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The four-parameter generalized gamma (GΓ) distribution, also known as the Amoroso family of distributions, is a flexible and versatile statistical distribution that encapsulates many well-known lifetime distributions, including the exponential, Weibull, lognormal, and gamma distributions as special instances. The four-parameter GΓ distribution is shown to be appropriate for fitting skewed and heavy-tailed data sets. However, even though the GΓ distribution is very useful and flexible, it remains less studied than its counterparts, probably due to the difficulty in estimating the parameters of the distribution. In this paper, we explore several novel iterative parameter estimation approaches for the fourparameter GΓ distribution, which includes the maximum likelihood estimation and minimum distance estimation approaches.

Standard error and confidence interval of a function of the parameter estimates based on bootstrap method are also discussed.

An R package is developed based on the proposed estimation methods. Numerical examples and Monte Carlo simulations are used to illustrate the usefulness of the proposed approaches for fitting the four-parameter GΓ distribution.

Introduction

The generalized gamma (GΓ) distribution is a statistical distribution originally introduced by Amoroso [START_REF] Amoroso | Ricerche intorno alla curva dei redditi[END_REF] and D'Addario [START_REF] Addario | Intorno alla curva dei redditi di amoroso[END_REF] as a special case of a mathematical function for analyzing and modeling economic income data. The GΓ distribution is also known as the Amoroso family of distributions. The functional form commonly used in practice was suggested by Stacy [START_REF] Stacy | A generalization of the gamma distribution[END_REF], which corresponds to a three-parameter exponentiated gamma distribution. The four-parameter GΓ distribution is a flexible distribution that has been a great interest in many practical applications. For instance, since the four-parameter GΓ distribution provides different shapes of hazard function, it can be used to model duration or time-to-event data and to describe a wide variety of life-cycle phenomena.

Moreover, in finance and insurance, the GΓ distribution is commonly used as a model for financial losses, stock exchange prices, or insurance claim sizes, mainly because it is a fairly flexible positive-skewed distribution. The four-parameter GΓ distribution includes many well-known distributions as special cases. Furthermore, since the GΓ distribution can be considered as a sum of independent exponential random variables, it is also a natural model for individual waiting times. However, as pointed out by Song [START_REF] Song | Globally convergent algorithms for estimating generalized gamma distributions in fast signal and image processing[END_REF], despite this wide range of potential applications, the GΓ distribution is less used in practice, while the major reason may due to the difficulty of estimating the model parameters. The difficulty lies in the issue that different sets of model parameters can provide similar fits of the GΓ distribution. Therefore, in this paper, we aim to address the problem of estimating the parameters of the four-parameter GΓ distribution by providing some feasible estimation methods.

For the parameter estimation of the three-parameter GΓ distribution proposed in [START_REF] Stacy | A generalization of the gamma distribution[END_REF], which is a member of the Amoroso family of distributions, it was first discussed by Parr and Webster [START_REF] Parr | A method for discriminating between failure density functions used in reliability predictions[END_REF] and Stacy and Mihram [START_REF] Stacy | Parameter estimation for a generalized gamma distribution[END_REF]. Different iterative schemes to obtain the maximum likelihood estimates of the model parameters have been studied, see, for example, [START_REF] Hager | Inferential procedures for the generalized gamma distribution[END_REF][START_REF] Stacy | Quasimaximum likelihood estimators for two-parameter gamma distributions[END_REF][START_REF] Prentice | A log gamma model and its maximum likelihood estimation[END_REF][START_REF] Lawless | Inference in the generalized gamma and log gamma distributions[END_REF][START_REF] Hobbs | Minimum distance estimation of the three parameters of the gamma distribution[END_REF][START_REF] Noufaily | On maximization of the likelihood for the generalized gamma distribution[END_REF][START_REF] Yilmaz | Double-looped maximum likelihood estimation for the parameters of the generalized gamma distribution[END_REF]. However, those iterative algorithms, such as the Newton-Raphson method, to obtain the maximum likelihood estimates may not work well unless an appropriate and reliable set of initial values are provided. Nevertheless, as pointed out by Prentice [START_REF] Prentice | A log gamma model and its maximum likelihood estimation[END_REF], the asymptotic properties of the maximum likelihood estimates may not hold even when sample size is large. Hence, Hirose [START_REF] Hirose | Maximum likelihood parameter estimation in the threeparameter gamma distribution[END_REF][START_REF] Hirose | Maximum likelihood parameter estimation by model augmentation with applications to the extended four-parameter generalized gamma distribution[END_REF] proposed a reparameterization of the three-parameter GΓ distribution function and applied the predictor-corrector method with the continuation method [START_REF] Allgower | Introduction to Numerical Continuation Methods[END_REF]. For a comprehensive literature review on the maximum likelihood estimation of the threeparameter GΓ distribution and the iterative approaches to obtain the solution of the likelihood score equations, one may refer to [START_REF] Noufaily | On maximization of the likelihood for the generalized gamma distribution[END_REF].

For some interesting applications of the three-parameter GΓ distribution in the context of time-to-event or lifetime data analysis, the readers can refer to some recent work by Balakrishnan and Pal [START_REF] Balakrishnan | An em algorithm for the estimation of parameters of a flexible cure rate model with generalized gamma lifetime and model discrimination using likelihood-and information-based methods[END_REF], Ling [START_REF] Ling | A comparison of estimation methods for generalized gamma distribution with one-shot device testing data[END_REF], Ramos et al. [START_REF] Ramos | Modeling traumatic brain injury lifetime data: Improved estimators for the generalized gamma distribution under small samples[END_REF] and Pal et al. [START_REF] Pal | Illustration of the flexibility of generalized gamma distribution in modeling right censored survival data: Analysis of two cancer datasets[END_REF].

In addition to the maximum likelihood estimation method, moment-based estimation approaches have been studied in the literature; see, for example, [START_REF] Stacy | Parameter estimation for a generalized gamma distribution[END_REF][START_REF] Phien | Estimating the parameters of the generalized gamma distribution by mixed moments[END_REF][START_REF] Wingo | Computing maximum-likelihood parameter estimates of the generalized gamma distribution by numerical root isolation[END_REF][START_REF] Ashkar | The generalized method of moments as applied to the generalized gamma distribution[END_REF][START_REF] Maur | Statistical Tools for Drop Size Distributions: Moments and Generalized Gamma[END_REF][START_REF] Huang | On new moment estimation of parameters of the generalized gamma distribution using it's characterization[END_REF][START_REF] Gomes | Four-parameter generalized gamma distribution used for stock return modelling[END_REF][START_REF] Gomes | Parameter estimation of the generalized gamma distribution[END_REF][START_REF] Kurniasari | Estimation of generalized gamma distribution parameters with probability weighted moment method[END_REF]. Though, those moment-based methods are difficult to use due to the fact that different sets of parameters conduce to similar probability density functions (PDFs). Furthermore, those moment-based methods are essentially proposed for non-negative data. In the last decades, Bayesian estimation methods for the three-parameter GΓ distribution have attracted a great deal of interest. The main issue of using Bayesian methods resides in the choice of appropriate priors for the parameters, which is an important prerequisite to the success of the Bayesian approach. Different authors, including [START_REF] Maswadah | Bayesian inference on the generalized gamma distribution based on generalized order statistics[END_REF] [30] [START_REF] Ahmad | Bayesian analysis of generalized gamma distribution using R software[END_REF] [32] [START_REF] Achcar | Some computational aspects to find accurate estimates for the parameters of the generalized gamma distribution[END_REF] [START_REF] Ramos | Bayesian reference analysis for the generalized gamma distribution[END_REF], discussed the strengths and weaknesses inaccessible to theoretical analysis such as different prior distributions can have a great effect on the subsequent estimates.

In summary, even for the special case of the four-parameter GΓ distribution, the moment-based method, the maximum likelihood estimation method, and the Bayesian method have difficulties and weaknesses. Therefore, for a more general four-parameter GΓ distribution, special attention is needed for the estimation of the model parameters.

In this article, we study the maximum likelihood estimation method and propose the minimum distance estimation (MDE) method [START_REF] Wolfowitz | The minimum distance method[END_REF]. The proposed MDE approach is based on the minimization of various distance metrics between the theoretical distribution and the observed data. The major contribution of this paper is threefold:

• Novel estimation procedures are developed to estimate the model parameters for the four-parameter GΓ distribution in order to fit data with positive and/or negative values with the four-parameter GΓ distribution;

• R package that implements the proposed estimation methods and functions related to the four-parameter GΓ distribution is developed;

• The proposed estimation methods are shown to be feasible and effective.

The remainder of this article is organized as follows. Section 2 provides the preliminary knowledge about the Amoroso family of distributions, including the functional form of the distribution, special cases, and some basic properties. In Section 3, different parameter estimation methods for the model parameters in a four-parameter GΓ distribution are discussed. Specifically, a method to obtain initial estimates, the maximum likelihood estimation method, and the minimum distance estimation method are considered. We also discuss a biasreduction estimate for the parameter µ and use the bootstrap method to obtain the standard error of each estimate and the confidence interval of each parameter in Section 3. In Section 4, the features of the R package created for the Amoroso family of distributions are discussed. In Section 5, two numerical examples based on real data are used to illustrate the estimation methods considered in this paper. In Section 6, Monte Carlo simulation studies are used to evaluate the performance of the proposed estimation methods. Finally, some concluding remarks are provided in Section 7.

Preliminary Knowledge of Amoroso Family of Distributions

In this section, we first introduce the mathematical notations used and the four-parameter GΓ distribution considered in this paper. Some properties of the four-parameter GΓ distribution will be discussed.

Notations

The notations used in this paper are the following:

• Upper case letters denote cumulative distribution function (CDF) (e.g., G) and lower case letters denote the corresponding PDF (e.g., g).

• The true distribution is referred to as G, while the empirical distribution corresponding to n ∈ N independent and identically distributed (i.i.d.)

observations x = (x 1 , . . . , x n ), is referred to as G n .
• θ is a m-dimensional vector of unknown parameters.

• θ is a m-dimensional vector of estimated parameters.

• Θ is an open subset of a separable Hubert space.

• Y is a vector of random variables following the four-parameter GΓ with

Y = {Y 1 , Y 2 , . . . , Y n }.
• y is the vector of observations with y = {y 1 , y 2 , . . . , y n }.

Amoroso family of distributions and four-parameter Generalized Gamma distribution

A random variable Y follows a four-parameter GΓ distribution with PDF

g(y; a, , c, µ) = 1 Γ( ) c a y -µ a c-1 exp - y -µ a c , (1) 
where a ∈ R\{0} is the scale parameter, µ ∈ (-∞, ∞) is the location parameter, ∈ R + and c ∈ R\{0} are the shape parameters, and the support of the distribution is

     y ≥ µ if a > 0, y ≤ µ if a < 0.
We denote this distribution as GΓ4(a, , c, µ) distribution. Note that the PDF in Eq. ( 1) is used in Crocks [START_REF] Crooks | The Amoroso distribution[END_REF], while the probability distribution is defined for a > 0 and the support of the distribution is µ < y < ∞ in the original paper by Amoroso [START_REF] Amoroso | Ricerche intorno alla curva dei redditi[END_REF].

The CDF of random variable Y that follows a GΓ4(a, , c, µ) distribution can be expressed as

G(y; a, , c, µ) = γ , y-µ a c Γ( ) , (2) 
where γ(s, x) = x 0 t s-1 exp(-t)dt is the lower incomplete gamma function. In this paper, we are interested in estimating the parameter vector θ = (a, , c, µ) based on the observed sample of size n, y = (y 1 , y 2 , . . . , y n ), from the GΓ4(a, , c, µ) distribution. The properties of the GΓ4(a, , c, µ) distribution that are used in the development of the parameter estimation methods are described here.

Moments. Suppose Y follows the GΓ4(a, , c, µ) distribution, the r th moment of Y (r = 1, 2, . . .) is

E[Y r ] =    a r Γ( c +r c ) Γ( ) , if r/c > - ∞, otherwise.
Then, the mean and variance of the random variable Y are

E[Y ] = aΓ + 1 c Γ( ) + µ (3) and V ar[Y ] = a 2 Γ + 2 c Γ( ) -Γ + 1 c 2 Γ( ) 2 ,
respectively.

Distribution of transformed random variables. Suppose Y follows the GΓ4(a, , c, µ = 0) distribution, then we have (1) X = Y s ∼ GΓ(a s , , c/s, 0);

(2) Z = ωY ∼ GΓ(ωa, , c, 0);

(3) W = Y c ∼ GΓ(a c , , 1, 0) (i.e., a two-parameter gamma distribution with scale parameter a c and shape parameter );

(4) If V follows a two-parameter gamma distribution with scale parameter 1 and shape parameter , then Y = aV

1 c + µ ∼ GΓ(a, , c, µ).
Property (4) provides a simple way to generate a random sample of the fourparameter GΓ distribution in using the quantile function of the two-parameter gamma distribution.

Special cases. As mentioned in the Section 1, the four-parameter GΓ distribution encapsulates a large number of well-known and widely used distributions.

These connections are presented in Figure 1. Crocks [START_REF] Crooks | The Amoroso distribution[END_REF] also presented a review of important properties of the Amoroso family of distributions and pointed out that many commonly used probability distributions occur as special cases or limits (such as the power law, the log-gamma, the log-normal, and the normal distributions).

The four-parameter GΓ model is important generalizations of other models and the inferential procedures of these special cases have been studied in the literature. For instance, for statistical estimation and inferential procedures of the generalized Fisher-Tippett distribution (also known as the generalized extreme value distribution), the generalized Weibull distribution, and the Pearson Type III distribution, one can refer to [START_REF] Bücher | On the maximum likelihood estimator for the generalized extreme-value distribution[END_REF], [START_REF] Lai | Generalized Weibull Distributions[END_REF], and [START_REF] Singh | Entropy-Based Parameter Estimation in Hydrology[END_REF], respectively, and the references therein.

Parameter Estimation Methods

A method to obtain initial estimates

Based on the observed sample y = (y 1 , y 2 , . . . , y n ), we denote the i-th order statistic of the observed sample as y i:n . Based on the observed data, the parameter space can be written as two disjoint sets {a > 0, µ ∈ (y 1:n , ∞), ∈ R + , c ∈ R\{0}} and {a < 0, µ ∈ (-∞, y n:n ), ∈ R + , c ∈ R\{0}}, where y i:n is the i-th order statistic of the observed sample y = (y 1 , y 2 , . . . , y n ). Therefore, the estimation in each of the two disjoint parameter spaces can be considered separately and then the two sets of estimates are compared.

Usually, due to the form of the four-parameter GΓ distribution, close-formed solution of the parameter estimates are not available and iterative procedures are needed to obtain the estimates. In the past years, iterative procedures coupled with Monte Carlo simulation have been largely studied for estimating the four-parameter GΓ distribution [START_REF] Yilmaz | Double-looped maximum likelihood estimation for the parameters of the generalized gamma distribution[END_REF][START_REF] Gomes | Parameter estimation of the generalized gamma distribution[END_REF][START_REF] Cohen | Parameter Estimation in Reliability and Life Span Models[END_REF]. Since those iterative procedures require a reliable starting value of the estimates, we propose here a method to obtain the initial estimates.

For a > 0, since the support of the distribution is y > µ, we set the initial estimate of µ as μI = py 1:n , where p ≤ 1 when y 1:n > 0 and μI = qy 1:n , where q ≥ 1 when y 1:n < 0, and transformed the observed data by x i:n = y i:n -μI , i = 1, 2, . . . , n. Note that when p = 1, x 1:n = 0 which needs to be discarded in the process of obtaining the initial estimates of parameters a, l and c to avoid computational error (e.g., taking logarithm of x 1:n results in -∞ if x 1:n = 0).

Similarly, for a < 0, since the support of the distribution is y < µ, we set the initial estimate of µ as μI = qy n:n , where q ≥ 1 when y n:n > 0 and μI = py n:n , where p ≤ 1 when y n:n < 0, and transformed the observed data by x i:n = y i:n -μI , i = 1, 2, . . . , n. When q = 1, x n:n = 0 which needs to be discarded in the process of obtaining the initial estimates of parameters a, l and c to avoid computational error. Here, we suggest to use the value p = 0.99 and q = 1.01.

Using the property that W = (Y -µ) c follows a two-parameter gamma distribution with scale parameter a c and shape parameter if Y follows the GΓ(a, , c, µ) distribution, and the method of moment estimates of the scale and shape parameters of two-parameter gamma distribution, the proposed procedure to obtain the initial parameter estimates are described as follows:

Step A1. Obtain an initial estimate of µ as

μI =                   
py 1:n , when y 1:n > 0, for a > 0;

qy 1:n , when y 1:n < 0, for a > 0;

qy n:n , when y n:n > 0, for a < 0;

py n:n , when y n:n < 0, for a < 0, with p ≤ 1 and q ≥ 1.

Step A2. Compute x i:n = y i:n -µ I (i = 1, 2, . . . , n) and discard the values x i:n = 0;

Step A3. Consider a sequence of values for parameter c, c j , j = 1, 2, . . . , J;
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Step A4. Fixed the value of c = c j , compute

w i:n = x cj i:n (i = 1, 2, . . . , n);
Step A5. Obtain the estimates of a and as

a j = s 2 w w 1/cj and j = w2 s 2 w ,
respectively, where

w = 1 n n i=1 w i and s 2 w = 1 n -1 n i=1 (w i -w) 2 ;
Step A6. Compute the likelihood of the observed data based on parameter vector θ = (a j , j , c j , µ I ):

L j = L(y; θ = (a j , j , c j , µ I )) = n i=1 g(y i ; a j , j , c j , µ I );
Step A7. Repeat Steps A3-A6 for different values of c j to obtain L j , j = 1, 2, . . . , J;

Step A8. Compare the values of the likelihood L j , j = 1, 2, . . . , J to obtain j * in which

L j * = max j L j ;
Step A9. Set the initial estimate of θ as θI = (a j * , j * , c j * , µ I ).
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The above algorithm can be used to obtain initial estimates of θ for a > 0 and a < 0.

Maximum likelihood estimation

The maximum likelihood estimate (MLE) of the parameter vector θ = (a, , c, µ), denoted as θML = (â M L , ˆ M L , ĉML , μML ) can be obtained by maximizing the likelihood function

L(y; θ = (a, , c, µ)) = n i=1 g(y i ; a, , c, µ).
We can first obtain the MLE of θ in the parameter space {a > 0, µ ∈ (y 1:n , ∞), ∈ R + , c ∈ R\{0}}, denoted as θML+ , and then obtain the MLE of θ in the

parameter space {a < 0, µ ∈ (-∞, y n:n ), ∈ R + , c ∈ R\{0}}, denoted as θML-. The MLE of θ can be obtained as θML =      θML+ , if L(y; θML+ ) > L(y; θML-), θML-, if L(y; θML+ ) < L(y; θML-).
(4)

Minimum distance estimation based on nonparametric density estimation

The MDE method [START_REF] Wolfowitz | The minimum distance method[END_REF][START_REF] Basu | Statistical inference: The minimum distance approach[END_REF] based on nonparametric density estimation refers to a very general technique that formalizes the parameters inference problem as a problem of minimizing a distance, over the set of parameter θ ∈ Θ, between the model PDF g(x; θ) and some empirical density estimate, fn obtained from a sample of size n. Formally, the main objective of the MDE is to minimize the distance between g(x; θ) and fn (x) with respect to θ = (a, , c, µ), i.e.,

θ = argmin θ∈Θ d(g(x; θ)|| fn (x)),
where d(g||f ) denotes any proper distance or divergence function that evaluates the closeness of two density functions g and f . Wolfowitz [START_REF] Wolfowitz | The minimum distance method[END_REF] showed that MDE is more robust to departures from underlying assumptions than maximum likelihood estimation. Millar [START_REF] Millar | A general approach to the optimality of minimum distance estimators[END_REF] explored the asymptotic behavior of the MDE within a general framework. The MDE approach is different from the moment-based or maximum likelihood approach and is widely studied in the literature [START_REF] Basu | Statistical inference: The minimum distance approach[END_REF]. The classic examples of this method are the least-square and the minimum chi-square estimators.

Based on the observed sample y = (y 1 , y 2 , . . . , y n ), we consider the empirical density estimate based on the Gaussian kernel density estimate fn . The Gaussian kernel density estimate, fn , of a univariate density f is (see, for example, 215 [START_REF] Sheather | A reliable data-based bandwidth selection method for kernel density estimation[END_REF])

fn (x) = 1 n n i=1 K(x -y i ; h) h , where K(x; h) ∝ exp[-x 2 /(2h 2 )
] is the Gaussian kernel function, h is the smoothing parameter (bandwidth) chosen to be 0.9 times the minimum of the standard deviation and the interquartile range of the sample y divided by 1.34 × n -1/5 [START_REF] Silverman | Density Estimation[END_REF]. Specifically, we discretize the values of x into N points (x 1 , x 2 , . . . , x N ) and minimizing the function

N k=1 d(g(x k ; a, , c, µ)|| fn (x k )).
The following distance or divergence measures are considered.

Kullback-Leibler divergence. The Kullback-Leibler divergence between two densities f and g is defined as

d KL (g(x)||f (x)) = g(x) ln g(x) f (x) dx.
The estimator of θ, denoted as θKL , based on minimizing Kullback-Leibler divergence can be obtained as

θKL = argmin θ∈Θ N k=1 g(x k ; θ) ln g(x k ; θ) fn (x k ) . (5) 
Jensen-Shanon Bregman divergence. Since the Kullback-Leibler divergence defined above is not symmetric (i.e., D KL (g(x)||f (x)) = (f (x)||g(x)), we consider the average of the two divergence measures

1 2 g(x) ln g(x) f (x) + f (x) ln f (x) g(x) dx,
which is equivalent to consider the Jensen-Shanon Bregman divergence defined as

d JSB (g(x)||f (x)) = [g(x) -f (x)] ln g(x) f (x) dx.
The estimator of θ, denoted as θJSB , based on minimizing the Jensen-Shanon Bregman divergence can be obtained as

θJSB = argmin θ∈Θ N k=1 g(x k ; θ) ln g(x k ; θ) fn (x k ) + fn (x k ) ln fn (x k ) g(x k ; θ) . (6) 
Hellinger distance. The Hellinger distance between two densities f and g is defined as

d HD (g(x)||f (x)) = g(x) -f (x) 2 .
The estimator of θ, denoted as θHD , based on minimizing Hellinger distance can be obtained as

θHD = argmin θ∈Θ N k=1 g(x k ; θ) -fn (x k ) 2 . ( 7 
)
Wassertein distance. The Wassertein distance (also known as Kantorovich distance) is an interesting metric on probability distributions and popular in many areas of statistics and machine learning. An estimate of θ based on Wassertein distance can be obtained by minimizing the function

d W D (g(x)||f (x)) = |g(x) -f (x)| δ dx 1 δ
.

Based on the N discretized points, the estimator of θ, denoted as θW D , based on minimizing Wassertein distance can be obtained as

θW D = argmin θ∈Θ    1 N N k=1 |g(x k ; θ) -fn (x k )| δ 1 δ    . (8) 
Here, we consider δ = 4. Minimum Wasserstein distance estimators are particular instances of minimum distance estimators [START_REF] Basu | Statistical inference: The minimum distance approach[END_REF] and appear to be practical and robust alternatives to likelihood-based estimation in the setting of generative models. The study asymptotic properties of such minimum Wasserstein distance estimators, complementing results derived by Bassetti, Bodini and Regazzini [START_REF] Bassetti | On minimum kantorovich distance estimators[END_REF], are presented in [START_REF] Bernton | On parameter estimation with the Wasserstein distance, Information and Inference[END_REF].

Squared Euclidean distance. The squared Euclidean distance between two densities f and g is defined as

d SE (g(x)||f (x)) = [g(x) -f (x)] 2 .
The estimator of θ, denoted as θSE , based on minimizing squared Euclidean distance can be obtained as

θSE = argmin θ∈Θ 1 N N k=1 |g(x k ; θ) -fn (x k )| 2 . ( 9 
)
Note that the estimator obtained based minimizing the squared Euclidean distance can be viewed as a special case of the minimum Wasserstein distance 235 estimator when δ = 2. The following distance or divergence measures are considered.
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Hellinger distance. The Hellinger distance between two CDFs F and G is defined as

D HD (G(y)||F (y)) = [ G(y) -F (y)] 2 .
The estimator of θ, denoted as θHDC , based on minimizing Hellinger distance can be obtained as

θHDC = argmin θ∈Θ n i=1 G(y i:n ; θ) -Fn (y i:n ) 2 . ( 10 
)
Wassertein distance. The Wassertein distance between two CDFs F and G is defined as

D W D (G(y), F (y)) = |G(y) -F (y)| δ dy 1/δ .
The estimator of θ, denoted as θW DC , based on minimizing Wassertein distance can be obtained as

θW DC = argmin θ∈Θ    1 n n i=1 |G(y i:n ; θ) -Fn (y i:n )| δ 1 δ    . (11) 
Here, we consider δ = 4.

Squared Euclidean distance. The squared Euclidean distance between two CDFs

F and G is defined as

D SE (G(y), F (y)) = [G(y) -F (y)] 2 .
The estimator of θ, denoted as θSEC , based on minimizing squared Euclidean distance can be obtained as

θSEC = argmin θ∈Θ 1 n n i=1 G(y i:n ; θ) -Fn (y i:n ) 2 . ( 12 
)
For the MDE based on nonparametric density estimation and the MDE based on empirical CDF, similar to the MLE, we can first obtain the MDE of θ in the parameter space {a > 0, µ ∈ (y 1:n , ∞), ∈ R + , c ∈ R\{0}}, denoted as θMD+ , and then obtain the MDE of θ in the parameter space {a < 0, µ ∈ (-∞, y n:n ), ∈ R + , c ∈ R\{0}}, denoted as θMD-. The MDE of θ can be obtained as 

θMD =      θMD+ , if d(g(x; θMD+ )||f n (x)) < d(g(x; θMD-)||f n (x)) θMD-, if d(g(x; θMD+ )||f n (x)) > d(g(x; θMD-)||f n (x)).
n ), from the fourparameter GΓ distribution with parameter vector θ * = (â, ˆ , ĉ, μ) using Property (4) presented in Section 2.2.

Step B2. Based on the bootstrap sample y (b) , obtain the estimates of the four parameters using the same method to obtain θ * , and denote the estimate of Step B3. Repeat Steps B1-B2 for B times to obtain

θ(1) * , θ (2) 
* , . . . , θ(B) * .

Step B4. The bootstrap estimate of standard error of λ(â, ˆ , ĉ, μ) can be obtained as

1 B B b=1 [λ(â (b) , ˆ (b) , ĉ(b) , μ(b) ) -λ] 2 ,
where

285 λ = 1 B B b=1 λ(â (b) , ˆ (b) , ĉ(b) , μ(b) ).
Step B5. Order λ (1) , λ (2) , . . ., λ (B) , where

λ (b) = λ(â (b) , ˆ (b) , ĉ(b) , μ(b) )
, to obtain λ [1] < λ [2] < . . . < λ [B] . Then, a 100(1 -π)% percentile bootstrap confidence interval of λ(a, , c, µ) can be obtained as

λ [int(B(π/2))] , λ [int(B(1-π/2))] ,
where int(x) is the integer part of x.

Note that if one wants to estimate the standard error and/or construct confidence interval for a particular parameter, for example the parameter a, we can set λ(a, , c, µ) = a.

R Package

There are some existing R packages that have the capability to estimate the parameter of different statistical distributions using maximum likelihood esti-295 mation method in which suitable modifications of the R programs are needed for applying to the four-parameter GΓ distribution. For example, the fitdistrplus package [START_REF] Delignette-Muller | fitdistrplus: An R package for fitting distributions[END_REF], the MASS package [START_REF] Venables | Modern Applied Statistics with S, 4th Edition[END_REF], and the survival package [START_REF] Therneau | A Package for Survival Analysis in R, r package version 3[END_REF]. There are also some R packages for fitting the three-parameter generalized gamma distribution, a special case of the four-parameter GΓ distribution with µ = 0 such as the fit.GenGamma function in the R package temporal (Parametric Time to Event Analysis) [START_REF] Mccaw | Temporal: Parametric Time to Event Analysis, R package version 0[END_REF]. However, these existing R functions can only obtain the maximum likelihood estimates of the model parameters for some special cases of the four-parameter GΓ distribution with c > 0 (power shape parameter) and a > 0 (positive scale parameter) or require substantial R programming to modify the code.

Here, we aim to develop an R package to estimate the parameters of the four-parameter GΓ distribution based on different estimation methods proposed in Section 3. The package called AmoRosoDistrib (https://github.com/ ccombesGG4/AmoRosoDistrib/) written in R [START_REF] Core | R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing[END_REF] is a general package that aims at fitting univariate parametric distributions in the Amoroso family of distributions with the scale parameter a ∈ R\{0}, the location parameter µ ∈ (-∞, ∞)

and the shape parameters ∈ R + and c ∈ R\{0}.

The AmoRosoDistrib package also provides the PDF, CDF, quantile function, hazard function for the four-parameter GΓ distribution using the parametrization originating from Amoroso [START_REF] Amoroso | Ricerche intorno alla curva dei redditi[END_REF]. The package also includes a random number generation for the four-parameter GΓ distribution based on the property that if Z ∼ Gamma (1, ), then Y = aZ

1 c + µ ∼ GG(a, , c, µ).
The AmoRosoDistrib package includes different parameter estimation methods based on optimization approach to fit the univariate population. By default, direct optimization is performed using the general-purpose constraint optimization function constrOptim with Nelder-Mead method available in the R package stats [START_REF] Core | R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing[END_REF] which minimizes a function subject to linear inequality constraints using an adaptive barrier algorithm. In summary, the nine estimation methods that are provided in the package are:

1. Maximum Likelihood Estimate: fit.mle() (see, Eq. ( 4)); 12)).

For all these estimation methods, the users have the flexibility to provide the initial values of the parameters. Since the initial values are essential for the optimization algorithm and they may have a strong impact on the quality of the estimates due to the problem of local optimum, we have also provide the function called init theta() in the AmoRosoDistrib package to obtain reasonable initial values based on the method presented in Section 3.1. Moreover, we also provide the function called mu bias reduced estimate to compute the biasreduced estimator for parameter µ based on Eq. ( 13).

In addition, the AmoRosoDistrib package also provides functions to compute different theoretical characteristics of the GΓ4 distributions (i.e., the values of the parameters are input variables) and different statistics computed from a sample (i.e., the data are the input variables):

• Theoretical mean: mean theo;

• Theoretical variance: var theo;

• Theoretical moments: moment theo;

• Sample moments: moment;

• Sample skewness: skewness;

• Sample kurtosis: kurtosis.

Numerical Examples

In this section, we use two real data examples to illustrate the proposed parameter estimation procedures for four-parameter GΓ distribution.

Neurotransmission in Guinea Pig Brains (paulsen data)

The paulsen data frame in R package boot [START_REF] Canty | boot: Bootstrap R (S-Plus) Functions[END_REF][START_REF] Davison | Bootstrap Methods and Their Applications[END_REF] has 346 observations of the spontaneous current flowing into individual brain cells in the brain of adult guinea pigs. The currents are measured in pico-amperes. These observations are obtained from an experiment to see if the current flow was quantal in nature [START_REF] Paulsen | The quantal size at retinogeniculate synapses determined from spontaneous and evoked epscs in guinea-pig thalamic slices[END_REF].

We fit the paulsen data by using the four-parameter GΓ distribution. First, we use the method proposed in Section 3.1 with 1,000 equal-spaced points in (-20, 20) as the sequence of values for parameter c to obtain the initial value of θ in the parameter space

Ω + = {a > 0, µ ∈ (y 1:n , ∞), ∈ R + , c ∈ R\{0}},
and the initial value of θ in the parameter space Ω -= {a < 0, µ ∈ (-∞, y n:n ), ∈ R + , c ∈ R\{0}}. Then, based on these initial estimates, we obtain the parameter estimates using the estimation methods described in Section 3 in parameter spaces Ω + and Ω -. The parameter estimates are presented in Table 1 and the parameter estimates that give a better value of objective function are indicated by an asterisk. The histogram and the fitted PDFs for the paulsen data with the two initial estimates, and the estimates obtained from different estimation methods (i.e., the set of estimates with an asterisk in Table 1) are presented in Figure 2. From Figure 2, we observe that all the proposed methods, including the initial estimates, provide a reasonable fit to the data. Moreover, the fitted PDFs based on different parameter estimation methods are similar except for the initial estimate in parameter spaces Ω -and the MDE-HD.

To provide an estimate of the variation of each parameter estimate and an interval estimate with a certain degree of confidence for each parameter, we compute the estimated standard errors of the selected point estimates (indicated with asterisk in Table 1) and the 95% confidence intervals the four parameters based on the bootstrap procedure presented in Section 3.6 with B = 1, 000 390 bootstrap samples. The results are presented in Table 2.

Anorexia Data on Weight Change (anorexia data)

The anorexia data set in the MASS package [START_REF] Venables | Modern Applied Statistics with S, 4th Edition[END_REF] contains the weight change data for young female anorexia patients. Here, the studied variable is the Weight of the patient after the study period (in lbs.): Postwt. There are 72 observations 395 in the data set. The objective of this example is to study the behavior of the proposed estimation methods based on a relatively small sample.

Following the same approach in the previous numerical example in Section 5.1, the parameter estimates are presented in Table 3 and the parameter estimates that give a better value of objective function are indicated by an asterisk.
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The histogram and the fitted PDFs for the variable Postwt in anorexia data set with the two initial estimates, and the estimates obtained from different estimation methods (i.e., the set of estimates with an asterisk in Table 3) are presented in Figure 3. From Figure 3, we observe that all the proposed methods, provide a reasonable fit to the data, however, the variation between the fitted an interval estimate with a certain degree of confidence for each parameter, we compute the estimated standard errors of the selected point estimates (indicated 410 with asterisk in Table 3) and the 95% confidence intervals the four parameters based on the bootstrap procedure presented in Section 3.6 with B = 1, 000 bootstrap samples. The results are presented in Table 4. 

Monte Carlo Simulation Studies

In order to give a comprehensive evaluation of the proposed estimation procedures, we conduct extensive experimentation on synthetic univariate populations drawn from a specific Amoroso distribution, and compare results obtained with the parameter estimation methods presented in Section 3.

All the Monte Carlo simulations are performed with the R package AmoRosoDistrib described in Section 4 and the code to reproduce the results can be obtained from the authors upon request. In our preliminary simulation studies, we observed that the variations of the parameter estimates, especially for parameter a, can be large (with standard deviations in the order of 10 13 in some cases). Moreover, we observe that some of the optimization procedures do not converge and the parameter estimates cannot be obtained. These results agree with the issues in estimating the parameters of the four-parameter GΓ distribution discussed in the literature (see, Section 1), which is one of the reasons we propose different estimation methods in this paper.

Since the variations of the parameter estimates can be large, in order to provide reasonable and meaningful comparisons of different estimation methods, instead of using the conventional measures for comparing estimation methods using biases and variances, we consider some robust measures including the medians and interquartile ranges (IQRs). In addition, we also present the proportion of simulations that the parameter estimates cannot be obtained.

For the initial estimates, 1,000 equal-spaced points in (-20, 20) as the sequence of values for parameter c are used to obtain the initial value of θ in the parameter space Ω + = {a > 0, µ ∈ (y 1:n , ∞), ∈ R + , c ∈ R\{0}}, and the initial value of θ in the parameter space Ω -= {a < 0, µ ∈ (-∞, y n:n ), ∈ R + , c ∈ R\{0}}. From Table 5, we observe that the estimates in parameter space Ω + have larger variations compared to the estimates in parameter space Ω -as the true value of parameter a is negative. We can see that the MDE-HD method perform well in terms of the closeness of the medians to the true values, however, the variations (IQRs) of this method are much larger than the other methods. When we take both IQRs and the closeness of the medians to the true values into account, the performance of the MDE-KL and MDE-JSB methods are better than the other methods. In this case, the MDE-JSB method is preferred since the proportion of times that the parameter estimates in the right sample space are identified for MDE-JSB (93.8%) is higher than that for the MDE-KL method (88.4%). It is clear that there is not a single estimation method outperforms the other methods in estimating the four parameters in the model.

Simulation setting based on the anorexia data

In this setting, we simulate the data sets with sample size n = 72 from a fourparameter GΓ distribution with parameters a = 26.4, = 0.27, c = 4.47, µ = 71.2, which are the maximum likelihood estimates based on the anorexia data presented in Section 5.2. The simulated medians and IQRs, and the proportion of the set of estimates in the correct sample space (i.e., Ω + in this setting) is selected for each estimation method, except for the method to obtain the initial estimates, based on 2,000 simulations (denoted as % choose +ve) are presented in Table 6. The simulated medians closest to the true values of the parameters and the smallest IQR among all the methods, except for the method to obtain the initial estimates, are highlighted in bold. From the simulation results in Table 7, we observe that the MDE-SEC methods perform reasonably well for all the four parameters in terms of both the closeness of the medians to the true values, the IQRs and the proportion of times that the parameter estimates in the right sample space.

From the three settings presented in Sections 6.1, 6.2, and 6.3, the performance of the estimation methods proposed in this paper can be varied and there is not a single method better than the others in all the situations. Therefore, as a practical recommendation, researchers can consider using Monte Carlo simulation methods to evaluate the performance of the estimation procedures under some particular settings specified based on the context of the problem.

Concluding Remarks

The Amoroso family of distributions are widely used in many areas for modeling a real phenomenon. The main advantage of the four-parameter GΓ distribution distribution is its flexibility regarding the varieties of shapes and hazard functions for modeling real-life data. However, the flexibility of GΓ distribution comes at the price of having difficulties in parameter estimation since different values of parameters may appear almost identical fit of PDF, as discussed in Lawless [START_REF] Lawless | Inference in the generalized gamma and log gamma distributions[END_REF].

In this paper, we present a unified framework for fitting a univariate data set by using the four-parameter GΓ distribution with different parameter estimation methods. Our proposed approaches have taken the negative shape parameter and negative scale parameter into account. Since the initial values have an impact on the efficiency of the iterative numerical algorithms to obtain the parameter estimates, we also present a feasible and reliable method to obtain initial estimates for those iterative numerical algorithms. The computational algorithms for the methods presented in this paper are programmed in R and made available as an R package called AmoRosoDistrib.

From the numerical and simulation studies, we show that the proposed methods are feasible and efficient in fitting the four-parameter GΓ distribution to data. However, we found that there is no one single method presented in this paper that outperforms the other methods in all situations. Therefore, overall speaking, we propose applying all the estimation methods and graphically display the fitted PDFs of the GΓ distribution in order to assess the suitability of using a specific set of parameter estimates.

For future research, exploring different methods for fitting the four-parameter GΓ distribution to incomplete data, such as censored and truncated data in reliability/survival analysis, is an interesting topic. For instance, the study concerning a three-parameter GΓ distribution with a > 0 and c > 0 by Shang and Ng [START_REF] Shang | On parameter estimation for the generalized gamma distribution based on left-truncated and right-censored data[END_REF] based on left-truncated and right-censored data can been extended

to the four-parameter GΓdistribution with a ∈ R\{0} for the scale parameter, µ ∈ (-∞, ∞) for the location parameter and c ∈ R\{0}. Research in this direction is in progress and we hope to report the results in a future paper.
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 1 Figure 1: Amoroso family of distributions and their connections
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 4 Minimum distance estimation based on empirical CDF Based on the observed sample y = (y 1 , y 2 , . . . , y n ), we consider the empirical CDF Fn as Fn (y i:n ) = i -0.5 n , for i = 1, 2, . . . , n. Note that other kinds of nonparametric estimate of CDF, such as Fn (x i:n ) = i/(n + 1) can be considered here. Then, the minimum distance estimate based on empirical CDF can be obtained by minimizing the function n i=1 D(G(y i:n ; a, , c, µ)|| Fn (y i:n )).
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 536 Bias-reduced estimator for parameter µ In Sections 3.2, 3.3 and 3.4, we studied different methods to obtain the four parameters in the four-parameter GΓ distribution. After obtaining the estimates of a, , c (denoted as â, ˆ , ĉ), from Eq. (3), a bias-reduced estimator of µ can be obtained based on the first sample moment as μBR = Standard error estimation and confidence interval based on bootstrap procedure In statistical practice, in addition to reporting point estimates of the model 260 parameters, it is desirable to give an estimate of the variation of each parameter estimate or an interval estimate with a certain degree of confidence for each parameter or a function of the parameters (e.g., the percentiles and survival probabilities) in general. Since the analytic asymptotic variances of the estimators proposed in Section 3.2, 3.3, and 3.4 are intractable due to different reasons 265 such as the parameter spaces are depending on the parameters themselves, we propose using the bootstrap method (see, for example, [47]) to estimate the standard error of the estimate and the confidence interval of a function of model parameters, λ(a, , c, µ) in the four-parameter GΓ distribution, in which the individual model parameters can be considered as special cases of the function λ. 270 Suppose the estimate of the parameter vector θ = (a, , c, µ) obtained by one of the methods presented in Sections 3.2, 3.3, and 3.4 is denoted as θ * = (â, ˆ , ĉ, μ), where * = M L, KL, JSB, HD, W D, SE, HDC, W DC, or SEC, the following bootstrap procedure can be used to obtain the standard error estimate and the confidence interval of a function of the model parameters λ(a, , c, µ): 275 Step B1. Generate a bootstrap sample, y (b) = (y

280θ

  based on y (b) as θ(b) * = (â (b) , ˆ (b) , ĉ(b) , μ(b) ).
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 2 Figure 2: Histogram and fitted PDFs of the paulsen data set.

Figure 3 :

 3 Figure 3: Histogram and fitted PDFs of the anorexia data set.
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 15 Simulation setting based on the paulsen dataIn this setting, we simulate the data sets with sample size n = 346 from the four-parameter GΓ distribution with parameters a = -33.6, = 0.2, c = 30.00, µ = 38.4, which are the maximum likelihood estimates based on the paulsen data presented in Section 5.1. The simulated medians and IQRs, and the proportion of the set of estimates in the correct sample space (i.e., Ω -in this 445 setting) is selected for each estimation method, except for the method to obtain the initial estimates, based on 2,000 simulations (denoted as % choose -ve) are presented in Table5. The simulated medians closest to the true values of the parameters and the smallest IQR among all the methods, except for the method to obtain the initial estimates, are highlighted in bold. 450 Simulated medians and IQRs based on 2000 simulated data sets from the four-parameter GΓ distribution with (a = -33.6, = 0.2, c = 30.0, µ = 38.4) based on different estimation methods proposed in this paper.

Table 1 :

 1 Parameter estimates of the four-parameter GΓ distribution based on different estimation methods for the paulsen data set.

	Value of

Table 2 :

 2 Bootstrap standard error (SE) estimates and 95% confidence interval (CI) based on 1,000 bootstrap data sets according to the four-parameter GΓ distribution based on the different parameter estimates (indicated with an asterisk) in Table1.

			â		ˆ		ĉ		μ
	Methods	SE	95% CI	SE	95% CI	SE	95% CI	SE	95% CI
	MLE	16.389	(-38.577, -22.297)	0.062	(0.150, 0.332)	12.256	(25.631, 66.959)	16.545	(31.856, 78.683)
	MDE-KL	3.386	(-32.832, -22.27)	0.111	(0.342, 0.707)	2.501	(12.064, 18.916)	3.456	(34.426, 41.243)
	MDE-JSB	3.180	(-32.077, -22.433)	0.120	(0.350, 0.749)	2.657	(12.161, 19.952)	3.220	(33.773, 40.975)
	MDE-HD	80.815	(-120.11, -23.148)	0.254	(0.400, 1.164)	22.790	(12.283, 86.72)	81.621	(33.259, 276.734)
	MDE-WD	18.445	(-70.527, -29.073)	0.107	(0.305, 0.609)	12.183	(23.873, 62.426)	18.466	(52.859, 107.98)
	MDE-SE	26.517	(-97.982, -36.992)	0.125	(0.370, 0.723)	14.570	(29.125, 72.250)	26.598	(72.134, 150.519)
	MDE-HDC	2.658	(0.011, 8.143)	12.832	(1.525, 42.002)	0.530	(0.455, 2.052)	0.690	(2.311, 3.644)
	MDE-WDC	25.040	(-74.122, -26.8)	0.064	(0.053, 0.244)	100.981	(92.511, 436.78)	25.146	(43.385, 119.962)
	MDE-SEC	45.799	(-122.874, -27.732)	0.071	(0.095, 0.316)	64.087	(87.123, 261.553)	45.929	(55.326, 195.493)

Table 3 :

 3 Parameter estimates of the four-parameter GΓ distribution based on different estimation methods for the anorexia data set.

	Value of

Table 4 :

 4 Bootstrap standard error (SE) estimates and 95% confidence interval (CI) based on 1,000 bootstrap data sets according to the four-parameter GΓ distribution based on the different parameter estimates in Table3.

			â		ˆ		ĉ		μ
	Methods	SE	95% CI	SE	95% CI	SE	95% CI	SE	95% CI
	MLE	3.010	(25.431, 31.467)	0.496	(0.109, 0.573)	456.541	(4.053, 59.019)	0.629	(71.367, 73.094)
	MDE-KL	14.052	(-68.267, -34.654)	0.722	(0.305, 2.921)	5.261	(6.835, 24.407)	15.444	(117.357, 156.425)
	MDE-JSB	8.608	(-42.544, -25.217)	1.521	(0.267, 4.251)	4.348	(4.567, 20.874)	12.231	(105.939, 136.417)
	MDE-HD	53.009	(-38.002, -26.799)	11.201	(0.278, 8.543)	3.077	(5.105, 12.173)	67.908	(105.403, 404.756)
	MDE-WD	25.822	(-56.633, -26.289)	4.557	(0.255, 10.020)	6.193	(5.518, 22.031)	32.704	(108.004, 217.270)
	MDE-SE	47.222	(-76.828, -25.871)	10.960	(0.271, 34.013)	7.617	(5.359, 27.562)	63.083	(107.004, 296.130)
	MDE-HDC	21.764	(-35.483, -22.882)	2.432	(0.049, 4.646)	57.176	(7.466, 220.913)	25.370	(104.486, 198.399)
	MDE-WDC	49.836	(-102.387, -25.894)	3.952	(0.158, 4.892)	38.825	(8.351, 117.528)	52.500	(109.416, 272.711)
	MDE-SEC	48.788	(-61.370, -26.048)	3.799	(0.112, 4.463)	42.775	(8.347, 169.406)	52.058	(106.776, 281.766)

Table 6 :

 6 Simulated medians and IQRs based on 2000 simulated data sets from the four-parameter GΓ distribution with (a = 26.4, = 0.27, c = 4.47, µ = 71.2) based on different estimation methods proposed in this paper.

	µ (True value = 71.2)	Median IQR	70.997 0.622	104.726 3.693	71.641 0.667	104.756 4.882	70.568 3.057	124.337 26.491	69.756 4.100	111.732 25.924	69.913 3.073	106.203 6.959	69.651 3.725	106.308 7.659	69.624 3.745	107.325 74.431	71.032 1.290	108.116 12.605	70.716 3.546	105.914 7.525	70.788 3.080	106.005 7.855
	c (True value = 4.47)	Median IQR	4.985 3.724	13.253 12.492	5.607 4.021	32.013 6863.828	3.477 2.432	5.441 5.204	3.676 2.466	5.943 6.047	3.895 1.814	6.743 2.257	3.328 2.334	5.841 3.868	3.413 2.462	6.301 4.049	4.367 5.352	5.829 7.198	4.330 4.966	7.534 9.602	4.406 5.083	7.651 10.862
	(True value = 0.27)	Median IQR	0.255 0.211	0.163 0.190	0.173 0.146	0.045 0.151	0.469 0.511	0.481 2.271	0.425 0.577	0.403 2.052	0.377 0.299	0.296 0.202	0.479 0.459	0.356 0.384	0.476 0.528	0.370 1.065	0.290 0.418	0.467 1.584	0.315 0.501	0.288 0.509	0.314 0.495	0.284 0.556
	a (True value = 26.4)	Median IQR	26.365 4.056	-30.511 4.379	27.420 3.485	-31.798 4.582	25.831 6.340	-33.065 10.221	26.133 5.830	-32.949 8.384	26.432 4.343	-32.329 6.351	26.073 6.418	-31.854 6.850	26.050 6.529	-33.387 16.428	25.745 5.648	-31.141 8.574	26.143 6.203	-31.185 6.861	26.155 6.117	-31.374 6.723
	% choose	+ve	-		0.910		0.621		0.667		0.469		0.516		0.389		0.542		0.623		0.620	
	Parameter	space	Ω +	Ω -	Ω +	Ω -	Ω +	Ω -	Ω +	Ω -	Ω +	Ω -	Ω +	Ω -	Ω +	Ω -	Ω +	Ω -	Ω +	Ω -	Ω +	Ω -
		Methods	Initial		MLE		MDE-KL		MDE-JSB		MDE-HD		MDE-WD		MDE-SE		MDE-HDC		MDE-WDC		MDE-SEC	

Table 7 :

 7 Simulated medians and IQRs based on 2000 simulated data sets from the four-parameter GΓ distribution with (a = 0.52813, = 3.8869, c = 0.5139, µ = 0) based on different estimation methods in this paper.

	µ (True value = 0)	Median IQR	0.225 0.197	53.782 20.257	0.171 0.244	462.850 840.460	0.199 0.215	61.516 18.922	0.056 2.246	61.681 17.465	0.189 0.190	68.091 185.830	-2.941 4.403	119.090 60.045	-3.319 4.172	171.255 83.701	0.036 0.321	151.689 84.631	0.115 0.389	84.236 51.0312	0.108 0.395	104.299 85.928
	c (True value = 0.5139)	Median IQR	0.861 0.320	20.000 7.467	0.780 0.516	3263.908 41454.460	0.749 0.214	23.953 12.237	0.675 0.317	23.976 10.963	0.904 0.296	24.199 18.934	0.444 0.857	45.034 32.613	0.380 0.396	62.191 43.183	0.464 0.584	648.114 1012.150	0.544 0.506	352.543 522.557	0.540 0.518	284.195 541.808
	(True value = 3.8869)	Median IQR	1.242 0.628	0.817 0.976	1.623 2.755	0.023 0.054	2.051 0.795	0.246 0.116	2.784 2.793	0.274 0.122	1.483 0.692	0.285 0.135	17.615 23.697	0.303 0.108	19.013 19.956	0.330 0.113	4.690 13.940	0.020 0.075	3.285 9.043	0.023 0.094	3.343 10.360	0.037 0.103
	a (True value = 0.52813)	Median IQR	6.489 5.076	-47.385 21.836	4.399 8.632	-462.761 851.280	3.660 3.121	-55.863 22.700	2.025 3.554	-56.852 21.247	6.010 4.390	-61.045 100.716	0.015 11.045	-114.570 61.085	0.004 4.348	-166.282 91.514	0.257 5.144	-146.334 93.396	0.852 5.063	-77.388 45.221	0.756 5.189	-94.478 84.023
	% choose	+ve	-		0.966		0.836		0.655		0.498		0.933		0.879		0.892		0.944		0.933	
	Parameter	space	Ω +	Ω -	Ω +	Ω -	Ω +	Ω -	Ω +	Ω -	Ω +	Ω -	Ω +	Ω -	Ω +	Ω -	Ω +	Ω -	Ω +	Ω -	Ω +	Ω -
		Methods	Initial		MLE		MDE-KL		MDE-JSB		MDE-HD		MDE-WD		MDE-SE		MDE-HDC		MDE-WDC		MDE-SEC	
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PDFs based on different parameter estimation methods are larger compared to the example in Section 5.1 probably due to the small sample size.

To provide an estimate of the variation of each parameter estimate and From Table 6, once again, we observe that there is not a single estimation method that outperforms the other methods in estimating the four parameters in the model. The MLE and MDE-HD methods perform reasonably well for all the four parameters in terms of both the closeness of the medians to the true values and the IQRs. In this case, the MLE method is preferred since the proportion of times that the parameter estimates in the right sample space are identified for MLE (91.0%) is higher than that for the MDE-HD method (46.9%).

Simulation setting based on the bladder cancer data

In this subsection, we consider the simulation setting based on the model fitting of a data set that represents the remission times (in months) of a random sample of 128 bladder cancer patients reported in Lee and Wang [START_REF] Lee | Statistical methods for survival data analysis[END_REF] based on the three-parameter GΓ distribution (i.e., with µ = 0 in the four-parameter GΓ distribution). [START_REF] Shanker | On modeling of lifetime data using three-parameter generalized Lindley and generalized gamma distributions[END_REF] modeled this bladder cancer data by using the three-parameter GΓ distribution and reported the parameter estimates (the formulation in Eq. ( 1) with µ = 0) as â = 0.52813, = 3.8869, c = 0.5139 (see, Table 1 of [START_REF] Shanker | On modeling of lifetime data using three-parameter generalized Lindley and generalized gamma distributions[END_REF]). Here, we simulate the data sets with sample size n = 128 from a four-parameter GΓ distribution with parameters a = 0.52813, = 3.8869, c = 0.5139, and µ = 0. The simulated medians and IQRs, and the proportion of the set of estimates in the correct sample space (i.e., Ω + in this setting) is selected for each estimation method, except for the method to obtain the initial estimates, based on 2,000 simulations (denoted as % choose +ve) are presented in Table 7. The simulated medians closest to the true values of the parameters and the smallest IQR among all the methods, except for the method to obtain the initial estimates, are highlighted in bold.

Shanker and Shukla