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Abstract—This paper studies the statistical characterization of
detecting an adversary who wants to harm some computation such
as machine learning models or aggregation by altering the output of
a differentially private mechanism in addition to discovering some
information about the underlying dataset. An adversary who is able
to modify the published information from a differentially private
mechanism aims to maximize the possible damage to the system
while remaining undetected. We present a trade-off between the
privacy parameter of the system, the sensitivity and the attacker’s
advantage (the bias) through determining the threshold for the
best critical region of the hypothesis testing problem for deciding
whether or not the adversary’s attack is detected. Such trade-
offs are provided for Laplace mechanisms using one-sided and
two-sided hypothesis tests. Corresponding error probabilities are
analytically derived and ROC curves are presented for various
levels of the sensitivity, the absolute mean of the attack and the
privacy parameter. Subsequently, we provide an interval for the
bias induced by the adversary so that the defender detects the
attack. Finally, we adapt the Kullback-Leibler differential privacy to
adversarial classification.

A full version of this paper is accessible at: https://arxiv.org/
abs/2105.05610.

I. INTRODUCTION

The widespread use of Big Data technologies has opened the
door for malicious attacks resulting in potentially devastating
consequences in critical applications such as autonomous driving
or healthcare. In particular, an adversary may look for means to
modify models or their outputs and consequently wreak havoc on
a system and its users. Furthermore, such techniques usually rely
on large datasets to be efficient which increases the chance of
fraudulent use of personal information. Adversarial classification
(also called anomaly detection) is a statistical tool enabling the de-
tection of modification/misclassification attacks whereas privacy-
preservation commonly makes use of so-called differential privacy
(DP) mechanisms. A mechanism, such as a randomized function
of a dataset, is said to be differentially private if the level of
privacy of individual participants and the output of the mechanism
remain unaltered even when any one of the participants decides
to submit or equivalently remove his/her input from the statistical
dataset. This definition is also applicable to aggregate information
of all participants. This paper studies the security of systems
where DP mechanisms are also used by adversaries.

DP [1] is defined as a stochastic measure of privacy -that has a
precise mathematical formulation- to ensure privacy of individual
users when handling large datasets. DP mechanisms have fur-
thermore been used to develop practical methods for protecting
private user-data at the moment they provide information to the
system. In these cases, the use of DP measure aims to maintain
the accuracy of the underlying operation without incurring a cost
of the privacy of individual participants. In some sense, DP is a
notion of robustness against changes in the dataset. The degree

of this change is measured/determined by an adjustable privacy
parameter and the amount of the change, that any single argument
to the system reflects on its output, is called the sensitivity.

Statistical classification is now widely used as a supervised
machine learning approach and consists in placing or classifying
an item into one of several categories based on a number of
measurements of interest. In [2], classification is described as
a hypothesis testing problem for choosing between two possible
values that the parameter(s) of a probability distribution can take
on to place this item into the right category. Adversarial clas-
sification is an application of this approach where an adversary
tries to fool a classifier which detects outliers in order to remain
undetected.

In this paper, we consider a scenario where privacy enhancing
technologies, which were originally designed to support privacy
protection of legitimate individuals, are used by adversaries to
harm the security of systems. We assume that the adversary is
aware of the underlying DP mechanism and its parameters and
wants to benefit from it using it as an attack tool to avoid being
detected [3], [4]. The adversary’s goal is to maximize the possible
damage while minimizing the probability of being detected. We
study the statistical framework of adversarial classification under
DP. Our goal is to evaluate the impact of privacy parameters on
the actual power of the adversarial classification. In particular,
we focus on the aggregation operation whereby parties contribute
with some individual numerical data and the system collecting this
data computes the sum of them. We establish a stochastic relation
between the probability of the adversary’s success and the privacy
parameter in the specific case of Laplace mechanisms.

The addressed problem in this work differs from existing work
on DP which considers an adversary model where the goal of the
attacker is to solely discover some information about the dataset.
For instance, the implicit strong adversary assumption in [5] is
that the adversary has the knowledge of the entire dataset except
for one entry. In this paper, our aim is to extend this model with
a stronger adversary who also wants to harm the dataset and
the output of the mechanism. We consider an adversary who is
able to modify the published information from a differentially
private mechanism which is a noisy version of the output. The
adversary’s goal in this model is to maximize the possible damage
while remaining undetected. Thus, there are two sides of what the
adversary wants to achieve: (i) s/he gives false data by modifying
the released information with the biggest possible difference from
the real data, (ii) all this modification has to be achieved without
being detected. On the defender’s end, the mechanism wants to
preserve DP and detect the attack.

Related work: A simpler version of this problem is addressed
by [3] from an adversarial perspective and the conflicting goals of
the adversary are formulated as an optimization problem where



the bias induced by the adversary is the objective function to be
maximized. Yet, the privacy parameter does not take part in the
formulation of [3]. We seek a characterization of the trade-off
between the attack (the change in the output) and the privacy
parameter. On the other hand, in [6], the authors show that the
sensitivity of a mechanism has also an impact on the differentially
private output. The noise to be added on the output is calibrated
accordingly. Such a characterization of the problem described
in this paper introduces a third element as the impact of the
attack to be included in this adjustment of the DP noise with
respect to (w.r.t.) the sensitivity of the system. This would allow
us to be able to determine a threshold for detecting the attacker,
alternatively, for the attacker to remain undetected.

Our methodology is the framework of statistical hypothesis
testing in a similar vein to [7] where the authors determine
an appropriate value of the privacy parameter as a function of
error probabilities in deciding on the presence or absence of a
particular record in a dataset. Similarly, in [8], the author studies
the differentially private hypothesis testing in the local setting
where users locally add the DP noise on their personal data before
submitting it to the dataset. In this paper, we tailor this approach
for the problem described above as a first attempt for a solution
for anomaly detection in Laplace mechanisms under global DP
where the personal sensitive data is transmitted to a central server
by the users and the server applies DP noise on the data before
its release to the public.

Contributions: We consider a new attacker model where
the adversary takes advantage of the underlying differentially
private mechanism in order not to be detected. For this model,
we derive a trade-off between the privacy protected adversary’s
advantage and the security of the system for the adversary to
remain undetected while giving as much damage as possible to
the system. Alternatively, such a trade-off can be used for the
defender to preserve the privacy of the system and detect the
attacker. This trade-off is defined in the framework of statistical
hypothesis testing similarly to [7]. Thus, we establish statistical
thresholds for detecting the attack as a function of the error
probabilities for Laplace mechanisms through one-sided and two-
sided hypothesis tests. Subsequently, these thresholds are used
for deriving intervals for the impact of the attack (or the privacy
budget) to remain undetected as a function of the error proba-
bilities and the sensitivity. Additionally, we adopt the Kullback-
Leibler (KL) DP definition of [5] to the addressed problem for
adversarial classification and present numerical comparisons of
different scenarios where the sensitivity of the system is less than,
equal to and greater than the bias induced by the adversary on
the published information.

II. PRELIMINARIES AND MODEL

In this part, we revisit certain notions from the existing
literature on DP which will also be used in this paper. These
preliminaries will be followed by a detailed definition of the
addressed problem.

Definition 1. Any two datasets that differ only in one record are
called neighbors [9]. For two neighboring datasets, the equality
d(x, x̃) = 1 holds, where d(., .) denotes the Hamming (or l1)
distance between two datasets.

Definition 2. Global sensitivity s [6] for a function (or a query)
f : D → Rk is the smallest possible upper bound on the distance

between the images of f when applied to two neighboring
datasets, that is ‖f(x)− f(x̃)‖1 ≤ s.

Sensitivity has an opposite relationship with the privacy. Higher
sensitivity of the query refers to a stronger requirement for privacy
guarantee, consequently more noise is needed to achieve that
guarantee.

Definition 3. (ε, δ)− DP [9]: A randomized algorithm Y is
(ε, δ)− differentially private if ∀S ⊆ Range(Y) and for all neigh-
boring datasets x and x̃ within the domain of Y , the following
inequality holds: Pr [Y(x) ∈ S] ≤ Pr [Y(x̃) ∈ S] exp{ε}+ δ.

A differentially private system is named after the probability
distribution of the perturbation applied onto the query output
in the global setting. The Laplace distribution is defined as
Lap(x;µ, b) = 1

2b exp
{
− |x−µ|b

}
with the location parameter

equal to its mean µ and variance 2b2 where b denotes the scale
parameter.

Definition 4. Laplace mechanism [6] is defined for a function
(or a query) f : D → Rk as follows

Y(x, f(.), ε) = f(x) + (Z1, · · · , Zk) (1)

where Zi ∼ Lap(b = s/ε), i = 1, · · · , k denote i.i.d. Laplace
random variables.

A. Problem Definition and Performance Criteria

In this part, we provide a detailed description of the addressed
problem and define the quantitative components for establishing
a statistical threshold for detecting the attack. A differentially
private mechanism adds Laplace noise denoted by Z on the query
output f(x) =

∑n
i=1Xi using the dataset in the following form

X = {X1, · · · , Xn}. The noisy output is denoted by Y0 and
defined as Y(x, f(.), ε) = Y0 =

∑n
i=1Xi + Z. An adversary

modifies this public information -which has been released by the
server- by adding one extra record that we denote by Xa. Here the
addition is applied onto the existing dataset without any constraint
on the value of Xa, i.e. it could take up on a positive as well as a
negative value. The modified output becomes (

∑n
i=1Xi +Xa)+

Z.
We define the following simple hypothesis testing problem in

order to determine the threshold for deciding whether or not the
adversary’s attack is detected.

H0 : defender does not detect Xa

H1 : defender detects Xa

(2)

The hypothesis testing problem in (2) can be translated into decid-
ing on the DP noise distribution with its parameters. Here H0 and
H1 correspond to DP noise following the probability distributions
p0 with mean µ0 and p1 with mean µ1, respectively. Therefore,
the decision boils down to choosing between Y0 −

∑n
i=1Xi and

Y0 − [
∑n
i=1Xi +Xa]. Hence the shift in the location due to the

addition of Xa to the dataset is ∆µ = µ1−µ0. The corresponding
likelihood ratio for this problem yields

Λ =
L(p1)

L(p0)

H0

<>
H1

κ (3)

where L(.) denotes the likelihood function for the corresponding
hypothesis and κ is some positive number to be determined.
Such a threshold is used to define the critical region in statistical
hypothesis tests (the region where the null hypothesis is rejected).



This paper presents a precise trade-off between the attacker’s
advantage (or the bias induced by the adversary) ∆µ, the sensi-
tivity s and the privacy parameter ε for Laplace mechanisms to
characterize the threshold for detecting the attack, as a function
of the error probabilities. α and β respectively denote type I and
type II error probabilities which are defined for the hypothesis
testing problem in (2) as follows:

α = Pr [H0 reject|H0 is true] (4)
β = Pr [H1reject|H1is true] . (5)

Based on the definition of α, also called the probability of false-
alarm, we denote its complement by ᾱ = 1−α. Similarly, due to
(5), the complement of type II error probability (or the probability
of mis-detection) is denoted by β̄ = 1 − β. The probability of
correct detection β̄ (i.e. correctly deciding H1) is also called the
power of the test in statistics or the recall in machine learning
terminology.

According to the Neyman-Pearson Theorem [10], the likelihood
ratio compared against some positive threshold defines the best
critical region of size α for testing a simple hypothesis against an
alternative simple hypothesis with the largest (or equally largest)
power. An extension of this result to testing against a composite
alternative hypothesis is also possible. Such an extension is called
uniformly most powerful test since for a test with the best critical
region of size α is conducted for each possible value of the
alternative hypothesis. Once we define the critical region for
deciding between H0 and H1 in (2) as a function of ∆µ, the
privacy parameter ε and the sensitivity s, we will derive the error
probabilities and the power of the test analytically as well as
compute and depict them numerically.

III. MAIN RESULTS

We separate our results in two main groups for (ε, 0)-DP in
Laplace mechanisms for one-sided and two-sided hypothesis tests.

A. One-sided test

In this part, we will investigate two cases setting the alternative
hypothesis H1 as either µ1 > µ0 (∆µ > 0) or µ1 < µ0 (∆µ < 0).
This corresponds to a one-sided hypothesis testing problem. The
decision of choosing between the hypotheses in (2) boils down
to choosing between Y0 −

∑n
i=1Xi = Z ∼ Lap(z;µ0, s/ε)

and Y0 − [
∑n
i=1Xi +Xa] = Z ∼ Lap(z;µ1, θ(s/ε)) where

θ ≥ 1 is the measure of the change in the privacy budget of the
system with sensitivity s and privacy parameter ε. It should be
noted that setting θ = 1 translates into testing only the location
parameter of the Laplacian DP noise. Our goal is to derive a
relationship between the privacy parameter, type I and type II
error probabilities as a function of the bias ∆µ for the attacker
to be successful, that is to fail to reject H0.

The corresponding likelihood ratio to (2) becomes Λ =

L(p1(µ1,b1);z)
L(p0(µ0,b0);z)

H0

<>
H1

κ, where κ is some positive number to be

determined and (µi, bi) for i = 0, 1 respectively denote the
location and scale parameters of the Laplace distributions. The
next theorem states our first main result.

Theorem 1. The threshold of the best critical region of size α
defined in (4) for deciding between the null hypothesis and its
alternative of the one-sided hypothesis testing problem in (2) for a
Laplace mechanism with the largest possible power β̄ is given as

a function of the probability of false alarm α, privacy parameter
ε and global sensitivity s by

k =

{
µ0 + s

ε ln(2(1− α)) if α ∈ [0, .5]

µ0 − s
ε ln(2α) if α ∈ [.5, 1]

(6)

Then according to the adversary’s hypothesis testing problem, the
defender detects the attack for ∆µ > 0 if the output of the Laplace
mechanism Y0 exceeds (k + f(x)) where f(.) is the noiseless
query output. Similarly, for ∆µ < 0, the attack is detected if
Y0 < f(x) + k.

Proof. We expand the likelihood ratio Λ as follows.

Λ =

ε
2θs exp

{
−ε |z−µ1|

θs

}
ε
2s exp

{
−ε |z−µ0|

s

} (7)

The likelihood ratio in (7) can be summarized by the following
piecewise function based on the ordering of µ0, µ1 and z for
µ1 < µ0.

ΛI =


1
θ exp

{
ε
θs (z(1− θ) + θµ0 − µ1)

}
if z < µ1

1
θ exp

{
− ε
θs (z(1 + θ)− θµ0 − µ1)

}
if z ∈ [µ1, µ0]

1
θ exp

{
− ε
θs (z(1− θ) + θµ0 − µ1

}
if z ≥ µ0

(8)
On the other hand, for µ1 > µ0, the corresponding likelihood
ratio yields

ΛII =


1
θ exp

{
ε
θs (z(1− θ) + θµ0 − µ1)

}
if z < µ0

1
θ exp

{
ε
θs (z(1 + θ)− θµ0 − µ1)

}
if z ∈ [µ0, µ1]

1
θ exp

{
− ε
θs (z(1− θ) + θµ0 − µ1)

}
if z ≥ µ1

(9)
To be able to determine a threshold for deciding on either of
the hypotheses in (2), we compute the false alarm rate α and
the mis-detection error β applying the Neyman-Pearson lemma
that guarantees maximizing the power of the hypothesis test for
a given α.

a) Derivation of α: Using the definition in (4) and for
∆µ > 0, the probability of raising a false-alarm is derived with
the following integration α =

∫∞
k

ε
2s exp

{
− ε|z−µ0|

s

}
dz, which

is further expanded out in two possible ways.

α = 1− 1

2
exp

{ ε
s

(k − µ0)
}
, for k < µ0 (10)

α =
1

2
exp

{
− ε
s

(k − µ0)
}
, for k ≥ µ0 (11)

Rewriting (10) and (11) as an equality for k, we obtain the
piecewise function (6) as a function of α. If the bias induced
by the adversary is negative, i.e. ∆µ < 0, then the conditions to
obtain (10) and (11) are swapped. For ∆µ < 0 and k < µ0, we
obtain (11) as the probability of false-alarm.

b) How to determine κ?: According to the piecewise
expansion of likelihood ratio function in (8) for ∆µ >
0, κ is confined in: (1/θ exp

{
ε
θs (z(1− θ) + θµ0 − µ1)

}
,

(1/θ) exp
{
− ε
θs (z(1− θ) + θµ0 − µ1)

}
). Since Λ

H0

<>
H1

κ, H0

is rejected for 1
θ exp

{
ε
θs (z(1 + θ)− θµ0 − µ1)

}
> κ. Due to

the threshold k of the critical region defined in Theorem 1,
we get κ = 1

θ exp
{
ε
θs (k(1 + θ)− θµ0 − µ1)

}
for ∆µ > 0.

By analogy, κ becomes 1
θ exp

{
− ε
θs (k(1 + θ)− θµ0 − µ1)

}
, for

negative bias.



c) Derivation of the power of the test: The power of the
hypothesis test is the probability of rejecting the null hypothesis
H0 given that the alternative hypothesis, H1, is true. Using the
definition in (5) for ∆µ > 0 and k < µ1, we get

β̄ =

∫ ∞
k

ε

2θs
exp

{
ε(µ1 − z)

θs

}
dz =

1

2
exp

{
ε(µ1 − k)

θs

}
(12)

As for k > µ1, the power function becomes

β̄ = 1−
∫ k

−∞

ε

2θs
exp

{
ε(z − µ1)

θs

}
dz = 1−1

2
exp

{
ε(k − µ1)

θs

}
(13)

On the contrary for negative bias ∆µ < 0, the conditions based
on k and µ1 to obtain (12) and (13) are swapped. In Section
V, we present receiving operating characteristic (ROC) curves -
the probability of false-alarm α versus power of the test β̄- for
Theorem 1 as performance analysis.

Remark. Special case of θ = 1 and |∆µ1| ≤ s: Setting θ = 1
and |∆µ1| ≤ s in the likelihood ratio (7), we get exp{−ε} ≤
Λ ≤ exp{ε}, which is the (ε, 0)− DP.

B. Two-sided test

As an alternative solution to the same problem a two-sided test
could provide a more realistic solution where it is not possible to
know the direction of the shift. Hence the hypothesis test in (2)
can be conducted for choosing between H0 : Z ∼ Lap(µ0, s/ε)
and H1 : Z ∼ Lap(µ1, θs/ε). This translates to choosing between

H0 : µ = µ0, b = s/ε (14)
H1 : at least one of the equalities does not hold (15)

where µ denotes the location parameter and b denoted the scale
parameter of any Laplace distribution. The alternative can also be
stated with the parameters µ = µ1, b = θs/ε where θ ≥ 1. In this
two-tailed test, there are two thresholds on each side of the origin
to be determined for the critical region, each with a size of α/2.
Let k1 and k2 denote the thresholds greater and smaller than the
origin, respectively. The next theorem presents our second main
result.

Theorem 2. The threshold of the best critical region of size α
defined in (4) for choosing between the null hypothesis and its
alternative of the two-sided hypothesis testing problem in (14)-
(15) for a Laplace mechanism with the largest power β̄ is

k1 = µ0 − (s/ε) logα (16)
k2 = µ0 + (s/ε) logα (17)

The defender fails to detect the attack when the output of the
Laplace mechanism Y0 is confined in (f(x) + k2, f(x) + k1)
where f(.) denotes the noiseless query output.

Proof. The probability of raising a false-alarm or having a
type I error is derived by α =

∫ k2
−∞

ε
2s exp

{
ε(z−µ0)

s

}
dz +∫∞

k1
ε
2s exp

{
− ε(z−µ0)

s

}
. Each addend of α corresponds to one

half of the probability of false-alarm. Equating each integral to
α/2 and rewriting the equalities in terms of k1 and k2, we get
the thresholds (16) and (17).

A trade-off between µ1, s and ε for detecting the attacker:
Using the thresholds of Theorem 2, we determine an interval to
confine the mean of the attacker’s advantage to be detected by the
DP mechanism. Alternatively, such an interval can be converted
for the privacy parameter ε as a function of error probabilities,
the attack and the sensitivity. The following result, Corollary 2.1,
presents upper and lower bounds on the attacker’s advantage so
that the defender detects the attack. For the proof of Corollary
2.1, the reader is referred to [11].

Corollary 2.1. The absolute bias |∆µ| = |µ1 − µ0| induced by
the adversary is confined in the following interval so that the
defender detects Xa and preserves (ε, 0)- DP

s

ε
log
(
αβ̄θ

)
< ∆µ <

s

ε
log
(
αβ̄θ

)(−1)
(18)

for θ ≥ 1 where α and β̄ are the significance level and the power
of the test of (15), respectively.

IV. RELATIVE ENTROPY

This section is reserved for the derivation of relative entropy
or KL divergence between two Laplace distributions and its
adaptation to adversarial classification through KL-DP.

Definition 5 (KL-DP, [5]). A randomized mechanism PY |X
guarantees ε− KL-DP, if the following inequality holds for all its
neighboring datasets x and x̃, D(PY |X=x||PY |X=x̃) ≤ exp{ε}.

In [5, Theorem 1], KL-DP is proven to satisfy the following
chain of inequalities (ε, 0) − DP ≥ KL − DP ≥ (ε, δ) − DP.
For the described problem and the associated model given in
Section II-A, the neighboring datasets could be imagined as those
where the output of the query is

∑n
i=1Xi before the attack and

(
∑n
i=1Xi+Xa) after the attack. The corresponding distributions

are considered as the DP noise with and without the induced
value of Xa by the attacker as in our original hypothesis testing
problem in (2). To be consistent with the hypotheses in (2),
we set PY |X=x ∼ Lap(µ0, s/ε) and for its neighbor, we have
Lap(µ1, θs/ε).

The relative entropy between p0 ∼ Lap(µ0, b0) and p1 ∼
Lap(µ1, b1) is obtained respectively for ∆µ > 0 and ∆µ < 0
as

D(p0||p1) = log

(
b1
b0

)
− 1 +

b0
b1

exp

{
µ0 − µ1

b0

}
− µ0 − µ1

b1
,

(19)

D(p0||p1) = log

(
b1
b0

)
− 1 +

b0
b1

exp

{
µ1 − µ0

b0

}
+
b0
b1

(20)

Due to space limitations, the derivation of KL-DP is omitted and
can be found in [11]. The case of positive bias is numerically
evaluated in Section V setting b0 = s/ε, b1 = θ(s/ε) and µ1 −
µ0 = ∆µ for the hypothesis testing problem defined in (2).

Remark. Authors of [3] also seek for the maximum bias induced
by the adversary where the objective function is the minimum
relative entropy between the probability distribution of the dataset
before (p0) and after the attack (p1). Nevertheless, the choice of
the objective function is set as D(p1||p0) ≤ γ for some γ. For
the Laplace distribution, KL divergence is not symmetric, hence
D(p0||p1) 6= D(p1||p0). Therefore, due to Stein’s lemma [12],
D(p0||p1) in (19) (or (20)) should be used instead.



V. NUMERICAL EVALUATION AND CONCLUSION

Numerical Evaluation: KL-DP (19) derived in Section IV
is numerically evaluated in Figure 1 for different levels of attack
in comparison to the sensitivity of the system for both θ = 1 and
θ = 1.5. Accordingly, the effect of the attack is compared with
the upper bound exp{ε} from Definition 5. Figure 1 shows that
increasing the impact of the attack w.r.t. the sensitivity, closes
the gap with the upper bound and for the case of |∆µ| = 4 ∗
s and under moderate privacy budget, KL-DP upper bound is
violated. Figure 2 presents the ROC curves corresponding to the
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Figure 1. KL-DP for different values of ε and θ.

hypothesis test for the Laplace DP noise parameters. The plots
depict different possible scenarios where the induced bias by the
adversary is greater than, equal to and less than the sensitivity of
the system. µ0 is set to 0 hence ∆µ = µ1. We observe that when
the privacy parameter ε is very small (e.g., ε = 0.015), the test is
no longer accurate and detecting the adversary can be considered
similar to random guessing. On the other hand, when the privacy
parameter is very large, the accuracy of the test becomes higher
at the expense of the privacy guarantee. Furthermore, as opposed
to [7, Theorem 5], we notice that ROC curves strongly depend
on the sensitivity s, hence the mapping function (query) applied
on the input. Particularly, when µ1 > s the accuracy of the test
becomes less important as the adversary is trying to harm the
system. Figure 2 also shows that the choice of θ affects the power
of the test. When θ = 1, the test boils down to choosing between
two location parameters. Figure 2 also shows that the power of
the test on the y-axis decreases with θ. For each value of ε, ROC
curves which correspond to θ = 1 outperform those with a greater
variance only after a certain level of α. As the privacy is decreased
(equivalently ε is increased) this flip can be observed for smaller
values of the probability of false alarm.

Conclusion: We characterized a statistical trade-off between
the security of the Laplace DP mechanism and the privacy
protected adversary’s advantage in adversarial classification using
one and two-tailed hypothesis testing. In both settings, we estab-
lished trade-offs between the sensitivity of the system, privacy
parameter and the induced bias by determining the threshold(s)
of the critical region to decide whether or not the defender
detects the attack. Such trade-offs are presented as functions of
corresponding error probabilities. Numerical evaluation results
show that increasing the privacy parameter also increases the
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Figure 2. Eqs. (10)-(11) vs. (12)-(13) for different values of ε and θ.

accuracy of the hypothesis test. Additionally, we derived KL-DP
for adversarial classification. Numerical evaluation shows that, the
effect of increasing the impact of the attack closes the gap with
the DP upper bound exp{ε}.

VI. ACKNOWLEDGEMENTS

This work has been supported by the 3IA Côte d’Azur project
(reference number ANR-19-P3IA-0002).



REFERENCES

[1] C. Dwork, “Differential Privacy,” in Automata, Languages and Program-
ming, 2006, pp. 1–12.

[2] R. Hogg and A. Craig, Introduction to Mathematical Statistics. 4th Edition,
Macmillan Publishing, New York, 1989.

[3] J. Giraldo, A. A. Cardenas, M. Kantarcioglu, and J. Katz, “Adversarial
Classification Under Differential Privacy,” in NDSS 2020, Network and
Distributed Systems Security Symposium, San Diego, CA, USA, Feb. 2020.

[4] M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana, “Certified
robustness to adversarial examples with differential privacy,” in IEEE
Symposium on Security and Privacy, San Francisco CA, USA, May 2019,
pp. 1054–1067.

[5] P. Cuff and Y. Langing, “Differential Privacy as a Mutual Information
Constraint,” in CCS 2016, Vienna, Austria, Oct. 2016.

[6] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating Noise to
Sensitivity in Private Data Analysis,” in Theory of Cryptography Conference,
2006, pp. 265–284.

[7] C. Liu, X. He, T. Chanyaswad, S. Wang, and P. Mittal, “Investigating
Statistical Privacy Frameworks from the Perspective of Hypothesis Testing,”
in PETS 2019 Proceedings on Privacy Enhancing Technologies, 2019, pp.
233–254.

[8] O. Sheffet, “Locally private hypothesis testing,” in Proceedings of Machine
Learning Research, 2018.

[9] C. Dwork and A. Roth, “The Algorithmic Foundations of Differential
Privacy,” Foundations and Trends in Theoretical Computer Science 2014,
vol. 9, pp. 211–407, 2014.

[10] J. Neyman and E. Pearson, “On the Problem of the Most Efficient Tests of
Statistical Hypotheses,” Philosophical Transactions of the Royal Society A,
vol. 231, pp. 289–337, 1933.

[11] A. Ünsal and M. Önen, “A Statistical Threshold for Adversarial
Classification in Laplace Mechanisms,” May 2021. [Online]. Available:
https://arxiv.org/abs/2105.05610

[12] T. Cover and J. A. Thomas, Elements of Information Theory. Wiley Series
in Telecommunications, 1991.


