquid structure within large

100

102

104

τ 0
.3

a)

T =0.25

T =0.3

5 10 15 20 25

qσ

0.6

0.8

1.0

f q

b)

η=0.56

η=0.57

η=0.58

FIG. 12. a) Collective relaxation time as a function of q-vector. Con-
tinuous lines correspond to T = 0.25 and dashed lines to T = 0.3,
different colors correspond to different packing fractions η . b) Cor-
responding non-ergodicity parameter.

windows of relaxation times, while always avoiding crystal-
lization. We have shown that this feature is fulfilled by a
properly designed monodisperse system of patchy particles.
In particular, we have explored the cases with n=8 and n=12
patches. The 8-patch system preserves a simple liquid-like
structure factor deep into the glassy regime, in contrast to
the 12-patch system that, while avoiding crystallization over
a wider range of temperatures, presents a strong disruption of
the local structure. For the 8-patch system, we also demon-
strate that glassy behavior can be observed well before the
gas-liquid binodal is reached. Hence, by properly choosing a
patch geometry, we can simultaneously suppress crystalliza-
tion and avoid phase separation at low temperatures and high
densities. This opens up an extensive region of (meta)stable
fluid where glass formation can be observed in a monodis-
perse glass former. Moreover, this is achieved without the use
of e.g. oscillatory potentials or many-body interactions that
would be exceedingly hard to realize in an experimental col-
loidal system. Hence, the 8-patch model may be an excellent
candidate model for studying the glass transition, by ruling
out any effects that could occur in mixtures such as demixing,
separation of time scales between the species or formation of
complex multicomponent crystals.

Finally, we note that here we have only explored two patch
geometries, which result in two glass formers with dramati-
cally different local structures. For future work, it would be
extremely interesting to explore the detailed effects of tuning
e.g. the placement and size of the attractive patches, both in
order to optimize the resistance of the system to crystallization
over a wide range of temperatures and to create ideal model
systems for revealing the interplay between the local structure
and dynamics in glassy systems.
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V. SUPPLEMENTARY MATERIAL

See supplementary material for more information about the
structure of the 8-patch case.
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