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Abstract
Federated Learning, a new machine learning
paradigm enhancing the use of edge devices, is
receiving a lot of attention in the pervasive com-
munity to support the development of smart ser-
vices. Nevertheless, this approach still needs to be
adapted to the specificity of the pervasive domain.
In particular, issues related to continual learning
need to be addressed. In this paper, we present
a distillation-based approach dealing with catas-
trophic forgetting in federated learning scenario.
Specifically, Human Activity Recognition tasks are
used as a demonstration domain.

1 Introduction
Pervasive computing promotes the integration of connected
devices in our living spaces in order to assist us in our daily
activities. The devices collect the data, can run some local
computations and further give advises to users, act upon the
environment through the services or just provide information
to a global server.

We are now seeing the emergence of smarter services based
on Machine Learning (ML) techniques [5]. Moreover, cur-
rent implementations are actually based on distributed archi-
tectures where models are deployed and often executed in the
cloud. This approach is, however, not well adapted to per-
vasive computing. It undergoes major limitations in terms of
security, performance and cost.

Google recently proposed Federated Learning (FL) [4]
[12], a new Machine Learning paradigm enhancing the use
of edge devices. FL encourages the computation of local
models on edge devices and sending them to a cloud server
where they are aggregated into a more generic one. The new
model is redistributed to devices as a bootstrap model for the
next local learning iteration. FL reduces communication costs
and improves security because only models are exchanged
between the edge and cloud [21]. It has immediately at-
tracted attention as a promising paradigm that can meet the
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challenges of ML-based pervasive applications. Neverthe-
less, this approach still needs to be adapted to the specificity
of the pervasive domain.

In most current solutions, FL operates with static local data
which stays the same during the whole training process for
each client [11]. However, in real world scenarios, new data
on edges is continuously available and models have to adapt
to it while not forgetting the past experience. This requires the
use of Continual Learning (CL) approaches [27]. The main
challenge of CL with deep neural networks is catastrophic
forgetting [24], [18], which is caused by optimizing the entire
network according to the new tasks and not anymore to older
tasks.

CL is characterized by sequential nature of the learning
process, concretely by sequences of tasks. Task t is a set
of classes disjoint from classes in other (previous or fu-
ture) tasks, where t is its task-ID [22]. Mostly CL methods
address task-incremental learning (task-IL) scenario [19],
where information about the task-ID of examples is known
at test time. However, more challenging scenario is class-
incremental learning (class-IL), where the model has to dis-
tinguish among all the classes of all the tasks at test time [22].

In our work, we focus on a class-IL scenario of CL, which
is combined with FL scenario. Our purpose was to tackle the
following research questions: does FL help to prevent catas-
trophic forgetting on a client side? can FL help to share the
past knowledge of all clients and improve their performance
on unknown tasks? can we take an advantage of global server
to improve the performance of clients?

We decided to use Human Activity Recognition classifica-
tion (HAR) on mobile devices as our demonstration domain
[25; 7] due to availability of “natural” clients: smartphones,
and that this domain is not that well investigated as image
classification. This choice is challenging due to the close re-
lation of some classes (movement actions).

In this paper, we propose a distillation-based method which
deals with catastrophic forgetting in Federated Continual
Learning (FCL) for the HAR classification task. In section 2,
we give some background on FL and CL fields and describe
current existing solutions regarding the FCL problem. In sec-
tion 3, we present the methodology of our work. In section 4,
we propose our method. In section 5, we show experimental
results and make a discussion of them. In section 5, we finish
the work with a conclusion.



2 Background. Related work
2.1 Federated Learning
The main goal of conventional FL is to achieve a good global
model on a server. FL process includes multiple communica-
tion rounds of: 1) local training on a client side (with static
local datasets), after that clients send their updated parameters
to the server; 2) parameters of gotten models are aggregated
by the server to define a new global model which is further
redistributed to all the clients to become an initial model in
the next communication round.

FedAvg [23] uses a simple weighted average of clients’
models where weights are based on the number of examples
in a local dataset. FedPer [3] separates layers of clients’ mod-
els on base and specialization layer and sends to the server
only base layers. FedMa [28] makes a layer-wise aggregation
with the fusion of similar neurons.

In our work, we want to achieve a good performance both
on a server and on a clients’ side, as they are the main poten-
tial users of the models. For this, we will use the FedAvg as
a base method. It shows competitive result on HAR [11] and
doesn’t require much computational resources that is crucial
for mobile devices.

2.2 Continual Learning
In standard CL on a single machine, a model iteratively learns
from a sequence of tasks. At each training session, the model
can have access to only one task from the sequence in order.
After the training, the task is not accessible anymore.

For class-IL scenarios, CL methods can be divided into
three families [22]: regularisation-based approaches which
compute an importance of weights for previous tasks and pe-
nalise the model for changing them (EWC [18], MAS [1],
PathInt [13], LwF [20]), exemplar-based approaches which
store exemplars from previous tasks (iCarl [26], EEIL [10]),
and bias-correction approaches which deal explicitly with
bias towards recently-learned tasks (BiC [30], LUCIT [15],
IL2M [6]).

2.3 Federated Continual Learning
In FCL each client has its privately accessible sequence of
tasks. Each round client trains its local model on some task
from its sequence and then sends its parameters o the server.

To the best of our knowledge, only few works based on a
fusion of Federated and Continual Learning have been pro-
posed so far.

For the task-IL image classification problem in FL, Fed-
WeIT [32] was recently proposed. It is based on a decom-
position of the model parameters into a dense global param-
eters and sparse task-adaptive which are shared between all
the clients. LFedCon2 [9] and FedCL [31] deals with single-
task scenario in FL. LFedCon2 uses traditional classifiers in-
stead of DNN and propose an algorithm dealing with a con-
cept drift based on ensemble retraining. FedCL adopt EWC
[18] (regularization-based CL method which does not show
the best result for the class-IL scenario [22]). FedCL aims to
improve the generalization ability of federated models.

However, none of these approaches solves the problem of
class-IL CL scenario in FL which we investigate in our work.
That is why our research has a novel contribution in this field.

3 Methodology
3.1 Human Activity Recognition. UCI dataset
We work with a UCI HAR dataset [2] which is widely used
by the HAR research community to measure and compare
state-of-the-art results. The UCI dataset was collected with
a Samsung Galaxy S II placed on the waist with the help of
30 volunteers. One example of data contains 128 recordings
of accelerometer and gyroscope (both 3 dimensions). There
are 6 classes in the dataset (number of examples per class are
in brackets): 0 – Walking (1722), 1 – Walking Up (1544),
2 – Walking Down (1406), 3 – Sitting (1777), 4 – Standing
(1906), 5 – Laying (1944).

To understand the relation between classes, we made a
Principal Component Analysis (PCA) [17] of a UCI dataset
on a last layer (before the activation) of a neural net used in
our experiments (more in Section 3.3). We randomly chose
200 examples of each class for better representation and plot
the first 3 principal components of this data in a 3 dimensional
space (see Figure 1).

Figure 1: PCA of UCI dataset on a last layer of the used neural net,
3D space of first 3 principal components.

We can see that the class ”Laying” is very distinguishable
from the rest. ”Sitting” and ”Standing” locate close to each
other. Walking movements locate together, but individually it
is hard to distinguish them. Such a data distribution will have
an impact on catastrophic forgetting of some classes in our
experiments. For example, on Figure 2, we will see that class
5 (Laying) is never forgotten even when there is no example
of this class during a training session.

3.2 Assumptions
• We focus on a class-incremental CL scenario since we

want to classify among all the seen classes, as more com-
mon in real world settings.

• At each communication round, each client trains its
own model on a new local dataset corresponding to
some task, as in real world new data is collected on mo-
bile devices in a time between communication with the
server. Data from previous rounds is not available, un-
less otherwise mentioned.

• As we still in our work adhere the definition of a task,
any task can’t be seen in a private sequence of tasks
for each client more than once. However, sets of



classes corresponding to tasks from private sequences of
different clients can be overlapped.

• For the sake of simplicity, clients behave syn-
chronously, so all of them take part in each commu-
nication round.

3.3 FCL problem definition
Under the assumptions above, we present following nota-
tions:

• each client k ∈ {1, 2, ...,K} has its privately accessible
sequence of nk tasks Tk:
Tk =

[
T 1
k , T 2

k , ..., T t
k , ..., T

nk

k

]
, T t

k = (Ct
k, D

t
k),

where t ∈ {1, ..., nk}, Ct
k is a set of classes which rep-

resent the task t of a client k and Dt
k = {Xt

k, Y
t
k} is

a training data corresponding to Ct
k: Ci

k ∩ C
j
k = ∅ if

i 6= j;
• each task T t

k for the client k is trained during rtk com-
munication rounds and

∑nk

t=1 r
t
k = R, where R is a to-

tal number of communication rounds between the server
and clients;

• during communication round r client k uses training
data Dkr = {Xkr, Ykr}:

Dkr = Dt
kr ⊂ Dt

k,

t−1∑
t=1

rtk < r 6
t−1∑
t=1

rtk + rtk,

where Dk′r′ ∩Dk′′r′′ = ∅, if k′ 6= k′′ and r′ 6= r′′

(1 6 k′, k′′ 6 K, 1 6 r′, r′′ 6 R);

3.4 Clients’ scenarios. Train and test sets
As the main CL scenario in FL, we observe the behaviour of a
client which learns one task during half of the total number of
communication rounds, and second half it learns a new task.

In notations above, client 1 learns n1 = 2 tasks in total:
T 1
1 = (C1

1 , D
1
1) and T 2

1 = (C2
1 , D

2
1), where C1

1 = {1} and
C2

1 = {2} – only ”Walking Up” and only ”Walking Down”
classes, respectively; T1 =

[
T 1
1 , T 2

1

]
, r11 = r21 = R/2.

For the simplicity, we assume that all other K − 1 clients
behave similarly, and we can generalize their influence in FL
process by the single generalized client. We also assume
that all clients contain the same number of examples at each
round, so the size of clients dataset will not influence forget-
ting. That’s why, during the server aggregation the weights of
generalized and the observed clients are 1/K ∗ (K − 1) and
1/K respectively.

The generalized client performs online-learning (training
on the same task each round) on data which is well-balanced
and contain all the classes. So, it learns ng = 1 task in total:
T 1
g = (C1

g , D
1
g), where C1

g = {0, 1, 2, 3, 4, 5}, has its pri-
vately accessible sequence of tasks Tg =

[
T 1
g

]
, so r1g = R.

To build train and test sets we randomly chose examples
from UCI HAR dataset according to required CL scenario for
each client. As mentioned above, for each client k and for
each communication round r we built a train set Dkr of the
same size.

We estimate the performance of the models on a common
test set for all clients and the server. The test dataset includes
100 examples of each class (600 examples in total).

3.5 Neural Network architecture
The server and all clients use the same Neural Network archi-
tecture. As we should take into account a small processing
power on mobile devices, we want to limit complexity and
size of a model we use. We made a comparison of different
architectures among Convolution Neural Networks (CNN)
which were used in other state-of-the-art studies [16], [29].

By centralized approach, we trained the models on the
dataset UCI HAR used for all the experiments in our work:
70% of data is a train set, 15% is a validation set, 15% is a
test set. The models are trained using a mini-batch SGD of
size 32 and a dropout rate of 0.5.

Model Architecture Model Size Test Acc
32-10C 256D 128D 3.3 MB 92.67

64-9C 4M 32-9C 2M 16-9C 128D 45 KB 93.76
196-16C 4M 1024D 67.8 MB 94.64

196-16C 4M 1024D 512D 74.1 MB 92.27

Table 1: Comparison of different model architectures on the UCI
HAR test set.

Table 1 shows that a model 196-16C 4M 1024D gives the
best result, and we use it in our experiments. The model in-
cludes 196 filters of a 16x1 convolution layer followed by a
1x4 max pooling layer, then by 1024 units of a dense layer
and finally a softmax layer.

3.6 Settings for the experiments
All experiments were written on Python 3 using the Tensor-
Flow 2 library and run on a CPU Intel(R) Xeon(R) 2.30GHz
(2 CPU cores, 12GB available RAM).

We used the same initial weights for all the models which
were gotten by pre-training the chosen CNN (see Section 3.5)
on a well-balanced small dataset (10 examples of each class).

We run R = 8 communication rounds and E = 10 epochs
for the local training on a client side. We assumed that we
have K = 5 clients (one client generalize the influence of
K − 1 of them). The size of a dataset for each client k and
each round r is |Dkr| = 120. We used a learning rate η =
0.01, dropout rate equal to 0.5, batch size B = 32 and SGD
optimizer.

3.7 Demonstration of a problem
In standard CL (Figure 2(a)), we can see that class C1 =
{1} was immediately forgotten when the learning task was
changed on C2 = {2}. But we can see always good perfor-
mance on class 5 (laying), even if we don’t have examples of
these class during training. As we can see on Figure 1 that
the laying class is very distinguishable from the others, so
the initial pre-trained model successfully learnt it, and model
parameters used to classify it were not changed with further
training.

In FCL (Figure 2(b)), we used simple Fine-Tuning of a
model when we got a new data. We still can see immediate
catastrophic forgetting of the task 1 by client 1. But Fed-
erated Learning successfully transferred to the client 1 the
knowledge about the other static actions (classes 3-5).



Figure 2: Demonstration of catastrophic forgetting in standard CL
(a) and FCL (b).

4 Proposal
To deal with the catastrophic forgetting in FCL, we propose a
distillation-based approach inspired by Learning without For-
getting (LwF) [20] with the use of previous model on a client
side and current server model as the teachers for the present
client model.

4.1 Baseline: FLwF
Knowledge distillation was originally proposed to transfer the
knowledge from a large model (teacher) to a smaller one (stu-
dent) [8], [14]. In LwF, authors use this technique in CL to
prevent drifting while learning new tasks. For this, distillation
loss was proposed to use while training the model.

First, we implemented a standard LwF method in FCL. In
a standard LwF, there is one teacher model (past model of the
client – round r − 1) and one student model (current client
model – round r). As we use an initial model pre-trained on
all classes, each client has some knowledge about all n = 6
classes from the beginning.

Output logits for the teacher classifier (past model of the
client from a round r − 1) is denoted in FCL as or−1(x) =[
or−11 (x), . . . , or−1n (x)

]
, where x is an input to the network,

and the output logits of the student classifier (current client
model of a round r) is or(x) = [or1(x), . . . , o

r
n(x)].

The distillation loss for the client k and communication
round r for LwF approach in FCL is defined as:

Ldis cl(Dkr; θ
k
r , θ

k
r−1) =

∑
x∈Xkr

n∑
i=1

−πr−1
i (x) log [πr

i (x)] ,

where θkr is the weights of the current (student) model of
the client k in a communication round r (θkr−1 – previous
(teacher) model), Dkr = {Xkr, Ykr} is the dataset used dur-
ing communication round r by a client k, and πr′

i (x) are
temperature-scaled logits of the network:

πr′

i (x) =
eo

r′
i (x)/T∑n

j=1 e
or
′

j (x)/T
,

where T is the temperature scaling parameter [14].
Temperature-scaled logits πr−1

i (x) refer to predictions of the

teacher model (or−1(x)) and πr
i (x) refer to predictions of the

student model (or(x)).
A classification loss (the softmax cross-entropy) in FCL is:

Lclass(Dkr; θ
k
r ) =

∑
(x,y)∈Dkr

n∑
i=1

−yi log
exp(ori (x)∑n

j=1 exp(o
r
j(x))

,

where (x, y) ∈ Dkr = {Xkr, Ykr} and Dkr ⊂ Dt
kr; x is a

vector of input features of a training sample, y corresponds to
some class of a set Ct

k and presents as a one-hot ground truth
label vector corresponding to x: y ∈ {0, 1}n=6.

The final loss in standard LwF for FCL for each client k
consists of a classification loss and distillation loss computed
with the current model of client k for round r and previous
model of the client k for round r − 1:

LFLwF = αLclass + (1− α)Ldis cl,

where α is a scalar which regularizes influence of each term.
We name this implementation as Federated Learning

without Forgetting (FLwF).

4.2 Proposal: FLwF-2T
We propose to take an advantage of the server which keeps
a general knowledge about all the clients. Our goal is to use
the server as a second teacher and to send its knowledge to a
student client model. The first teacher (past model of a client)
can increase the specificity performance of a student (client)
which allows to be still good on tasks it has learned before.
The second teacher (server) can improve general features of a
client model by transferring the knowledge from all the other
clients and avoid over-fitting of a client model on its new task.

We denote ôr−1(x) =
[
ôr−11 (x), . . . , ôr−1n (x)

]
as the out-

put (before the activation) of the global model (server net-
work) which was gotten after the aggregation of clients’ mod-
els trained after the round r−1. The temperature-scaled logits
of the server network are defined as follows:

π̂r−1
i (x) =

eô
r−1
i (x)/T∑n

j=1 e
ôr−1
j (x)/T

.

The distillation loss for the server model is defined as:

Ldis serv(Dkr; θ
k
r , θr−1) =

∑
x∈Xkr

n∑
k=1

−π̂r−1
k (x) log [πr

k(x)] ,

where θkr is weights of the current (student) model of the
client k in a communication round r and θr−1 is weights of
a global model on a server gotten by aggregation of clients’
models after communication round r − 1.

The final loss for the proposed method is:

LFLwF−2T = αLclass + βLdis cl + (1−α− β) ∗Ldis serv,

whereα and β are scalars which regularize influence of terms.
Ldis cl refers to the distillation loss from past model (Teacher
1), defined in a Section 4.1, and Ldis serv refers to a server
model (Teacher 2).

For the first communication round, the model uses only the
server model as a teacher.

The proposed solution helps to transfer the knowledge
from the server and decrease the forgetting of previously



learnt tasks. It is a regularization-based approach as it pre-
vents activation drift while learning new tasks. We name it
Learning without Forgetting - 2 Teachers (LwF-2T). The
pseudo-code of FLwF-2T is presented in Algorithm 1, where
loss function LFLwF−2T (...; b) is counted on a batch b.

Algorithm 1 FLwF-2T.

1: procedure SERVER EXECUTES:
2: initialize server model by θ0
3: for round r = 1, 2, ..., R do
4: m = 0
5: for client k = 1, ...,K in parallel do
6: θkr ← ClientUpdate(k, r, θr−1, θkr−1)
7: mk = |Dkr| // Size of a dataset Dkr

8: m+ = mk

9: θr ←
K∑

k=1

mk

m θkr

10: function CLIENTUPDATE(k, r, θr−1, θkr−1):
11: B ← ( split Dkr into batches of size B)
12: θkr = θr−1
13: for each local epoch i from 1 to E do
14: for batch b ∈ B do
15: θkr ← θkr − η∇LFLwF−2T (θ, θr−1, θ

k
r−1; b)

16: return θkr to the server

4.3 Metrics
To evaluate models performance, we use several metrics di-
vided into two groups. In a first group, we use the metrics
which describe FL side of a process: generality of models
and performance on a specific knowledge of a client. Second
group of metrics evaluate a forgetting of the learnt tasks from
a CL side of a process. Let’s define akrt,d as an accuracy of
the model trained during communication round r on a task d
after learning task t (d 6 t) for the client k. To compute akrt,d
we take all the examples of classes corresponding to a task d
from the test set, calculate an accuracy of the model, which
was trained during communication round r, on them after the
learning task t. An accuracy akr0 is calculated on the whole
test set after communication round r for the client k or the
server.

FL metrics:
• To evaluate generality of a model, we calculate a general

accuracy (Ak
gen):

Ak
gen =

1

R

R∑
r=1

akr0 .

We compute this general accuracy for the specified
client, generalized client and server.

• To evaluate a performance of a model on a specific
knowledge of a client, we calculate a personal accuracy
(Ak

per):
Ak

per =
1

R

R∑
r=1

akrper,

where an accuracy akrper is calculated on classes which
were already learnt by a client k during the rounds
1, ..., r. We compute the personal accuracy only for for
the clients with specific CL scenario.

CL metrics:
To evaluate how a model forgets previously learnt tasks,

we use an average accuracy at task t on all learnt before tasks
and forgetting [22]. We compute them only for the clients
with specific CL scenario.

• Average accuracy at task t (Ak
t ) calculated on all learnt

before tasks for the client k:

Ak
t =

1

t

t∑
d=1

akt,d, akt,d = akt,d =
1

rtk

(rtk)
′+rtk∑

r′=(rtk)
′

akr
′

t,d ,

where (rtk)
′ =

∑t−1
t=1 r

t
k.

• Forgetting (fkt,d) shows how the model forgets the
knowledge about task d after the learning a task t for
the client k :

fkt,d = max
i∈{d,...,t−1}

{aki,d} − akt,d.

It can be averaged as F k
t = 1

t−1
∑t−1

d=1 f
k
t,d. The higher

F k
t , the more a model forgets.

5 Experiments
In this section, we present experiments where we compared
different methods in FCL. We also propose to use different
strategies of training for generalized client and use exemplars
from learnt before tasks.

5.1 Comparison of methods
We compared following methods in FCL: Fine-Tuning in
simple Continual Learning (CL-FT), Fine-Tuning in Feder-
ated Continual Learning (FCL-FT), Federated Learning with-
out Forgetting (FLwF), our proposed method with two teach-
ers (FLwF-2T) and Offline Learning on all training data for
each client (all data). Results in a first and second parts of
Tables 2, 3.

For the methods FLwF and FLwF2, we used a temperature
scaling parameter T = 2 as commonly used in other experi-
ments [30], [10], [22]. By using grid search we found that for
FLwF α = 0.001 and for FLwF α = 0.001, β = 0.7 shows
the best performance.

5.2 Generalized client: Fine-Tuning
In this experiment, we propose to choose a strategy of train-
ing depending on a current local data. If the local data during
current communication rounds is well-balanced and contains
all classes, we propose to use simple Fine-Tuning not to be
dependant on a server global model which is influenced by
other clients, if not, we offer to implement CL approaches to
remember our past and to transfer as more available knowl-
edge from the server as possible.

We define the strategy when Client 1 uses FLwF (FLwF-
2T) and Generalized client uses FT as FLwF/FT (FLwF-
2T/FT). Results in a fourth part of Tables 2, 3.
5.3 Saving the exemplars

In this experiment, we saved the exemplars of learned task
in a memory. For each round, we realized the following pro-
cedure: if the task is new, we save 10 examples which are
corresponded to this task in our memory; if the model has
learnt this task already, we refresh out memory stock with



Method A1
gen Ag

gen Aserver
gen A1

per

CL-FT 0.338 0.800 - 0.750
all data 0.715 0.899 0.865 0.977
FCL-FT 0.478 0.794 0.714 0.750
FLwF 0.629 0.673 0.671 0.628

FLwF-2T 0.655 0.679 0.680 0.629
FCL-FT + ex 0.622 0.675 0.672 0.666
FLwF + ex 0.633 0.674 0.675 0.659

FLwF-2T + ex 0.658 0.683 0.681 0.664
FLwF/FT 0.708 0.783 0.781 0.755

FLwF-2T/FT 0.753 0.802 0.797 0.798
FLwF/FT + ex 0.705 0.789 0.779 0.748

FLwF-2T/FT + ex 0.750 0.781 0.778 0.755

Table 2: FL metrics: general accuracy (Ak
gen) and personal accuracy (Ak

per)
for Client 1 (k = 1), Generalized client (k = g) and Server (k = server).

Method A1
2 F 1

2

CL-FT 0.5 1
all data 0.981 -0.007
FCL-FT 0.5 1
FLwF 0.535 0.595

FLwF-2T 0.578 0.418
FCL-FT + ex 0.548 0.617
FLwF + ex 0.57 0.53

FLwF-2T + ex 0.622 0.29
FLwF/FT 0.696 0.392

FLwF-2T/FT 0.76 0.212
FLwF/FT + ex 0.678 0.407

FLwF-2T/FT + ex 0.746 0.12

Table 3: CL metrics: average accuracy at task t (Ak
t ) and

forgetting (F k
t ) for Client 1 (k = 1) and task 2 (t = 2).

new examples which are corresponded to this task. We imple-
mented random sampling strategy as it shows competitive re-
sults compare to another strategies, used in class-incremental
CL, and don’t require much computational resources [22].
Results in a third and fifth part of Tables 2, 3.

5.4 Discussion of results
If we compare Figure 2(a) and Figure 3(b), we will see that
our Continual Learning approach (FLwF-2T) helps both to
increase the generality of models and to keep the knowledge
from learned tasks.

First, we compared different methods in FCL for Client
1 and its specific CL scenario. For Client 1, our method
FLwF-2T shows the best general accuracy among all the
methods (Table 2). It also outperforms FLwF on a General-
ized client and on the Server. Personal accuracy of FLwF-2T
is decreased compared to FCL-FT due to the significant over-
fitting while FT. We also can see that FL with implemented
CL method helps to deal with catastrophic forgetting. And
our method FLwF-2T shows the best result among others in
dealing with catastrophic forgetting for Client 1 (Table 3).

Then, we proposed to use different strategies of training de-
pending on a local data for the current communication round.
We can see that among compared methods, our approach with
the use of FLwF-2T on a Client 1 and FT on a Generalized
client significantly outperforms all other methods both in cap-
turing generality of a model and keeping the past knowledge.
So, implementing different strategies of training for dif-
ferent clients depending on a local data can improve the
general performance in FCL.

Then, we made experiments with the saving of exemplars
from learnt tasks. We can see, that adding exemplars al-
lowed to increase performance for both CL metrics for all
the observed methods. When we don’t choose the training
strategy for the clients, FLwF-2T + ex shows the best result
among all the methods with adding exemplars. When gen-
eralized client is trained by FT, FLwF/FT + ex shows bet-
ter generalization accuracy for the generalized client and the
server than FLwF-2T/FT + ex.

FLwF-2T/FT – our proposed method – shows the best re-
sult among all the observed methods for both FL and CL met-

rics according to Tables 2, 3 (Figure 3).

Figure 3: The best gotten result according to Tables 2, 3 shown by
FLwF-2T/FT (our).

6 Conclusion
Our study presents a novel framework for the fusion of
two learning paradigms: Federated Learning and Class-
Incremental learning with the application in Pervasive Com-
puting (HAR on mobile devices).

We showed that without CL approaches in FL a rapid for-
getting of learnt tasks is also happened. We saw that the
close relation between classes in a UCI HAR dataset influ-
ence a faster forgetting of some of them. Finally, we proposed
distillation-based approach FLwF-2T for FCL, which doesn’t
require high computational and storage resources which is
crucial for mobile devices as it uses for the training only
a past model of the client and a global model sent by the
server which would anyway available for the client during
each communication round. We showed that it allows to in-
crease a general knowledge for a client with specific CL sce-
nario and to keep it’s private past knowledge.
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