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Abstract

The four-parameter generalized gamma (GΓ) distribution, also known as the

Amoroso family of distributions, is a flexible and versatile statistical distribution

that encapsulates many well-known lifetime distributions, including the expo-

nential, Weibull, lognormal, and gamma distributions as special instances. The

four-parameter GΓ distribution is shown to be appropriate for fitting skewed

and heavy-tailed data sets. However, even though the GΓ distribution is very

useful and flexible, it remains less studied than its counterparts, probably due

to the difficulty in estimating the parameters of the distribution. In this paper,

we explore several novel iterative parameter estimation approaches for the four-

parameter GΓ distribution, which includes the maximum likelihood estimation

and minimum distance estimation approaches.

Standard error and confidence interval of a function of the parameter esti-

mates based on bootstrap method are also discussed.

An R package is developed based on the proposed estimation methods. Nu-

merical examples and Monte Carlo simulations are used to illustrate the useful-

ness of the proposed approaches for fitting the four-parameter GΓ distribution.
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1. Introduction

The generalized gamma (GΓ) distribution is a statistical distribution origi-

nally introduced by Amoroso [1] and D’Addario [2] as a special case of a math-

ematical function for analyzing and modeling economic income data. The GΓ

distribution is also known as the Amoroso family of distributions. The functional5

form commonly used in practice was suggested by Stacy [3], which corresponds

to a three-parameter exponentiated gamma distribution. The four-parameter

GΓ distribution is a flexible distribution that has been a great interest in many

practical applications. For instance, since the four-parameter GΓ distribution

provides different shapes of hazard function, it can be used to model duration10

or time-to-event data and to describe a wide variety of life-cycle phenomena.

Moreover, in finance and insurance, the GΓ distribution is commonly used as a

model for financial losses, stock exchange prices, or insurance claim sizes, mainly

because it is a fairly flexible positive-skewed distribution. The four-parameter

GΓ distribution includes many well-known distributions as special cases. Fur-15

thermore, since the GΓ distribution can be considered as a sum of independent

exponential random variables, it is also a natural model for individual waiting

times. However, as pointed out by Song [4], despite this wide range of potential

applications, the GΓ distribution is less used in practice, while the major reason

may due to the difficulty of estimating the model parameters. The difficulty lies20

in the issue that different sets of model parameters can provide similar fits of

the GΓ distribution. Therefore, in this paper, we aim to address the problem of

estimating the parameters of the four-parameter GΓ distribution by providing

some feasible estimation methods.

For the parameter estimation of the three-parameter GΓ distribution pro-25

posed in [3], which is a member of the Amoroso family of distributions, it was

first discussed by Parr and Webster [5] and Stacy and Mihram [6]. Different

iterative schemes to obtain the maximum likelihood estimates of the model pa-

rameters have been studied, see, for example, [7, 8, 9, 10, 11, 12, 13]. However,

those iterative algorithms, such as the Newton-Raphson method, to obtain the30
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maximum likelihood estimates may not work well unless an appropriate and re-

liable set of initial values are provided. Nevertheless, as pointed out by Prentice

[9], the asymptotic properties of the maximum likelihood estimates may not

hold even when sample size is large. Hence, Hirose [14, 15] proposed a repa-

rameterization of the three-parameter GΓ distribution function and applied the35

predictor-corrector method with the continuation method [16]. For a compre-

hensive literature review on the maximum likelihood estimation of the three-

parameter GΓ distribution and the iterative approaches to obtain the solution

of the likelihood score equations, one may refer to [12].

For some interesting applications of the three-parameter GΓ distribution in40

the context of time-to-event or lifetime data analysis, the readers can refer to

some recent work by Balakrishnan and Pal [17], Ling [18], Ramos et al. [19] and

Pal et al. [20].

In addition to the maximum likelihood estimation method, moment-based

estimation approaches have been studied in the literature; see, for example,45

[6, 21, 22, 23, 24, 25, 26, 27, 28]. Though, those moment-based methods are dif-

ficult to use due to the fact that different sets of parameters conduce to similar

probability density functions (PDFs). Furthermore, those moment-based meth-

ods are essentially proposed for non-negative data. In the last decades, Bayesian

estimation methods for the three-parameter GΓ distribution have attracted a50

great deal of interest. The main issue of using Bayesian methods resides in the

choice of appropriate priors for the parameters, which is an important prereq-

uisite to the success of the Bayesian approach. Different authors, including [29]

[30] [31] [32] [33] [34], discussed the strengths and weaknesses inaccessible to

theoretical analysis such as different prior distributions can have a great effect55

on the subsequent estimates.

In summary, even for the special case of the four-parameter GΓ distribution,

the moment-based method, the maximum likelihood estimation method, and the

Bayesian method have difficulties and weaknesses. Therefore, for a more general

four-parameter GΓ distribution, special attention is needed for the estimation60

of the model parameters.
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In this article, we study the maximum likelihood estimation method and

propose the minimum distance estimation (MDE) method [35]. The proposed

MDE approach is based on the minimization of various distance metrics between

the theoretical distribution and the observed data. The major contribution of65

this paper is threefold:

• Novel estimation procedures are developed to estimate the model param-

eters for the four-parameter GΓ distribution in order to fit data with

positive and/or negative values with the four-parameter GΓ distribution;

• R package that implements the proposed estimation methods and func-70

tions related to the four-parameter GΓ distribution is developed;

• The proposed estimation methods are shown to be feasible and effective.

The remainder of this article is organized as follows. Section 2 provides the

preliminary knowledge about the Amoroso family of distributions, including the

functional form of the distribution, special cases, and some basic properties. In75

Section 3, different parameter estimation methods for the model parameters

in a four-parameter GΓ distribution are discussed. Specifically, a method to

obtain initial estimates, the maximum likelihood estimation method, and the

minimum distance estimation method are considered. We also discuss a bias-

reduction estimate for the parameter µ and use the bootstrap method to obtain80

the standard error of each estimate and the confidence interval of each parameter

in Section 3. In Section 4, the features of the R package created for the Amoroso

family of distributions are discussed. In Section 5, two numerical examples

based on real data are used to illustrate the estimation methods considered in

this paper. In Section 6, Monte Carlo simulation studies are used to evaluate85

the performance of the proposed estimation methods. Finally, some concluding

remarks are provided in Section 7.
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2. Preliminary Knowledge of Amoroso Family of Distributions

In this section, we first introduce the mathematical notations used and the

four-parameter GΓ distribution considered in this paper. Some properties of90

the four-parameter GΓ distribution will be discussed.

2.1. Notations

The notations used in this paper are the following:

• Upper case letters denote cumulative distribution function (CDF) (e.g.,

G) and lower case letters denote the corresponding PDF (e.g., g).95

• The true distribution is referred to as G, while the empirical distribution

corresponding to n ∈ N independent and identically distributed (i.i.d.)

observations x = (x1, . . . , xn), is referred to as Gn.

• θ is a m-dimensional vector of unknown parameters.

• θ̂ is a m-dimensional vector of estimated parameters.100

• Θ is an open subset of a separable Hubert space.

• Y is a vector of random variables following the four-parameter GΓ with

Y = {Y1, Y2, . . . , Yn}.

• y is the vector of observations with y = {y1, y2, . . . , yn}.

2.2. Amoroso family of distributions and four-parameter Generalized Gamma105

distribution

A random variable Y follows a four-parameter GΓ distribution with PDF

g(y; a, `, c, µ) =
1

Γ(`)

∣∣∣ c
a

∣∣∣ (y − µ
a

)`c−1

exp

[
−
(
y − µ
a

)c]
, (1)

where a ∈ R\{0} is the scale parameter, µ ∈ (−∞,∞) is the location parameter,

` ∈ R+ and c ∈ R\{0} are the shape parameters, and the support of the
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distribution is110 y ≥ µ if a > 0,

y ≤ µ if a < 0.

We denote this distribution as GΓ4(a, `, c, µ) distribution. Note that the PDF

in Eq. (1) is used in Crocks [36], while the probability distribution is defined

for a > 0 and the support of the distribution is µ < y <∞ in the original paper

by Amoroso [1].

The CDF of random variable Y that follows a GΓ4(a, `, c, µ) distribution115

can be expressed as

G(y; a, `, c, µ) =
γ
(
`,
(
y−µ
a

)c)
Γ(`)

, (2)

where γ(s, x) =
∫ x

0
ts−1 exp(−t)dt is the lower incomplete gamma function. In

this paper, we are interested in estimating the parameter vector θ = (a, `, c, µ)

based on the observed sample of size n, y = (y1, y2, . . . , yn), from the GΓ4(a, `, c, µ)

distribution. The properties of the GΓ4(a, `, c, µ) distribution that are used in120

the development of the parameter estimation methods are described here.

Moments. Suppose Y follows the GΓ4(a, `, c, µ) distribution, the rth moment

of Y (r = 1, 2, . . .) is

E[Y r] =

 ar
Γ( c`+rc )

Γ(`) , if r/c > −`

∞, otherwise.

Then, the mean and variance of the random variable Y are

E[Y ] =
aΓ
(
`+ 1

c

)
Γ(`)

+ µ (3)

and V ar[Y ] = a2

{
Γ
(
`+ 2

c

)
Γ(`)−

[
Γ
(
`+ 1

c

)]2
Γ(`)2

}
,

respectively.

Distribution of transformed random variables. Suppose Y follows the GΓ4(a, `, c, µ =

0) distribution, then we have125
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(1) X = Y s ∼ GΓ(as, `, c/s, 0);

(2) Z = ωY ∼ GΓ(ωa, `, c, 0);

(3) W = Y c ∼ GΓ(ac, `, 1, 0) (i.e., a two-parameter gamma distribution with

scale parameter ac and shape parameter `);

(4) If V follows a two-parameter gamma distribution with scale parameter 1130

and shape parameter `, then Y = aV
1
c + µ ∼ GΓ(a, `, c, µ).

Property (4) provides a simple way to generate a random sample of the four-

parameter GΓ distribution in using the quantile function of the two-parameter

gamma distribution.

Special cases. As mentioned in the Section 1, the four-parameter GΓ distribu-135

tion encapsulates a large number of well-known and widely used distributions.

These connections are presented in Figure 1. Crocks [36] also presented a re-

view of important properties of the Amoroso family of distributions and pointed

out that many commonly used probability distributions occur as special cases or

limits (such as the power law, the log-gamma, the log-normal, and the normal140

distributions).

The four-parameter GΓ model is important generalizations of other models

and the inferential procedures of these special cases have been studied in the

literature. For instance, for statistical estimation and inferential procedures of

the generalized Fisher-Tippett distribution (also known as the generalized ex-145

treme value distribution), the generalized Weibull distribution, and the Pearson

Type III distribution, one can refer to [37], [38], and [39], respectively, and the

references therein.

3. Parameter Estimation Methods

3.1. A method to obtain initial estimates150

Based on the observed sample y = (y1, y2, . . . , yn), we denote the i-th order

statistic of the observed sample as yi:n. Based on the observed data, the pa-

rameter space can be written as two disjoint sets {a > 0, µ ∈ (y1:n,∞), ` ∈ R+,
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Figure 1: Amoroso family of distributions and their connections
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c ∈ R\{0}} and {a < 0, µ ∈ (−∞, yn:n), ` ∈ R+, c ∈ R\{0}}, where yi:n is

the i-th order statistic of the observed sample y = (y1, y2, . . . , yn). Therefore,155

the estimation in each of the two disjoint parameter spaces can be considered

separately and then the two sets of estimates are compared.

Usually, due to the form of the four-parameter GΓ distribution, close-formed

solution of the parameter estimates are not available and iterative procedures

are needed to obtain the estimates. In the past years, iterative procedures160

coupled with Monte Carlo simulation have been largely studied for estimating

the four-parameter GΓ distribution [13, 27, 40]. Since those iterative procedures

require a reliable starting value of the estimates, we propose here a method to

obtain the initial estimates.

For a > 0, since the support of the distribution is y > µ, we set the initial165

estimate of µ as µ̂I = py1:n, where p ≤ 1 when y1:n > 0 and µ̂I = qy1:n, where

q ≥ 1 when y1:n < 0, and transformed the observed data by xi:n = yi:n − µ̂I ,

i = 1, 2, . . . , n. Note that when p = 1, x1:n = 0 which needs to be discarded in

the process of obtaining the initial estimates of parameters a, l and c to avoid

computational error (e.g., taking logarithm of x1:n results in −∞ if x1:n = 0).170

Similarly, for a < 0, since the support of the distribution is y < µ, we set the

initial estimate of µ as µ̂I = qyn:n, where q ≥ 1 when yn:n > 0 and µ̂I = pyn:n,

where p ≤ 1 when yn:n < 0, and transformed the observed data by xi:n =

yi:n − µ̂I , i = 1, 2, . . . , n. When q = 1, xn:n = 0 which needs to be discarded in

the process of obtaining the initial estimates of parameters a, l and c to avoid175

computational error. Here, we suggest to use the value p = 0.99 and q = 1.01.

Using the property that W = (Y − µ)c follows a two-parameter gamma

distribution with scale parameter ac and shape parameter ` if Y follows the

GΓ(a, `, c, µ) distribution, and the method of moment estimates of the scale and

shape parameters of two-parameter gamma distribution, the proposed procedure180

to obtain the initial parameter estimates are described as follows:
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Step A1. Obtain an initial estimate of µ as

µ̂I =



py1:n, when y1:n > 0, for a > 0;

qy1:n, when y1:n < 0, for a > 0;

qyn:n, when yn:n > 0, for a < 0;

pyn:n, when yn:n < 0, for a < 0,

with p ≤ 1 and q ≥ 1.

Step A2. Compute xi:n = yi:n−µI (i = 1, 2, . . . , n) and discard the values xi:n = 0;

Step A3. Consider a sequence of values for parameter c, cj , j = 1, 2, . . . , J ;185

Step A4. Fixed the value of c = cj , compute wi:n = x
cj
i:n (i = 1, 2, . . . , n);

Step A5. Obtain the estimates of a and ` as

aj =

(
s2
w

w̄

)1/cj

and `j =

(
w̄2

s2
w

)
,

respectively, where

w̄ =
1

n

n∑
i=1

wi and s2
w =

1

n− 1

n∑
i=1

(wi − w̄)2;

Step A6. Compute the likelihood of the observed data based on parameter vector

θ = (aj , `j , cj , µI):

Lj = L(y;θ = (aj , `j , cj , µI)) =

n∏
i=1

g(yi; aj , `j , cj , µI);

Step A7. Repeat Steps A3–A6 for different values of cj to obtain Lj , j = 1, 2, . . . , J ;

Step A8. Compare the values of the likelihood Lj , j = 1, 2, . . . , J to obtain j∗ in

which

Lj∗ = max
j
Lj ;

Step A9. Set the initial estimate of θ as θ̂I = (aj∗ , `j∗ , cj∗ , µI).190

The above algorithm can be used to obtain initial estimates of θ for a > 0 and

a < 0.
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3.2. Maximum likelihood estimation

The maximum likelihood estimate (MLE) of the parameter vector θ =

(a, `, c, µ), denoted as θ̂ML = (âML, ˆ̀
ML, ĉML, µ̂ML) can be obtained by maxi-

mizing the likelihood function

L(y;θ = (a, `, c, µ)) =

n∏
i=1

g(yi; a, `, c, µ).

We can first obtain the MLE of θ in the parameter space {a > 0, µ ∈ (y1:n,∞),

` ∈ R+, c ∈ R\{0}}, denoted as θ̂ML+, and then obtain the MLE of θ in the195

parameter space {a < 0, µ ∈ (−∞, yn:n), ` ∈ R+, c ∈ R\{0}}, denoted as

θ̂ML−. The MLE of θ can be obtained as

θ̂ML =

θ̂ML+, if L(y; θ̂ML+) > L(y; θ̂ML−),

θ̂ML−, if L(y; θ̂ML+) < L(y; θ̂ML−).

(4)

3.3. Minimum distance estimation based on nonparametric density estimation

The MDE method [35, 41] based on nonparametric density estimation refers

to a very general technique that formalizes the parameters inference problem as200

a problem of minimizing a distance, over the set of parameter θ ∈ Θ, between

the model PDF g(x;θ) and some empirical density estimate, f̂n obtained from

a sample of size n. Formally, the main objective of the MDE is to minimize the

distance between g(x;θ) and f̂n(x) with respect to θ = (a, `, c, µ), i.e.,

θ̂ = argmin
θ∈Θ

d(g(x;θ)||f̂n(x)),

where d(g||f) denotes any proper distance or divergence function that evalu-205

ates the closeness of two density functions g and f . Wolfowitz [35] showed that

MDE is more robust to departures from underlying assumptions than maxi-

mum likelihood estimation. Millar [42] explored the asymptotic behavior of the

MDE within a general framework. The MDE approach is different from the

moment-based or maximum likelihood approach and is widely studied in the210

literature [41]. The classic examples of this method are the least-square and the

minimum chi-square estimators.
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Based on the observed sample y = (y1, y2, . . . , yn), we consider the empirical

density estimate based on the Gaussian kernel density estimate f̂n. The Gaus-

sian kernel density estimate, f̂n, of a univariate density f is (see, for example,215

[43])

f̂n(x) =
1

n

n∑
i=1

K(x− yi;h)

h
,

where K(x;h) ∝ exp[−x2/(2h2)] is the Gaussian kernel function, h is the

smoothing parameter (bandwidth) chosen to be 0.9 times the minimum of

the standard deviation and the interquartile range of the sample y divided

by 1.34 × n−1/5 [44]. Specifically, we discretize the values of x into N points

(x1, x2, . . . , xN ) and minimizing the function

N∑
k=1

d(g(xk; a, `, c, µ)||f̂n(xk)).

The following distance or divergence measures are considered.

Kullback-Leibler divergence. The Kullback-Leibler divergence between two den-

sities f and g is defined as

dKL(g(x)||f(x)) =

∫
g(x) ln

[
g(x)

f(x)

]
dx.

The estimator of θ, denoted as θ̂KL, based on minimizing Kullback-Leibler

divergence can be obtained as

θ̂KL = argmin
θ∈Θ

{
N∑
k=1

∣∣∣∣∣g(xk;θ) ln

[
g(xk;θ)

f̂n(xk)

]∣∣∣∣∣
}
. (5)

Jensen-Shanon Bregman divergence. Since the Kullback-Leibler divergence de-

fined above is not symmetric (i.e., DKL(g(x)||f(x)) 6= (f(x)||g(x)), we consider

the average of the two divergence measures

1

2

∫ {
g(x) ln

[
g(x)

f(x)

]
+ f(x) ln

[
f(x)

g(x)

]}
dx,

which is equivalent to consider the Jensen-Shanon Bregman divergence defined

as

dJSB(g(x)||f(x)) =

∫
[g(x)− f(x)] ln

[
g(x)

f(x)

]
dx.
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The estimator of θ, denoted as θ̂JSB , based on minimizing the Jensen-Shanon220

Bregman divergence can be obtained as

θ̂JSB = argmin
θ∈Θ

{
N∑
k=1

∣∣∣∣∣g(xk;θ) ln

[
g(xk;θ)

f̂n(xk)

]∣∣∣∣∣+

∣∣∣∣∣f̂n(xk) ln

[
f̂n(xk)

g(xk;θ)

]∣∣∣∣∣
}
. (6)

Hellinger distance. The Hellinger distance between two densities f and g is

defined as

dHD(g(x)||f(x)) =

∫ [√
g(x)−

√
f(x)

]2
.

The estimator of θ, denoted as θ̂HD, based on minimizing Hellinger distance

can be obtained as

θ̂HD = argmin
θ∈Θ

{
N∑
k=1

[√
g(xk;θ)−

√
f̂n(xk)

]2
}
. (7)

Wassertein distance. The Wassertein distance (also known as Kantorovich dis-

tance) is an interesting metric on probability distributions and popular in many

areas of statistics and machine learning. An estimate of θ based on Wassertein

distance can be obtained by minimizing the function

dWD(g(x)||f(x)) =

[∫
|g(x)− f(x)|δdx

] 1
δ

.

Based on the N discretized points, the estimator of θ, denoted as θ̂WD, based

on minimizing Wassertein distance can be obtained as225

θ̂WD = argmin
θ∈Θ


[

1

N

N∑
k=1

|g(xk;θ)− f̂n(xk)|δ
] 1
δ

 . (8)

Here, we consider δ = 4. Minimum Wasserstein distance estimators are

particular instances of minimum distance estimators [41] and appear to be

practical and robust alternatives to likelihood-based estimation in the setting of

generative models. The study asymptotic properties of such minimum Wasser-

stein distance estimators, complementing results derived by Bassetti, Bodini230

and Regazzini [45], are presented in [46].
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Squared Euclidean distance. The squared Euclidean distance between two den-

sities f and g is defined as

dSE(g(x)||f(x)) =

∫
[g(x)− f(x)]2.

The estimator of θ, denoted as θ̂SE , based on minimizing squared Euclidean

distance can be obtained as

θ̂SE = argmin
θ∈Θ

{[
1

N

N∑
k=1

|g(xk;θ)− f̂n(xk)|2
]}

. (9)

Note that the estimator obtained based minimizing the squared Euclidean dis-

tance can be viewed as a special case of the minimum Wasserstein distance235

estimator when δ = 2.

3.4. Minimum distance estimation based on empirical CDF

Based on the observed sample y = (y1, y2, . . . , yn), we consider the empirical

CDF F̂n as

F̂n(yi:n) =
i− 0.5

n
,

for i = 1, 2, . . . , n. Note that other kinds of nonparametric estimate of CDF,

such as F̂n(xi:n) = i/(n + 1) can be considered here. Then, the minimum

distance estimate based on empirical CDF can be obtained by minimizing the

function
n∑
i=1

D(G(yi:n; a, `, c, µ)||F̂n(yi:n)).

The following distance or divergence measures are considered.240

Hellinger distance. The Hellinger distance between two CDFs F and G is de-

fined as

DHD(G(y)||F (y)) =

∫
[
√
G(y)−

√
F (y)]2.

The estimator of θ, denoted as θ̂HDC , based on minimizing Hellinger distance

can be obtained as

θ̂HDC = argmin
θ∈Θ

{
n∑
i=1

[√
G(yi:n;θ)−

√
F̂n(yi:n)

]2
}
. (10)
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Wassertein distance. The Wassertein distance between two CDFs F and G is

defined as

DWD(G(y), F (y)) =

[∫
|G(y)− F (y)|δdy

]1/δ

.

The estimator of θ, denoted as θ̂WDC , based on minimizing Wassertein distance

can be obtained as

θ̂WDC = argmin
θ∈Θ


[

1

n

n∑
i=1

|G(yi:n;θ)− F̂n(yi:n)|δ
] 1
δ

 . (11)

Here, we consider δ = 4.245

Squared Euclidean distance. The squared Euclidean distance between two CDFs

F and G is defined as

DSE(G(y), F (y)) =

∫
[G(y)− F (y)]2.

The estimator of θ, denoted as θ̂SEC , based on minimizing squared Euclidean

distance can be obtained as

θ̂SEC = argmin
θ∈Θ

{
1

n

n∑
i=1

[
G(yi:n;θ)− F̂n(yi:n)

]2}
. (12)

For the MDE based on nonparametric density estimation and the MDE based

on empirical CDF, similar to the MLE, we can first obtain the MDE of θ in the

parameter space {a > 0, µ ∈ (y1:n,∞), ` ∈ R+, c ∈ R\{0}}, denoted as θ̂MD+,250

and then obtain the MDE of θ in the parameter space {a < 0, µ ∈ (−∞, yn:n),

` ∈ R+, c ∈ R\{0}}, denoted as θ̂MD−. The MDE of θ can be obtained as

θ̂MD =

θ̂MD+, if d(g(x; θ̂MD+)||fn(x)) < d(g(x; θ̂MD−)||fn(x))

θ̂MD−, if d(g(x; θ̂MD+)||fn(x)) > d(g(x; θ̂MD−)||fn(x)).

3.5. Bias-reduced estimator for parameter µ

In Sections 3.2, 3.3 and 3.4, we studied different methods to obtain the four

parameters in the four-parameter GΓ distribution. After obtaining the estimates255
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of a, `, c (denoted as â, ˆ̀, ĉ), from Eq. (3), a bias-reduced estimator of µ can

be obtained based on the first sample moment as

µ̂BR =


min

{
y1:n,

1
n

n∑
i=1

yi −
âΓ(ˆ̀+1/ĉ)

Γ(ˆ̀)

}
, for â > 0,

max

{
yn:n,

1
n

n∑
i=1

yi −
âΓ(ˆ̀+1/ĉ)

Γ(ˆ̀)

}
, for â < 0.

(13)

3.6. Standard error estimation and confidence interval based on bootstrap pro-

cedure

In statistical practice, in addition to reporting point estimates of the model260

parameters, it is desirable to give an estimate of the variation of each parameter

estimate or an interval estimate with a certain degree of confidence for each

parameter or a function of the parameters (e.g., the percentiles and survival

probabilities) in general. Since the analytic asymptotic variances of the estima-

tors proposed in Section 3.2, 3.3, and 3.4 are intractable due to different reasons265

such as the parameter spaces are depending on the parameters themselves, we

propose using the bootstrap method (see, for example, [47]) to estimate the stan-

dard error of the estimate and the confidence interval of a function of model

parameters, λ(a, `, c, µ) in the four-parameter GΓ distribution, in which the in-

dividual model parameters can be considered as special cases of the function λ.270

Suppose the estimate of the parameter vector θ = (a, `, c, µ) obtained by one of

the methods presented in Sections 3.2, 3.3, and 3.4 is denoted as θ̂∗ = (â, ˆ̀, ĉ, µ̂),

where ∗ = ML,KL, JSB,HD,WD,SE,HDC,WDC, or SEC, the following

bootstrap procedure can be used to obtain the standard error estimate and the

confidence interval of a function of the model parameters λ(a, `, c, µ):275

Step B1. Generate a bootstrap sample, y(b) = (y
(b)
1 , y

(b)
2 , . . . , y

(b)
n ), from the four-

parameter GΓ distribution with parameter vector θ̂∗ = (â, ˆ̀, ĉ, µ̂) using

Property (4) presented in Section 2.2.

Step B2. Based on the bootstrap sample y(b), obtain the estimates of the four pa-

rameters using the same method to obtain θ̂∗, and denote the estimate of280

θ based on y(b) as θ̂
(b)

∗ = (â(b), ˆ̀(b), ĉ(b), µ̂(b)).

16



Step B3. Repeat Steps B1–B2 for B times to obtain θ̂
(1)

∗ , θ̂
(2)

∗ , . . . , θ̂
(B)

∗ .

Step B4. The bootstrap estimate of standard error of λ(â, ˆ̀, ĉ, µ̂) can be obtained

as √√√√ 1

B

B∑
b=1

[λ(â(b), ˆ̀(b), ĉ(b), µ̂(b))− λ̄]2,

where285

λ̄ =
1

B

B∑
b=1

λ(â(b), ˆ̀(b), ĉ(b), µ̂(b)).

Step B5. Order λ(1), λ(2), . . ., λ(B), where λ(b) = λ(â(b), ˆ̀(b), ĉ(b), µ̂(b)), to obtain

λ[1] < λ[2] < . . . < λ[B]. Then, a 100(1 − π)% percentile bootstrap confi-

dence interval of λ(a, `, c, µ) can be obtained as{
λ[int(B(π/2))], λ[int(B(1−π/2))]

}
,

where int(x) is the integer part of x.

Note that if one wants to estimate the standard error and/or construct confi-290

dence interval for a particular parameter, for example the parameter a, we can

set λ(a, `, c, µ) = a.

4. R Package

There are some existing R packages that have the capability to estimate the

parameter of different statistical distributions using maximum likelihood esti-295

mation method in which suitable modifications of the R programs are needed for

applying to the four-parameter GΓ distribution. For example, the fitdistrplus

package [48], the MASS package [49], and the survival package [50]. There are

also some R packages for fitting the three-parameter generalized gamma distri-

bution, a special case of the four-parameter GΓ distribution with µ = 0 such as300

the fit.GenGamma function in the R package temporal (Parametric Time to

Event Analysis) [51]. However, these existing R functions can only obtain the

17



maximum likelihood estimates of the model parameters for some special cases

of the four-parameter GΓ distribution with c > 0 (power shape parameter)

and a > 0 (positive scale parameter) or require substantial R programming to305

modify the code.

Here, we aim to develop an R package to estimate the parameters of the

four-parameter GΓ distribution based on different estimation methods proposed

in Section 3. The package called AmoRosoDistrib (https://github.com/

ccombesGG4/AmoRosoDistrib/) written in R [52] is a general package that aims310

at fitting univariate parametric distributions in the Amoroso family of distribu-

tions with the scale parameter a ∈ R\{0}, the location parameter µ ∈ (−∞,∞)

and the shape parameters ` ∈ R+ and c ∈ R\{0}.

The AmoRosoDistrib package also provides the PDF, CDF, quantile func-

tion, hazard function for the four-parameter GΓ distribution using the parametriza-315

tion originating from Amoroso [1]. The package also includes a random number

generation for the four-parameter GΓ distribution based on the property that

if Z ∼ Gamma (1, `), then Y = aZ
1
c + µ ∼ GG(a, `, c, µ).

The AmoRosoDistrib package includes different parameter estimation meth-

ods based on optimization approach to fit the univariate population. By default,320

direct optimization is performed using the general-purpose constraint optimiza-

tion function constrOptim with Nelder-Mead method available in the R package

stats [52] which minimizes a function subject to linear inequality constraints

using an adaptive barrier algorithm. In summary, the nine estimation methods

that are provided in the package are:325

1. Maximum Likelihood Estimate: fit.mle() (see, Eq. (4));

2. Minimum Kullback-Leibler divergence estimate based on PDF: fit.mkle()

(see, Eq. (5));

3. Minimum Jensen-Shanon divergence estimate based on PDF: fit.mjse()

(see, Eq. (6));330

4. Minimum Hellinger distance estimate based on PDF: fit.mhe() (see, Eq.

(7));
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5. Minimum Wasserstein distance estimate based on PDF: fit.mwe() (see,

Eq. (8));

6. Minimum squared distance estimate based on PDF: fit.msqe() (see, Eq.335

(9));

7. Minimum Hellinger distance estimate based on CDF: fit.mhdfe() (see,

Eq. (10));

8. Minimum Wasserstein distance estimate based based on CDF: fit.mwdfe()

(see, Eq. (11));340

9. Minimum squared distance estimate based on CDF: fit.msqdfe() (see,

Eq. (12)).

For all these estimation methods, the users have the flexibility to provide the

initial values of the parameters. Since the initial values are essential for the

optimization algorithm and they may have a strong impact on the quality of the345

estimates due to the problem of local optimum, we have also provide the function

called init theta() in the AmoRosoDistrib package to obtain reasonable

initial values based on the method presented in Section 3.1. Moreover, we also

provide the function called mu bias reduced estimate to compute the bias-

reduced estimator for parameter µ based on Eq. (13).350

In addition, the AmoRosoDistrib package also provides functions to com-

pute different theoretical characteristics of the GΓ4 distributions (i.e., the values

of the parameters are input variables) and different statistics computed from a

sample (i.e., the data are the input variables):

• Theoretical mean: mean theo;355

• Theoretical variance: var theo;

• Theoretical moments: moment theo;

• Sample moments: moment;

• Sample skewness: skewness;

• Sample kurtosis: kurtosis.360
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5. Numerical Examples

In this section, we use two real data examples to illustrate the proposed

parameter estimation procedures for four-parameter GΓ distribution.

5.1. Neurotransmission in Guinea Pig Brains (paulsen data)

The paulsen data frame in R package boot [53, 47] has 346 observations of365

the spontaneous current flowing into individual brain cells in the brain of adult

guinea pigs. The currents are measured in pico-amperes. These observations

are obtained from an experiment to see if the current flow was quantal in nature

[54].

We fit the paulsen data by using the four-parameter GΓ distribution. First,370

we use the method proposed in Section 3.1 with 1,000 equal-spaced points in

(−20, 20) as the sequence of values for parameter c to obtain the initial value

of θ in the parameter space Ω+ = {a > 0, µ ∈ (y1:n,∞), ` ∈ R+, c ∈ R\{0}},

and the initial value of θ in the parameter space Ω− = {a < 0, µ ∈ (−∞, yn:n),

` ∈ R+, c ∈ R\{0}}. Then, based on these initial estimates, we obtain the375

parameter estimates using the estimation methods described in Section 3 in

parameter spaces Ω+ and Ω−. The parameter estimates are presented in Table

1 and the parameter estimates that give a better value of objective function are

indicated by an asterisk. The histogram and the fitted PDFs for the paulsen

data with the two initial estimates, and the estimates obtained from different380

estimation methods (i.e., the set of estimates with an asterisk in Table 1) are

presented in Figure 2. From Figure 2, we observe that all the proposed methods,

including the initial estimates, provide a reasonable fit to the data. Moreover,

the fitted PDFs based on different parameter estimation methods are similar

except for the initial estimate in parameter spaces Ω− and the MDE-HD.385

To provide an estimate of the variation of each parameter estimate and

an interval estimate with a certain degree of confidence for each parameter, we

compute the estimated standard errors of the selected point estimates (indicated

with asterisk in Table 1) and the 95% confidence intervals the four parameters
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Table 1: Parameter estimates of the four-parameter GΓ distribution based on different esti-

mation methods for the paulsen data set.

Value of

Parameter Parameter estimates objective

Methods space a ` c µ function

Initial Ω+ 2.56418 2.65481 0.98098 2.87100 −949.2714*

Ω− −24.25277 0.21465 20.00000 29.08800 −950.3481

MLE Ω+ 0.00243 20.94687 0.38253 2.23448 −946.1885

Ω− −33.63409 0.19869 30.07615 38.39699 −941.8875*

MDE-KL Ω+ 2.46675 2.74086 0.94761 2.90000 3.577317

Ω− −34.21816 0.30807 19.84622 39.15368 2.43993*

MDE-JSB Ω+ 1.35520 3.75067 0.81873 2.88080 7.25734

Ω− −35.00385 0.31365 21.09198 39.99006 4.86410*

MDE-HD Ω+ 4.36420 1.79173 1.16580 2.90000 0.32401

Ω− −351.85447 0.61295 141.59483 357.89817 0.02574*

MDE-WD Ω+ 0.00005 27.45406 0.28308 2.75488 0.01190

Ω− −113.95793 0.25992 85.50569 118.82425 0.00792*

MDE-SE Ω+ 0.00011 27.18671 0.29909 2.55018 0.04358

Ω− −213.03378 0.31778 137.54679 218.10832 0.00505*

MDE-HDC Ω+ 2.19365 2.96368 0.98964 2.90000 0.18574*

Ω− −41.89894 0.08910 81.44715 46.52610 0.21051

MDE-WDC Ω+ 0.76866 4.48282 0.7036 2.90000 0.03549

Ω− −104.08400 0.12016 167.1149 108.88144 0.02908*

MDE-SEC Ω+ 0.21302 6.98729 0.57329 2.90000 0.28877

Ω− −154.48710 0.16138 192.87155 159.35486 0.19522*

* indicates parameter estimates that give a better value of objective function.
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Figure 2: Histogram and fitted PDFs of the paulsen data set.

based on the bootstrap procedure presented in Section 3.6 with B = 1, 000390

bootstrap samples. The results are presented in Table 2.

5.2. Anorexia Data on Weight Change (anorexia data)

The anorexia data set in the MASS package [49] contains the weight change

data for young female anorexia patients. Here, the studied variable is the Weight

of the patient after the study period (in lbs.): Postwt. There are 72 observations395

in the data set. The objective of this example is to study the behavior of the

Table 2: Bootstrap standard error (SE) estimates and 95% confidence interval (CI) based

on 1,000 bootstrap data sets according to the four-parameter GΓ distribution based on the

different parameter estimates (indicated with an asterisk) in Table 1.
â ˆ̀ ĉ µ̂

Methods SE 95% CI SE 95% CI SE 95% CI SE 95% CI

MLE 16.389 (−38.577,−22.297) 0.062 (0.150, 0.332) 12.256 (25.631, 66.959) 16.545 (31.856, 78.683)

MDE-KL 3.386 (−32.832,−22.27) 0.111 (0.342, 0.707) 2.501 (12.064, 18.916) 3.456 (34.426, 41.243)

MDE-JSB 3.180 (−32.077,−22.433) 0.120 (0.350, 0.749) 2.657 (12.161, 19.952) 3.220 (33.773, 40.975)

MDE-HD 80.815 (−120.11,−23.148) 0.254 (0.400, 1.164) 22.790 (12.283, 86.72) 81.621 (33.259, 276.734)

MDE-WD 18.445 (−70.527,−29.073) 0.107 (0.305, 0.609) 12.183 (23.873, 62.426) 18.466 (52.859, 107.98)

MDE-SE 26.517 (−97.982,−36.992) 0.125 (0.370, 0.723) 14.570 (29.125, 72.250) 26.598 (72.134, 150.519)

MDE-HDC 2.658 (0.011, 8.143) 12.832 (1.525, 42.002) 0.530 (0.455, 2.052) 0.690 (2.311, 3.644)

MDE-WDC 25.040 (−74.122,−26.8) 0.064 (0.053, 0.244) 100.981 (92.511, 436.78) 25.146 (43.385, 119.962)

MDE-SEC 45.799 (−122.874,−27.732) 0.071 (0.095, 0.316) 64.087 (87.123, 261.553) 45.929 (55.326, 195.493)
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Table 3: Parameter estimates of the four-parameter GΓ distribution based on different esti-

mation methods for the anorexia data set.
Value of

Parameter Parameter estimates objective

Methods space a ` c µ function

Initial Ω+ 25.92861 0.32126 4.38438 70.58700 −247.7085

Ω− −32.07908 0.08792 18.91892 104.63600 −246.4883*

MLE Ω+ 26.38376 0.26558 4.46531 71.20407 247.0739*

Ω− −31.70010 0.10629 15.44827 104.47086 246.4163

MDE-KL Ω+ 19.95212 0.83938 2.02986 70.38661 0.9072

Ω− −56.07346 0.31234 12.66618 130.71678 0.72463*

MDE-JSB Ω+ 0.018040 51.72513 0.52424 51.02371 1.66871

Ω− −33.86042 0.28699 7.24023 107.65803 1.1343*

MDE-HD Ω+ 24.75166 0.42261 3.26804 70.83969 0.0531

Ω− −34.07224 0.27576 7.45461 107.65995 0.0121*

MDE-WD Ω+ 19.05471 0.90292 1.86721 70.37946 0.0028

Ω− −36.82913 0.25279 8.99935 110.51578 0.0021*

MDE-SE Ω+ 18.72147 1.00642 1.89545 69.24949 0.0029

Ω− −35.27432 0.27184 8.00305 108.99058 0.0014*

MDE-HDC Ω+ 15.90206 1.13124 1.71907 70.00529 0.0156

Ω− −32.52647 0.13146 13.79075 105.64742 0.0153*

MDE-WDC Ω+ 14.18711 1.34909 1.59308 69.73335 0.0236

Ω− −40.37422 0.29562 10.11036 115.24716 0.0228*

MDE-SEC Ω+ 16.87272 0.99972 1.79398 70.42269 0.0263

Ω− −35.81867 0.21207 10.84299 109.69528 0.0232*

* indicates parameter estimates that give a better value of objective function.

proposed estimation methods based on a relatively small sample.

Following the same approach in the previous numerical example in Section

5.1, the parameter estimates are presented in Table 3 and the parameter esti-

mates that give a better value of objective function are indicated by an asterisk.400

The histogram and the fitted PDFs for the variable Postwt in anorexia data

set with the two initial estimates, and the estimates obtained from different

estimation methods (i.e., the set of estimates with an asterisk in Table 3) are

presented in Figure 3. From Figure 3, we observe that all the proposed methods,

provide a reasonable fit to the data, however, the variation between the fitted405

PDFs based on different parameter estimation methods are larger compared to

the example in Section 5.1 probably due to the small sample size.

To provide an estimate of the variation of each parameter estimate and
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Figure 3: Histogram and fitted PDFs of the anorexia data set.

an interval estimate with a certain degree of confidence for each parameter, we

compute the estimated standard errors of the selected point estimates (indicated410

with asterisk in Table 3) and the 95% confidence intervals the four parameters

based on the bootstrap procedure presented in Section 3.6 with B = 1, 000

bootstrap samples. The results are presented in Table 4.

Table 4: Bootstrap standard error (SE) estimates and 95% confidence interval (CI) based

on 1,000 bootstrap data sets according to the four-parameter GΓ distribution based on the

different parameter estimates in Table 3.
â ˆ̀ ĉ µ̂

Methods SE 95% CI SE 95% CI SE 95% CI SE 95% CI

MLE 3.010 (25.431, 31.467) 0.496 (0.109, 0.573) 456.541 (4.053, 59.019) 0.629 (71.367, 73.094)

MDE-KL 14.052 (−68.267,−34.654) 0.722 (0.305, 2.921) 5.261 (6.835, 24.407) 15.444 (117.357, 156.425)

MDE-JSB 8.608 (−42.544,−25.217) 1.521 (0.267, 4.251) 4.348 (4.567, 20.874) 12.231 (105.939, 136.417)

MDE-HD 53.009 (−38.002,−26.799) 11.201 (0.278, 8.543) 3.077 (5.105, 12.173) 67.908 (105.403, 404.756)

MDE-WD 25.822 (−56.633,−26.289) 4.557 (0.255, 10.020) 6.193 (5.518, 22.031) 32.704 (108.004, 217.270)

MDE-SE 47.222 (−76.828,−25.871) 10.960 (0.271, 34.013) 7.617 (5.359, 27.562) 63.083 (107.004, 296.130)

MDE-HDC 21.764 (−35.483,−22.882) 2.432 (0.049, 4.646) 57.176 (7.466, 220.913) 25.370 (104.486, 198.399)

MDE-WDC 49.836 (−102.387,−25.894) 3.952 (0.158, 4.892) 38.825 (8.351, 117.528) 52.500 (109.416, 272.711)

MDE-SEC 48.788 (−61.370,−26.048) 3.799 (0.112, 4.463) 42.775 (8.347, 169.406) 52.058 (106.776, 281.766)
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6. Monte Carlo Simulation Studies

In order to give a comprehensive evaluation of the proposed estimation pro-415

cedures, we conduct extensive experimentation on synthetic univariate popula-

tions drawn from a specific Amoroso distribution, and compare results obtained

with the parameter estimation methods presented in Section 3.

All the Monte Carlo simulations are performed with the R package

AmoRosoDistrib described in Section 4 and the code to reproduce the results420

can be obtained from the authors upon request. In our preliminary simulation

studies, we observed that the variations of the parameter estimates, especially

for parameter a, can be large (with standard deviations in the order of 1013 in

some cases). Moreover, we observe that some of the optimization procedures

do not converge and the parameter estimates cannot be obtained. These re-425

sults agree with the issues in estimating the parameters of the four-parameter

GΓ distribution discussed in the literature (see, Section 1), which is one of the

reasons we propose different estimation methods in this paper.

Since the variations of the parameter estimates can be large, in order to pro-

vide reasonable and meaningful comparisons of different estimation methods,430

instead of using the conventional measures for comparing estimation methods

using biases and variances, we consider some robust measures including the

medians and interquartile ranges (IQRs). In addition, we also present the pro-

portion of simulations that the parameter estimates cannot be obtained.

For the initial estimates, 1,000 equal-spaced points in (−20, 20) as the se-435

quence of values for parameter c are used to obtain the initial value of θ in the

parameter space Ω+ = {a > 0, µ ∈ (y1:n,∞), ` ∈ R+, c ∈ R\{0}}, and the

initial value of θ in the parameter space Ω− = {a < 0, µ ∈ (−∞, yn:n), ` ∈ R+,

c ∈ R\{0}}.

6.1. Simulation setting based on the paulsen data440

In this setting, we simulate the data sets with sample size n = 346 from the

four-parameter GΓ distribution with parameters a = −33.6, ` = 0.2, c = 30.00,
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µ = 38.4, which are the maximum likelihood estimates based on the paulsen

data presented in Section 5.1. The simulated medians and IQRs, and the pro-

portion of the set of estimates in the correct sample space (i.e., Ω− in this445

setting) is selected for each estimation method, except for the method to obtain

the initial estimates, based on 2,000 simulations (denoted as % choose -ve) are

presented in Table 5. The simulated medians closest to the true values of the

parameters and the smallest IQR among all the methods, except for the method

to obtain the initial estimates, are highlighted in bold.450
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From Table 5, we observe that the estimates in parameter space Ω+ have

larger variations compared to the estimates in parameter space Ω− as the true

value of parameter a is negative. We can see that the MDE-HD method perform

well in terms of the closeness of the medians to the true values, however, the455

variations (IQRs) of this method are much larger than the other methods. When

we take both IQRs and the closeness of the medians to the true values into

account, the performance of the MDE-KL and MDE-JSB methods are better

than the other methods. In this case, the MDE-JSB method is preferred since

the proportion of times that the parameter estimates in the right sample space460

are identified for MDE-JSB (93.8%) is higher than that for the MDE-KL method

(88.4%). It is clear that there is not a single estimation method outperforms

the other methods in estimating the four parameters in the model.

6.2. Simulation setting based on the anorexia data

In this setting, we simulate the data sets with sample size n = 72 from a four-465

parameter GΓ distribution with parameters a = 26.4, ` = 0.27, c = 4.47, µ =

71.2, which are the maximum likelihood estimates based on the anorexia data

presented in Section 5.2. The simulated medians and IQRs, and the proportion

of the set of estimates in the correct sample space (i.e., Ω+ in this setting) is

selected for each estimation method, except for the method to obtain the initial470

estimates, based on 2,000 simulations (denoted as % choose +ve) are presented

in Table 6. The simulated medians closest to the true values of the parameters

and the smallest IQR among all the methods, except for the method to obtain

the initial estimates, are highlighted in bold.
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From Table 6, once again, we observe that there is not a single estimation475

method that outperforms the other methods in estimating the four parameters

in the model. The MLE and MDE-HD methods perform reasonably well for

all the four parameters in terms of both the closeness of the medians to the

true values and the IQRs. In this case, the MLE method is preferred since

the proportion of times that the parameter estimates in the right sample space480

are identified for MLE (91.0%) is higher than that for the MDE-HD method

(46.9%).

6.3. Simulation setting based on the bladder cancer data

In this subsection, we consider the simulation setting based on the model

fitting of a data set that represents the remission times (in months) of a random485

sample of 128 bladder cancer patients reported in Lee and Wang [55] based on

the three-parameter GΓ distribution (i.e., with µ = 0 in the four-parameter

GΓ distribution).

Shanker and Shukla [56] modeled this bladder cancer data by using the

three-parameter GΓ distribution and reported the parameter estimates (the490

formulation in Eq. (1) with µ = 0) as â = 0.52813, ` = 3.8869, c = 0.5139 (see,

Table 1 of [56]). Here, we simulate the data sets with sample size n = 128 from

a four-parameter GΓ distribution with parameters a = 0.52813, ` = 3.8869,

c = 0.5139, and µ = 0. The simulated medians and IQRs, and the proportion

of the set of estimates in the correct sample space (i.e., Ω+ in this setting) is495

selected for each estimation method, except for the method to obtain the initial

estimates, based on 2,000 simulations (denoted as % choose +ve) are presented

in Table 7. The simulated medians closest to the true values of the parameters

and the smallest IQR among all the methods, except for the method to obtain

the initial estimates, are highlighted in bold.500
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From the simulation results in Table 7, we observe that the MDE-SEC meth-

ods perform reasonably well for all the four parameters in terms of both the

closeness of the medians to the true values, the IQRs and the proportion of

times that the parameter estimates in the right sample space.

From the three settings presented in Sections 6.1, 6.2, and 6.3, the perfor-505

mance of the estimation methods proposed in this paper can be varied and there

is not a single method better than the others in all the situations. Therefore, as

a practical recommendation, researchers can consider using Monte Carlo simu-

lation methods to evaluate the performance of the estimation procedures under

some particular settings specified based on the context of the problem.510

7. Concluding Remarks

The Amoroso family of distributions are widely used in many areas for mod-

eling a real phenomenon. The main advantage of the four-parameter GΓ distri-

bution distribution is its flexibility regarding the varieties of shapes and hazard

functions for modeling real-life data. However, the flexibility of GΓ distribution515

comes at the price of having difficulties in parameter estimation since different

values of parameters may appear almost identical fit of PDF, as discussed in

Lawless [10].

In this paper, we present a unified framework for fitting a univariate data set

by using the four-parameter GΓ distribution with different parameter estimation520

methods. Our proposed approaches have taken the negative shape parameter

and negative scale parameter into account. Since the initial values have an

impact on the efficiency of the iterative numerical algorithms to obtain the

parameter estimates, we also present a feasible and reliable method to obtain

initial estimates for those iterative numerical algorithms. The computational525

algorithms for the methods presented in this paper are programmed in R and

made available as an R package called AmoRosoDistrib.

From the numerical and simulation studies, we show that the proposed meth-

ods are feasible and efficient in fitting the four-parameter GΓ distribution to
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data. However, we found that there is no one single method presented in this530

paper that outperforms the other methods in all situations. Therefore, overall

speaking, we propose applying all the estimation methods and graphically dis-

play the fitted PDFs of the GΓ distribution in order to assess the suitability of

using a specific set of parameter estimates.

For future research, exploring different methods for fitting the four-parameter535

GΓ distribution to incomplete data, such as censored and truncated data in

reliability/survival analysis, is an interesting topic. For instance, the study con-

cerning a three-parameter GΓ distribution with a > 0 and c > 0 by Shang

and Ng [57] based on left-truncated and right-censored data can been extended

to the four-parameter GΓdistribution with a ∈ R\{0} for the scale parameter,540

µ ∈ (−∞,∞) for the location parameter and c ∈ R\{0}. Research in this direc-

tion is in progress and we hope to report the results in a future paper.
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