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Abstract Air toxicity and pollution phenomena are on

the rise across the planet. Thus, the detection and con-

trol of gas pollution are nowadays major economic and

environmental challenges. There exists a wide variety of

sensors that can detect gas pollution events. However,

they are either gas-specific or weak in the presence of

gas mixtures. This paper handles this issue by present-

ing method based on a Temporal-based Support Vector

Machine for for the detection and identification of sev-

eral toxic gases in a gas mixture. The considered gases

are carbon monoxide (CO), ozone (O3) and nitrogen

dioxide (NO2). Furthermore, an incremental algorithm

is proposed in this paper for the selection of the best

performing kernel function in terms of accuracy and

simplicity of implementation. Then, a decision-making

algorithm based on the rate of appearance of a class on
a moving window is proposed to improve decision mak-

ing in presence of uncertainties. This algorithm allows

the user to master the false-alarms and no-detection

dilemma, and quantify the level of confidence attributed

to the decision. Experimental results, obtained with dif-

ferent gas mixtures, show the effectiveness of the pro-

posed approach with 100% of accuracy in the learning

and testing stages.
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List of abbreviation and acronyms

ACC Accuracy
CO Carbon monoxide
CO2 Carbon dioxide
Fri Rate of appearance of the ith class in a moving

window
HCD High Confidence Decision
I Electric current
LCD Low Confidence Decision
LSSVM Least Squares Support Vector Machine
LSTM Long Short-Term Memory
NN Neural Network
KNN K Nearest Neighbors
EBR Episode-Based Reasoning
MOX Metal Oxide Gas
MC-SVM Multi-classes Support Vector Machine
MR Misclassification Rate
N Number of samples in an observation window
NO2 Nitrogen dioxide
P Electric power
PCA Principal Component Analysis
PRCN Precision
O3 Ozone
F1 F1 classification score
SO2 sulfur dioxide
V Electric voltage
VOC Volatile Organic Compounds
y Classifier Result (Output)
φR Resistance characteristic
thi Decision threshold for the ith class
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1 Introduction

Recent advances in microelectronics and chemistry have

allowed the development of a large number of micro-

sensors whose low consumption and low cost have made

it possible to generalise their use in a large number

of industrial and public applications [39,40,41]. In the

field of air quality monitoring, several research works

are conducted for the the development of measuring

stations able to detect pollutants such as CO2, CO,

NO2, SO2, VOC and Ozone [25,3,16,29]. One of the

main issues of these sensors lies in their low selectiv-

ity and many research works have been carried out to

improve it. The solutions proposed are initially mate-

rial solutions which consist in exploring and improving

the physico-chemical properties of the materials used

[36]. Nowadays, existing approaches can be classified

into three categories: material approaches, software ap-

proaches and hybrid approaches which combine the two.

Among the material solutions proposed, F. Rasch re-

ports in [36] the doping of the semiconducting oxides

with metal ions [27], surface functionalization or deco-

ration with metal (oxide) nanostructures and polymers

[35], formation of heterostructures, core-shell structures

or nanocomposites by combination of n-type and p-type

metal oxides [28] and the use of permeable membranes

[43]. Software approaches gather the multivariate anal-

ysis such as principal component analysis [31], machine

learning tools such as neural networks [42] and deep

learning methods like deep belief network [38] and deep

echo state network [9]. Principal Component Analysis

(PCA) is an attribute extraction and classification tech-

nique based on the projection of all the measured data

in the principal space made up of the components that

presents the greatest variability. Its use for improving

the selectivity of gas sensors has given satisfactory re-

sults, especially in the presence of single gases [32,41].

However, this technique does not make it possible to

reduce the number of variables measured and conse-

quently the complexity of the device consisting of the

sensor and its software.

In this paper, the aim is not only to select the rel-

evant characteristics, but also to reduce the number

of variables measured and consequently to improve the

design and the ergonomics of the micro-sensor. This

will facilitate its integration into reduced environments,

where the available space is an additional constraint in

the choice of sensors as in aeronautics. So, the proposed

approach for gas discrimination is done in two parts in

this work:

The relevant measurements are identified by analysing

the physical relationships between the measurable vari-

ables. The study of these physical relations makes it

possible to highlight the linear and non-linear depen-

dencies between the variables and to select the relevant

variables, non-redundant and with a minimum of de-

pendencies.

The Multi-classes Support Vector Machine (MC-

SVM) is then used for classification as it allows the sep-

aration of classes using a wide range of kernel functions

[24]. The issue of the selection of the kernel function as

well as the order or scale of some functions is dealt in

this work by the proposal of an incremental selection

algorithm. The proposed algorithm is iterative, so it is

time consuming, but since the selection of the kernel is

done offline, there will be no impact on the online ex-

ecution of the classification algorithm.In addition, the

selection of the kernel function is done incrementally,

from the simplest function to deploy to the most com-

plex function, so the selected function will be both the

most suitable and the easiest to implement.

Although the classification rates obtained for each

class are satisfactory in the case-study, cases of obser-

vations not correctly classified can arise because of the

overlapping phenomenon, as well as the fact that the

training data is often incomplete. To take these cases

into account, a decision-making algorithm based on the

rate of appearance of a class on a moving window is

proposed [8]. This integration of the temporal notion

and the notion of memory in classification algorithms

based on machine learning has been the subject of sev-

eral research works [2] [26]. Most of them introduce

these notions into the network, so they become char-

acteristics to be identified during the learning process

[15] [13] [14]. This is the case of the Long Short-Term

Memory (LSTM) [22], which are memory networks, for
which the update of one of the outputs of a layer is gov-

erned by a switch whose activation parameter is identi-

fied during the process of learning. This allows informa-

tion to be stored for a defined time interval. Episode-

Based Reasoning (EBR) is another technique based on

the abstraction of temporal sequences of cases, suitable

when the aim is to detect similar temporal episodes

of cases, rather than similar isolated cases [37]. A re-

view of techniques for finding episodic events and repet-

itive events in a data stream is proposed in [20]. In this

paper, we propose a post-learning decision-making al-

gorithm, which relies on the accuracy obtained during

the learning and testing phases. This temporal-based

decision-making scheme takes into account the tempo-

ral relationship of the mixture gas current state with

the previous mixture gas states, ensures temporal sta-

bility of the decision given to the user, and gives the

user information on the relevance of this decision by

displaying the level of confidence configurable by the

user.
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The paper is organized as follows. Section 3 is de-

voted to a description of the experimental setup, the

used sensor, and the data acquisition process. The anal-

ysis and visualization of data for the identification of

relevant measures are presented in section 3. Section 4

presents the proposed classification method where the

MC-SVM method is presented and an incremental al-

gorithm for kernel selection is given. A decision-making

algorithm reducing the rate of non or false detection

is presented in section 5, and experimental results are

given ans discussed in section 6. A conclusion is given

in section 7.

2 Related Works

The association the MOX micro-sensor measurements

with artificial intelligence algorithms for the discrimi-

nation of gases in a mixture has been the subject of

several research works over these past years. This is

due to the significant development of data acquisition,

storage and processing tools as well as the develop-

ment of classification and analysis algorithms. In [17],

the discrimination of three gases (CO, NO2 and O3)

is obtained by an approach consisting of three main

steps: the extraction of temporal attributes from raw

measurements, the selection of the most relevant at-

tributes by the ReliefF algorithm and the classification

of gases by a multi-class SVM. The results presented

in [17], show that the accuracy depends on the number

of attributes selected and the sampling interval. In or-

der to discriminate mixtures of three gases (methane,

carbon monoxide and hydrogen), Principal Component

Analysis(PCA) is used in [5] for feature extraction, and

then compared to Linear Discriminant Analysis (LDA)

and Neuroscale techniques. Compared to PCA, LDA

method allows the reduction of the overlapping between

the classes, and Neuroscale preserves the data struc-

ture, as well as the possibility of incorporating sub-

jective information. In the classification stage, the au-

thors compared three probabilistic methods: Nearest

Neighbors (KNN), Gaussian mixture models (GMM)

and Generative Topographic (GTM). The PCA-GMM

combination gave the best result with an accuracy of

92.7%. Multiple mixtures of CO and NO2 are consid-

ered for discrimination in [11], where two approaches

are proposed. In the first method the raw detest is aug-

mented by calculating the response value, response time

and recovery time, then, PCA is used for feature extrac-

tion. Gas discrimination is performed using Genetic Al-

gorithms optimized Back Propagation Neural Network

(GA-BPNN). The second method use a Convolutional

Neural Network (CNN) for both feature extraction and

selection after transforming response curves into gray

image. Both approaches provide an accuracy of 100%

in different operating conditions. The mapping of raw

data into pixels associated with a CNN for feature ex-

traction and selection is used in [21] for gas discrimina-

tion in a mixture of CO, Methane and Ethylene, with

an accuracy of 97.67%. In [34] a Deep CNN is proposed

and applied for gas discrimination. The network is built

by stacking two consecutive convolutional layers in or-

der to introduce more nonlinearity into the network.

Table 1 summarizes recent work combining MOX

micro-sensor measurements with classification algorithms

for the discrimination of polluting gases in a mixture,

including C0, NO2 and O3. This table shows that some

of the proposed approaches start with an extraction-

selection of relevant features followed by a classification

algorithm, and others directly use classification tech-

niques that include a feature extraction step such as

CNNs. The obtained accuracy for each method given

in Table 1 shows the effectiveness of the proposed ap-

proaches, but also show that an uncertainty persists

and can therefore lead to errors in decision-making.

In this paper, we propose a decision-making algorithm

that can be associated with the methods proposed in

Table 1 to process the uncertainties, and give the user a

final decision with a defined level of confidence, to bet-

ter appreciate the relevance of the decision taken the

discrimination algorithms.

3 Experimental Setup

The test bench used is developed by the laboratory In-

stitut Matériaux, Microélectronique et Nanosciences de

Provence1 (IM2NP). An overview of this equipment is
given in the synoptic diagram (Figure 1). This system

allows the generation of one or more pollutants and

their controlled dilution in a carrier flow of neutral gas

(dry air).

The dilution of the polluting gases is controlled by

the use of mass flow regulators controlling the propor-

tion of each component in the total output flow. They

thus make it possible to generate an output mixture at

low concentration (ppb and ppm ranges). Each pollu-

tant can be generated independently or in mixing mode.

A mixing chamber is placed at the outlet of the dilu-

tion plate to ensure the homogenisation of the mixture

generated. A water steam injection device makes it pos-

sible to humidify the flow generated, with a regulated

relative humidity (adjustable from 0% to 80%). The fi-

nal output flow is adjustable between 0.1 L min−1 and

0.5 L min−1. The entire installation is controlled by an

1 Materials, Microelectronics and Nanosciences Institute of
Provence
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Table 1: Summary of used models and obtained performances

Reference considered gas mixture Features used classification method Accuracy
[17] CO, NO2, O2 7 features selected by ReliefF SVM(RBF kernel) 100%
[5] CO, CH44, H2 PCA for features extraction GMM 92.7%
[11] CO, NO2 Extraction of response value,

response time and recovery
time + PCA

GA+BPNN 100%

[21] CO, Methane and Ethylene Maping Original data into
pxels

CNN 96.67%

[33] Air, CO, Ethylene and
Methane

GRU 2L-ARNN 97.67%

[34] C0, Methane, Hydrogen and
Ethylene

- DCNN 95.2%

Data Acquisition

1. Sensor voltage (a constant)
2. Sensor Current
3. Sensor Resistance
4. Heater I Voltage 
5. Heater I Current
6. Heater I Power
7. Heater II voltage
8. Heater II Current
9. Heater II Power 

Fig. 1: Visual representation of the experimental Setup.

on-board automaton, which controls the dilution flow

rates, the status of the valves as well as the alarms and

safety devices. User control takes place through a user

interface. Two operating modes are possible:

– user mode: the user controls the generation of a gas

mixture (choice of dilution flow rates, flow check,

valve sequencing)

– recipes mode: predefined recipes (or sequences) are

edited and stored.

The used sensor in this study is developed by the

IM2NP laboratory. It is a Metal oxide gas (MOX) sen-

sor integrated with the heating elements in the same

device in order to allow its heating online. The sensor

operates in single sensor mode according to the diagram

in Figure 2 . The sensor is biased at 0.9V using National

Instrument PXIe 4140 source meter, and the heaters are

powered by a triangular shape signal of amplitude 0.4V

centered on 1.6V as illustrated in Figure 3. The mea-

sured variables are: Sensor voltage (a constant), Sensor

Current, Sensor Resistance, Heater 1 Voltage, Heater

1 Current, Heater 1 Power, Heater 2 voltage, Heater 2

Current and Heater 2 Power.

The dynamic variation of the sensor’s heating point

improves its sensitivity to different gases, This behavior

 

Fig. 2: Electrical configuration of the sensor: RS1, RS2,

RS3 and RS4 are the resistances of the four detection

zones. RH1 and RH2 are heating resistances of the two

heaters [31].

can be explained by considering the temperature depen-

dence of the surface coverage of chemisorbed species [6]

[7]. It is demonstrated in [7] that at low temperature,

the desorption phenomenon is weak and a total cover-

age of the sites can be obtained easily by ambient oxy-

gen making any reversible detection impossible. Con-

versely, at high temperature the efficiency of the des-
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Fig. 3: A period of the voltage applied to the heaters.

orption mechanism increases and the system will be less

sensitive. There is thus necessarily an optimum temper-

ature at which the sensor has a maximum of sensitivity.

4 Identification of the relevant measurement

In this work, the aim is to propose an algorithm able to

detect and identify the type of gas among three gases

present in a mixture. The considered gases are: carbon

monoxide (CO), ozone (O3), nitrogen dioxide (NO2),

so, seven classes are possible. The plot of the individu-

ally measured signals, given in Figure 4, shows that it

is not possible to distinguish the seven classes.

The combined plot of the signals measured in three

dimensions, a sample of which is given in Figure 5,

shows that the different classes are separable, and the

profiles of the separating hyperplanes are relatively com-

plex. The use of a Support Vector Machine (SVM) for

the search of speration hyperplanes is therefore an ad-

equate choice. Reducing the amount of variables input

will reduce the complexity of the learning algorithm. In

addition, the variables measured are interdependent, by

looking at the physical meaning of the variables mea-

sured, we can easily see that the resulting physical vari-

able (which capitalises the information contained in the

other variables) is the power which is linked to the volt-

age, current and resistance by the following equations.

P (t) = f(u, i, φR) (1)

The function f can be linear or nonlinear, in the lin-

ear case the relations between the power and the mea-

sured variables, voltage u, current i and and resistance

characteristic φR are:

P (t) = u(t).i(t) = φR.i
2(t) (2)

Equation.2 shows that the power is the physical

variable which synthesizes the information carried by

the other variables, the power of the sensor and the

two powers of the two heaters are therefore selected as

input variables of the classifier. The plot of the three

powers is given in Figure 6, it shows that it is possible

to separate the different classes by hyperplanes.

5 Gas detection and classification

5.1 Support Vector Classification

As illustrated in Figure 7, Support Vector Classification

(SVC) is a supervised classification method, which aims

to find a hyperplane with optimal margin, for the sep-

aration of two classes in a Hibertian space defined by a

reproducing kernel associated with the scalar product

of this space. In this work, the Multi-Classes Support

Vector Machine (MC-SVM) in a ”one against all” con-

figuration is used [24]. In this configuration, n binary

SVM classifiers are built, with n being the number of

classes. Each of these classifiers is trained with a dataset

composed in half of samples representing one of the

classes (class k ∈ [1, n] ) and a second half composed

randomly of the rest of the classes. The classification

results are obtained by a voting strategy: a pattern is

classified to the class where the maximum number of

votes is obtained.

This approach is known in the literature, it results

from the work of Cortes and Vapnik in learning the-

ory since 1995 [12], and is formally described as fol-

lows: Let consider that the learning data matrix (x)

is composed of m attributes or variables representing

monitoring indicators and a corresponding assigned la-

bel value (y = Cl) (l = 1, ..., n). The classifier builds

a model which predicts the target class (y) from the

testing input data (powers data in this case study), by

searching an optimal hyperplane (Figure 7) optimizing

a quadratic problem formalized in Equation 3:

min J (a) = 1
2

N∑
i=1

N∑
j=1

aiajgi (x) gj (x) k (x, x)−
N∑
i=1

ai

s.t :
N∑
i=1

aigi (x) = 0, 0 ≤ ai ≤ Dfor i = 1, ..., N

(3)

where g(x) = 1 if x ∈ C1 and g(x) = −1 if x ∈ C2, a =

[a1, a2, ..., aN ]
T

are the Lagrange multipliers, D is the

penalty parameter, and k(x, x) is the Kernel function.



6 Mohand A. Djeziri et al.

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

(i
)

F
ig

.
4:

V
is

u
al

re
p

re
se

n
ta

ti
on

o
f

th
e

d
is

tr
ib

u
ti

o
n

o
f

th
e

cl
a
ss

es
a
cc

o
rd

in
g

to
th

e
in

it
ia

l
fe

a
tu

re
s.



A temporal-based SVM approach for the detection and identification of pollutant gases in a gas mixture 7

(a) (b)

(c)

Fig. 5: Visual representation of the distribution of the classes according to the initial features. It is impossible to

separate the classes linearly.

In the online stage, the classification of a new sam-

ple data is performed by using the following decision

function:

y =

 1 , if sign

(
S∑

i=1

aSi g
S
i k(xSi , x) + b

)
= 1

−1 , elsewhere

(4)

where:

b =
1

S

S∑
j=1

(
gSj −

S∑
i=1

aSi g
S
i k(xSi , x

S
j )

)
(5)

5.2 Algorithm for the selection of the Kernel function

It is commonly known that the innovative idea of the

SVC is the reducing of the discrimination problem to a

quadratic optimization one, which is based on the use of

Lagrange multipliers for the optimization of the model

(kernel function) parameters. However, one of the per-

sistent problems concerns the selection of the kernel

function for a given classification problem. Among the

works focusing on the choice of kernel functions in the

field of the detection of pollution events, [10] investi-

gate the effects of different kernels embedded in Least

Squares Support Vector Machine (LSSVM) algorithm

and present a new kernel by using a logistic-based neu-

ral network for the detection of water pollution events.

In [4], the Mercer condition is used to identify a com-

posite kernel based on the most known kernel functions

as bases. A Bayesian optimization is used to optimize

the parameters of the defined composite kernel together

with the hyperparameters of the SVM algorithm.

The issue of kernel identification is handled in this

paper with an automatic search algorithm for the most

suitable kernel function, considering a kernel-selection

criterion as a predefined threshold for accuracy obtained
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Support 
 vectors 

Maximum  
margin 

Optimal separating  
hyperplane 

Attribute 1 

Attribute 2 

Learning pattern ∈ class 1 

Learning pattern ∈ class 2 

Testing pattern 

Fig. 7: Representation of the classification principle us-

ing Support Vector Classification

with the confusion matrices. This kernel-selection al-

gorithm, given in Figure 8, is built incrementally, be-

ginning by the linear kernel functions (linear function,

polynomial,...) to the more complex one (Gaussian, Sig-

moid,..) and then the combinations of kernel functions

if the previous functions do not reach the required per-

formance. The search for the kernel function stops when

the preset performance threshold is reached.

To quantify the performance of the classifiers built

with each of the kernels, several metrics can be used.

In classification models, these metrics are the Accu-

racy (ACC), the Precision (PRCN), the Misclassifica-

tion Rate (MR), the Recall, and the F1 score (F1). In

a binary classifier as is the case of this work, Accu-

Begin

Collect Data

Create a training set and a test set 
for each of the classes

Define SVM Structure and choose the kernel 
function  and parameter range : 
• Linear or
• Polynomial or
• Radial Basis function (RBF)
• …

Adjust kernel parameters

Compute the accuracy

train(𝑖𝑆𝑉𝑀), crossValidate(𝑖𝑆𝑉𝑀)
computeMetrics(iSVM)

Train and k-fold cross validate the SVM

𝐹1 𝑠𝑐𝑜𝑟𝑒 > 𝑡ℎ𝑟𝑠ℎ𝑜𝑙𝑑

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 ?

End

No

No

Fig. 8: Kernel-selection algorithm.

racy gives the overall performance at detecting the pos-

itive class and rejecting the negative class. Precision is

the rate at which the model classifies the positive class

amongst whole positively classified instances, whereas

the Recall is the true positive (TP) rate of the model.

Finally, the F1 score is a weighted average between pre-

cision and recall.

Since the aim of each of the binary classifiers is to

accurately detect the positive class, the metrics that are

sensitive to this class are precision and recall. Thus, the

best quantifier for the performance of the model, in this

case, is the F1 score as it is the harmonic mean of the

precision and the recall.

6 Decision making

Decision-making is done more and more via software

interfaces which provide a result without necessarily in-

forming the user of its relevance. The current trend, in

particular in the field of health and the environment, is

to make available to the human operator the informa-
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tion necessary for understanding the relevance of the

decision taken by algorithms [23].

The presence of a single gas or a gas mixture is

detected when the classifier result passes, during oper-

ation, from the normal operation to corresponding class

Ci/i = 1...n. The SVM classifier gives a result (identi-

fies the corresponding gas class) for each observation. In

some cases, the observations cannot be perfectly clas-

sified due to the overlapping phenomenon, and the in-

complete aspect of database used for training. So, an

additional decision-making criterion is presented in this

work.

In fault diagnosis theory, decision making always

comes down to finding a compromise to the false alarms

/ no detection dilemma [18,1]. The word dilemma means

that the improvement of one comes at the expense of

the other. In the case of high-risk applications, it is

preferable to have false alarms which will be checked

and processed by the human operator than non-detection

which can have serious human and material consequences

[19]. In non-safety-critical applications, it is preferable

to filter false alarms by using additional decision-making

criteria based for example on the frequency of occur-

rence of false alarms in an observation window or the

persistence of the alarm over a preset time .

In this work, the original idea is to replace instanta-

neous decision-making on each observation by a decision-

making on a moving observation window, which will

make it possible to master the false alarms and no de-

tection dilemma. This criterion Fri is based on the rate

of appearance of a class on a moving window, it is com-

puted as follows:

Fri =

N∑
j=1

y == Ci

N
(6)

where y is the classifier result, and N is the number

of samples in the observation window. A gas or a gas

mixture is detected if the occurrence of a class exceeds

a previously fixed threshold th (Eq.7). The rate of true

positives (Recall) obtained in the confusion matrix of

each class in the testing step can be used as an indicator

to set the decision threshold th.

Di =

{
1 Fri ≥ thi
0 Fri ≤ thi

(7)

To reduce cases of non-detection, the decision threshold

should be chosen as follows:

thi <= Recalli (8)

where Recalli is the Recall of the ith class during the

testing stages. The greater the difference between thi

and the true positive rate Recalli, the more the rate of

non-detection is reduced.

From the vectorD, a high confidence decision (HCD)

can be obtained by locating the non zero element of D:

HCD = arg max
i

(D) (9)

However, in practice, some sampling instances would

result either in several elements of Fr surpassing the

thresholds or none of them reaching it, thus, crippling

the decision-making step. To avoid such shortfalls, the

decision-making algorithm contains a second condition

that would intervene in these cases. The retained class,

in this cases, is the class that has the greatest Fri, re-

sulting in low confidence decision (LCD):

LCD = arg max
i

(Fri) (10)

7 Experimental results

7.1 Data preparation

The dataset used in this work contains a different num-

ber of samples per class. For binary classifiers, Such

distribution constitutes a problem called unbalanced

learning. Hence, the first step is to balance the training

and test sets. To do so, firstly, the number of samples of

the set with the fewest samples is identified. Then, this

number is used as a reference to build reduced datasets

for the other 6 classes by randomly sampling rows from

the original raw data.

Secondly, the newly reduced class sets are then di-

vided into two parts, 70% for the training and 30% for

the test. These subsets would constitute positive class

information for each of the binary classifiers. Finally,

to each training and test subsets, an identical number

of samples is added randomly from the other classes to

make up the information for the negative class.

7.2 Classification results

The data preparation step results in 7 training sets and

7 test sets. The training sets are then used to train 7

different support vector classifiers, each for a specific

class (gas or a mixture). Figure 9 shows the confusion

matrices of each class obtained from the test results

using its RBF-based corresponding SVM.

To give an understandable interpretation of the re-

sults shown in the confusion matrices, let us consider

the example of the CO gas confusion matrix (Figure 9a).
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The said matrix shows that among 4801 (4767+34) ob-

servations belonging to class CO, 4767 (99.3%) are cor-

rectly classified as CO i.e. True Positive (TP), whereas

34 are been predicted as the negative class even though

they belong to the positive one (CO), thus making them

False Negatives (FN). On the other hand, among the

4801 (4426 + 375) observations belonging to the nega-

tive class, 4426 (92.3%) are predicted as True Negatives

(TN), i.e. they truly do not belong to the CO class, and

375 ones are flagged as negatives while they are not,

rendering them to be False Positives (FP).

The values deduced from each of the confusion ma-

trices (TP, TN, FP, and FN) are used to compute the

metrics evaluating the performance of the model, and

comparing the results obtained from the use of each of

the tested kernels, the linear one, the 2nd-degree poly-

nomial, the 3rd-degree polynomial, and the radial basis

function (RBF). The results for the training of each

of the classifiers and their tests are summarized in Ta-

ble 2, left to right from worst to best according to the

F1 score.

The table shows the evolution of the performance

from adequate in the case of a linear kernel to highly

precise results in the case of an RBF kernel. It also

clearly highlights where the classifiers fall short, and

which classes are the most difficult to predict. These

classes are the classes representing the mixtures CO

+ NO2, CO + O3, and NO2 + O3. As can be seen in

Figure 6, these mixtures overlap with each other as well

as with the classes making it harder to establish a linear

or a polynomial hyperplane to separate them, and thus

explaining poorer performance compared to the other

classes.

Amongst the different kernels, the RBF function de-

livers the best results, overall 7 classes. While its pre-

cision suffers in the case of CO + NO2 mixture, it still

outperforms all the other kernels. Moreover, it delivers

satisfactory results for all the other classes in terms of

Precision and Recall, with an F1 score well over 90%.

These high classification rates can be explained on the

one hand by the efficiency of the proposed classification

algorithm, and on the other hand by the nature of the

application, since it can be seen in Figure 6 that the

classes are separable, it is, therefore, possible to find

a separating hyperplane which gives high accuracy. An

example of such a hyperplane is given in Figure 10. The

figure shows the decision boundary and the support vec-

tors separating the positive class (CO). The profile of

the hyperplane shows the efficiency of SVM for class

separation thanks to a good choice of the kernel func-

tion.

The Recall obtained for the CO class is 98.98%, so,

according to the decision-making criterion proposed in

equation 8, the decision threshold th is fixed in this

case study at 70%, thus reducing the false alarm rate

to zero. For each of the classes considered in this work,

the decision threshold th is chosen while respecting the

inequality of the equation 8.
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Fig. 9: Confusion matrices of test results for each class.
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7.3 Results with decision making

The results highlighted in the previous paragraph are

obtained per class-specific SVM. In this section, on the

other hand, are generalized by creating a new test set

composed of each of the classes’ test subsets and sam-

ples that were unused in previous sets. The new test

set is then used on the Multi-SVM model N samples

at a time. The model will generate a vector of 7 pre-

dictions per sample (One prediction per SVM-specific

class), which will be processed by the decision-making

algorithm described in Section 6. Naturally, the SVM

used in this step are the highest performing for the pre-

vious step i.e. the RBF-based ones.

The results for this test are also indicated in Table 2,

with multiple values for N. These results show how

the decision-making layer drastically improves upon the

existing results notably precision-wise as well as re-

ducing the misclassification rate. They also show that

these results can be further improved by increasing the

sampling window N, reaching near-perfect results with

N=20, at an averaged precision of 99.88%. The confu-

sion matrix for the test with N=20 is shown in Figure

9. The latter shows that from 1680 sampling instances

only 2 were misclassified, giving the model an overall

accuracy of 99.97% (Figure 11).
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Fig. 11: Confusion matrix for the test of the Multi-

SVM RBF-Based model with post-processing decision

making (N=20).

Other techniques of extraction-selection of attributes

associated with the most used classification techniques

were applied to the database used in this work [30] [17].

To better situate the performance of the proposed ap-

proach compared to other techniques, a comparative

analysis is given in the table below which shows that

the proposed approach gives the best accuracy with a

minimum number of measured inputs.

8 Conclusion

A smart gas micro-sensor capable of discriminating three

types of gases, carbon monoxide (CO), ozone (O3) and

nitrogen dioxide (NO2), present in a mixture of gases is

presented in this paper. The proposed approach com-

bines the dynamic online heating of the sensor with an

automatic classification algorithm by Support Vector

Machine. Dynamic heating makes it possible to per-

manently change the operating point of the sensor, an

consequently its sensitivity to different gases. The anal-

ysis of the physical relationship between the measured

variables allowed the identification of the power of the

sensor and of the two powers of the two heaters as rel-

evant variables, and the plotting of the observations

in the spaces of the attributes motivates the choice of

a support vector machine as an automatic classifica-

tion method. Indeed, the SVM offers a large number

of kernel functions from which it is possible to select

the kernels able of building separating hyperplanes for

each class of gas mixture. An incrementalselection al-

gorithm of the kernel function is proposed in this work

with an incremental search approach which ensures the

selection of the most suitable kernel and also the sim-

plest to implement. To deal with cases of uncertainty

and master the false alarms / no detection dilemma,

a decision-making algorithm based on the rate of ap-

pearance of a class on a moving window is proposed.

The experimental results obtained using data from the

IM2NP test bench show the efficiency of the proposed

approach.
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Table 3: Summary of the obtained results using other extraction-selection and classification methods

Refrence Feature selection-extraction
method

classification method Accuracy

[17] 7 features selected by ReliefF SVM(RBF kernel) 100%
[30] Wavelet Decomposition of all

the measured variables
KNN 54.4%

[30] Wavelet Decomposition of all
the measured variables

NN 59.8%

Proposed
approach

Physical analysis Temporal based SVM 100%
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