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Abstract

The four-parameter generalized gamma (GI') distribution, also known as the
Amoroso family of distributions, is a flexible and versatile statistical distribution
that encapsulates many well-known lifetime distributions, including the expo-
nential, Weibull, lognormal, and gamma distributions as special instances. The
four-parameter GI' distribution is shown to be appropriate for fitting skewed
and heavy-tailed data sets. However, even though the GI' distribution is very
useful and flexible, it remains less studied than its counterparts, probably due
to the difficulty in estimating the parameters of the distribution. In this paper,
we explore several novel iterative parameter estimation approaches for the four-
parameter GI' distribution, which includes the maximum likelihood estimation
and minimum distance estimation approaches.

Standard error and confidence interval of a function of the parameter esti-
mates based on bootstrap method are also discussed.

An R package is developed based on the proposed estimation methods. Nu-
merical examples and Monte Carlo simulations are used to illustrate the useful-
ness of the proposed approaches for fitting the four-parameter GI' distribution.
Keywords: Maximum likelihood estimation, minimum distance estimation,

optimization, generalized gamma distribution.
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1. Introduction

The generalized gamma (GI") distribution is a statistical distribution origi-
nally introduced by Amoroso [1] and D’Addario [2] as a special case of a math-
ematical function for analyzing and modeling economic income data. The GI'
distribution is also known as the Amoroso family of distributions. The functional
form commonly used in practice was suggested by Stacy [3], which corresponds
to a three-parameter exponentiated gamma distribution. The four-parameter
GI' distribution is a flexible distribution that has been a great interest in many
practical applications. For instance, since the four-parameter GI' distribution
provides different shapes of hazard function, it can be used to model duration
or time-to-event data and to describe a wide variety of life-cycle phenomena.
Moreover, in finance and insurance, the GI" distribution is commonly used as a
model for financial losses, stock exchange prices, or insurance claim sizes, mainly
because it is a fairly flexible positive-skewed distribution. The four-parameter
GT distribution includes many well-known distributions as special cases. Fur-
thermore, since the GI' distribution can be considered as a sum of independent
exponential random variables, it is also a natural model for individual waiting
times. However, as pointed out by Song [4], despite this wide range of potential
applications, the GI" distribution is less used in practice, while the major reason
may due to the difficulty of estimating the model parameters. The difficulty lies
in the issue that different sets of model parameters can provide similar fits of
the GI' distribution. Therefore, in this paper, we aim to address the problem of
estimating the parameters of the four-parameter GI' distribution by providing
some feasible estimation methods.

For the parameter estimation of the three-parameter GI' distribution pro-
posed in [3], which is a member of the Amoroso family of distributions, it was
first discussed by Parr and Webster [5] and Stacy and Mihram [6]. Different
iterative schemes to obtain the maximum likelihood estimates of the model pa-
rameters have been studied, see, for example, [7, 8, 9, 10, 11, 12, 13]. However,

those iterative algorithms, such as the Newton-Raphson method, to obtain the
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maximum likelihood estimates may not work well unless an appropriate and re-
liable set of initial values are provided. Nevertheless, as pointed out by Prentice
[9], the asymptotic properties of the maximum likelihood estimates may not
hold even when sample size is large. Hence, Hirose [14, 15] proposed a repa-
rameterization of the three-parameter GI' distribution function and applied the
predictor-corrector method with the continuation method [16]. For a compre-
hensive literature review on the maximum likelihood estimation of the three-
parameter GI' distribution and the iterative approaches to obtain the solution
of the likelihood score equations, one may refer to [12].

For some interesting applications of the three-parameter GI' distribution in
the context of time-to-event or lifetime data analysis, the readers can refer to
some recent work by Balakrishnan and Pal [17], Ling [18], Ramos et al. [19] and
Pal et al. [20].

In addition to the maximum likelihood estimation method, moment-based
estimation approaches have been studied in the literature; see, for example,
[6, 21, 22, 23, 24, 25, 26, 27, 28]. Though, those moment-based methods are dif-
ficult to use due to the fact that different sets of parameters conduce to similar
probability density functions (PDFs). Furthermore, those moment-based meth-
ods are essentially proposed for non-negative data. In the last decades, Bayesian
estimation methods for the three-parameter GI' distribution have attracted a
great deal of interest. The main issue of using Bayesian methods resides in the
choice of appropriate priors for the parameters, which is an important prereq-
uisite to the success of the Bayesian approach. Different authors, including [29]
[30] [31] [32] [33] [34], discussed the strengths and weaknesses inaccessible to
theoretical analysis such as different prior distributions can have a great effect
on the subsequent estimates.

In summary, even for the special case of the four-parameter GI" distribution,
the moment-based method, the maximum likelihood estimation method, and the
Bayesian method have difficulties and weaknesses. Therefore, for a more general
four-parameter GI' distribution, special attention is needed for the estimation

of the model parameters.
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In this article, we study the maximum likelihood estimation method and
propose the minimum distance estimation (MDE) method [35]. The proposed
MDE approach is based on the minimization of various distance metrics between
the theoretical distribution and the observed data. The major contribution of

this paper is threefold:

e Novel estimation procedures are developed to estimate the model param-
eters for the four-parameter GI' distribution in order to fit data with

positive and/or negative values with the four-parameter GI" distribution;

e R package that implements the proposed estimation methods and func-

tions related to the four-parameter GI' distribution is developed;
e The proposed estimation methods are shown to be feasible and effective.

The remainder of this article is organized as follows. Section 2 provides the
preliminary knowledge about the Amoroso family of distributions, including the
functional form of the distribution, special cases, and some basic properties. In
Section 3, different parameter estimation methods for the model parameters
in a four-parameter GI' distribution are discussed. Specifically, a method to
obtain initial estimates, the maximum likelihood estimation method, and the
minimum distance estimation method are considered. We also discuss a bias-
reduction estimate for the parameter p and use the bootstrap method to obtain
the standard error of each estimate and the confidence interval of each parameter
in Section 3. In Section 4, the features of the R package created for the Amoroso
family of distributions are discussed. In Section 5, two numerical examples
based on real data are used to illustrate the estimation methods considered in
this paper. In Section 6, Monte Carlo simulation studies are used to evaluate
the performance of the proposed estimation methods. Finally, some concluding

remarks are provided in Section 7.



2. Preliminary Knowledge of Amoroso Family of Distributions

In this section, we first introduce the mathematical notations used and the
o four-parameter GI' distribution considered in this paper. Some properties of

the four-parameter GI' distribution will be discussed.

2.1. Notations
The notations used in this paper are the following:

e Upper case letters denote cumulative distribution function (CDF) (e.g.,

% G) and lower case letters denote the corresponding PDF (e.g., g).

e The true distribution is referred to as GG, while the empirical distribution
corresponding to n € N independent and identically distributed (i.i.d.)

observations = (z1,...,%,), is referred to as G,,.

0 is a m-dimensional vector of unknown parameters.

0 is a m-dimensional vector of estimated parameters.

100
e O is an open subset of a separable Hubert space.

e Y is a vector of random variables following the four-parameter GI" with

Y = {Y1,Ys,..., YV, }.

y is the vector of observations with y = {y1,y2,...,Yn}

ws  2.2. Amoroso family of distributions and four-parameter Generalized Gamma

distribution

A random variable Y follows a four-parameter GI' distribution with PDF

g(y;a,bic,p) = F(le)’Z‘(y;/iyc_lexp{—(y;“)c], (1)

where a € R\{0} is the scale parameter, u € (—00, 00) is the location parameter,

¢ € RT and ¢ € R\{0} are the shape parameters, and the support of the
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distribution is

y>pu ifa>0,
y<u ifa<0.

We denote this distribution as GI'4(a, ¢, ¢, ) distribution. Note that the PDF
in Eq. (1) is used in Crocks [36], while the probability distribution is defined
for a > 0 and the support of the distribution is u < y < oo in the original paper
by Amoroso [1].

The CDF of random variable Y that follows a GI'4(a,¥,c, u) distribution

can be expressed as

G(y;a,‘ga c, NJ) = T 1ran (2)

where (s, ) = [ t*7! exp(—t)dt is the lower incomplete gamma function. In
this paper, we are interested in estimating the parameter vector 8 = (a, ¢, ¢, i)
based on the observed sample of size n, y = (y1,¥y2, - - -, Yn), from the GT'4(a, ¢, ¢, 1)
distribution. The properties of the GI'4(a, ¢, ¢, u) distribution that are used in

the development of the parameter estimation methods are described here.

Moments. Suppose Y follows the GT'4(a, ,c, i) distribution, the 7" moment
of Y (r=1,2,...) is

B[y = a" =gy, if r/e>—{
00, otherwise.

Then, the mean and variance of the random variable Y are

E[Y] “Fg(g) u .
and Var[y] = aZ‘{F(“c) F(lé)(e_)f (¢+2)] }

respectively.

Distribution of transformed random variables. Suppose Y follows the GI'4(a, ¢, ¢, u =

0) distribution, then we have
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(1) X =Y* ~ GI'(a*,¢,¢/s,0);

(2) Z=wY ~ GI'(wa,¥,c,0);

(3) W =Y°¢~ GI'(a%¢,1,0) (ie., a two-parameter gamma distribution with
scale parameter a¢ and shape parameter ¢);

(4) If V follows a two-parameter gamma distribution with scale parameter 1

and shape parameter £, then Y = aV < + w~ GI(a,l,c,pm).

Property (4) provides a simple way to generate a random sample of the four-
parameter GI' distribution in using the quantile function of the two-parameter

gamma distribution.

Special cases. As mentioned in the Section 1, the four-parameter GI" distribu-
tion encapsulates a large number of well-known and widely used distributions.
These connections are presented in Figure 1. Crocks [36] also presented a re-
view of important properties of the Amoroso family of distributions and pointed
out that many commonly used probability distributions occur as special cases or
limits (such as the power law, the log-gamma, the log-normal, and the normal
distributions).

The four-parameter GI' model is important generalizations of other models
and the inferential procedures of these special cases have been studied in the
literature. For instance, for statistical estimation and inferential procedures of
the generalized Fisher-Tippett distribution (also known as the generalized ex-
treme value distribution), the generalized Weibull distribution, and the Pearson
Type III distribution, one can refer to [37], [38], and [39], respectively, and the

references therein.

3. Parameter Estimation Methods

3.1. A method to obtain initial estimates
Based on the observed sample y = (y1, Y2, - -, Yn), we denote the i-th order
statistic of the observed sample as y;.,,. Based on the observed data, the pa-

rameter space can be written as two disjoint sets {a > 0, p € (y1.n,00), £ € RT,
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Figure 1: Amoroso family of distributions and their connections
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c € R\{0}} and {a < 0, pp € (—00,Yn:n), £ € RT, ¢ € R\{0}}, where y;., is
the i-th order statistic of the observed sample y = (y1,¥y2,...,¥n). Therefore,
the estimation in each of the two disjoint parameter spaces can be considered
separately and then the two sets of estimates are compared.

Usually, due to the form of the four-parameter GI" distribution, close-formed
solution of the parameter estimates are not available and iterative procedures
are needed to obtain the estimates. In the past years, iterative procedures
coupled with Monte Carlo simulation have been largely studied for estimating
the four-parameter GI" distribution [13, 27, 40]. Since those iterative procedures
require a reliable starting value of the estimates, we propose here a method to
obtain the initial estimates.

For a > 0, since the support of the distribution is y > u, we set the initial
estimate of u as fif = py1.n, where p < 1 when y;., > 0 and iy = qy1.,, where
q > 1 when y;., < 0, and transformed the observed data by z;., = y;.n, — fir,
t=1,2,...,n. Note that when p = 1, 1., = 0 which needs to be discarded in
the process of obtaining the initial estimates of parameters a, [ and ¢ to avoid
computational error (e.g., taking logarithm of x1., results in —oo if 1., = 0).
Similarly, for a < 0, since the support of the distribution is y < p, we set the
initial estimate of y as iy = qyn.n, Wwhere ¢ > 1 when y,., > 0 and ji; = pyn.n,
where p < 1 when y,., < 0, and transformed the observed data by z;., =
Yimm — fbr, 1 =1,2,...,n. When ¢ =1, ., = 0 which needs to be discarded in
the process of obtaining the initial estimates of parameters a, [ and ¢ to avoid
computational error. Here, we suggest to use the value p = 0.99 and ¢ = 1.01.

Using the property that W = (Y — p)¢ follows a two-parameter gamma
distribution with scale parameter a® and shape parameter ¢ if Y follows the
GI'(a, ¢, ¢, p) distribution, and the method of moment estimates of the scale and
shape parameters of two-parameter gamma distribution, the proposed procedure

to obtain the initial parameter estimates are described as follows:



Step Al.

Step A2.
Btep A3.
Step A4.

Step A5.

Step A6.

Step A7.

Step AS.

Btep A9.

Obtain an initial estimate of u as

PYi:n, when Y1:n > 0, for a > 0,
qYi:n, when yi., <O0,for a > 0;

qYn:n, when Ynon > 0, for a < 0;

PYn:n, when Ynn < 0, for a < 0,

with p <1 and ¢ > 1.

Compute i, = Yo — pr (1 =1,2,...,n) and discard the values x;.,, = 0;
Consider a sequence of values for parameter c, ¢;,j =1,2,...,J;

Fixed the value of ¢ = ¢;, compute w;., = a:f]n (t=1,2,...,n);

Obtain the estimates of @ and /¢ as

2\ /¢ =2
a; = (i;”) and {; = <7::2> ,

respectively, where

w =

S|

zn:wi and s2 = %Z(U}z —w)%;
i=1 j

Compute the likelihood of the observed data based on parameter vector

0= (aj7£jacja,u1):

Lj = L(y;0 = (aj, 5, ¢, 1)) = [ [ 9(wis a5, £, ¢ pr);
=1

Repeat Steps A3—A6 for different values of ¢; to obtain L;, j =1,2,...,J;

9

Compare the values of the likelihood L;, j = 1,2,...,J to obtain j* in
which

Lj« = rnjax Lj;

Set the initial estimate of @ as O = (aj-, lj~, ¢j=, jir)-

The above algorithm can be used to obtain initial estimates of 6 for a > 0 and

a < 0.

10
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3.2. Maximum likelihood estimation

The maximum likelihood estimate (MLE) of the parameter vector 6 =
(a, 4 c, ,u), denoted as éML = (dML, éML, CML, ﬂML) can be obtained by maxi-

mizing the likelihood function

n

L(yae = (avgvcvﬂ’)) = Hg(yi;avgacvﬂ’)'
i=1

We can first obtain the MLE of 6 in the parameter space {a > 0, 1 € (y1.n, 00),
¢ € Rt, ¢ € R\{0}}, denoted as By, and then obtain the MLE of € in the
parameter space {a < 0, p € (—00,Ynm), £ € RY ¢ € R\{0}}, denoted as
BAML,. The MLE of 8 can be obtained as

. Onre, if L(y;Onry) > L(y; Onp-),
Orrr = (4)

Onr—, if Ly; Oy ) < L(y; O ).

8.8. Minimum distance estimation based on monparametric density estimation

The MDE method [35, 41] based on nonparametric density estimation refers
to a very general technique that formalizes the parameters inference problem as
a problem of minimizing a distance, over the set of parameter 8 € ©, between
the model PDF g(z;80) and some empirical density estimate, f,, obtained from
a sample of size n. Formally, the main objective of the MDE is to minimize the

distance between g(x;6) and f,(x) with respect to 8 = (a, £, ¢, 1), i.e.,

6 = argmin d(g(x;0)||f, (),
Oco

where d(g||f) denotes any proper distance or divergence function that evalu-
ates the closeness of two density functions g and f. Wolfowitz [35] showed that
MDE is more robust to departures from underlying assumptions than maxi-
mum likelihood estimation. Millar [42] explored the asymptotic behavior of the
MDE within a general framework. The MDE approach is different from the
moment-based or maximum likelihood approach and is widely studied in the

literature [41]. The classic examples of this method are the least-square and the

minimum chi-square estimators.

11
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Based on the observed sample y = (y1,y2, - - ., Yn), we consider the empirical
density estimate based on the Gaussian kernel density estimate fn The Gaus-
sian kernel density estimate, fn, of a univariate density f is (see, for example,

[431)
) = 2y B2,
i=1

where K(z;h) o exp[—x2/(2h?)] is the Gaussian kernel function, h is the
smoothing parameter (bandwidth) chosen to be 0.9 times the minimum of
the standard deviation and the interquartile range of the sample y divided
by 1.34 x n~1/5 [44]. Specifically, we discretize the values of z into N points

(x1,x2,...,2N) and minimizing the function

N
S g 0, 6 ¢, )| f ().

k=1

The following distance or divergence measures are considered.

Kullback-Leibler divergence. The Kullback-Leibler divergence between two den-

sities f and g is defined as

derlo@l|f @) = [ oy | %3] as

The estimator of @, denoted as 0 k1, based on minimizing Kullback-Leibler
g(fﬁk;a)]

Jensen-Shanon Bregman divergence. Since the Kullback-Leibler divergence de-

divergence can be obtained as

N
éKL = argmin {Z

Oco k=1

g(zx;0)1In [

fined above is not symmetric (i.e., Dxr(g(x)||f(x)) # (f(2)]|g(z)), we consider

the average of the two divergence measures

;/{g(x) In [ff(g} + f(z)In Bg;]} dx,

which is equivalent to consider the Jensen-Shanon Bregman divergence defined

as

drsala@)|1(@) = [late) - @ | 43| an

12
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The estimator of 8, denoted as 0,5 B, based on minimizing the Jensen-Shanon

Fulw) In lg";;f’;))] |} ®

Hellinger distance. The Hellinger distance between two densities f and g is

defined as

Bregman divergence can be obtained as

N
éJSB = argmin {Z

Oco k=1

Tr;0)In ka;a)
ok ) [fn(xk)

+

dun(g@)\f(e)) = [ [V - Vi@

The estimator of 0, denoted as Ou D, based on minimizing Hellinger distance
can be obtained as

61 p = argmin {i [\/m_ ,/fn(xk)r} . (7)
k=1

Oco

Wassertein distance. The Wassertein distance (also known as Kantorovich dis-
tance) is an interesting metric on probability distributions and popular in many
areas of statistics and machine learning. An estimate of 8 based on Wassertein

distance can be obtained by minimizing the function

dwlal@)|f(0) = | [late) - fo)Pae|

Based on the N discretized points, the estimator of 6, denoted as éWD, based

on minimizing Wassertein distance can be obtained as

N
Ouwo = axgain l}vzmm;m—fn(w] . ®

Here, we consider § = 4. Minimum Wasserstein distance estimators are
particular instances of minimum distance estimators [41] and appear to be
practical and robust alternatives to likelihood-based estimation in the setting of
generative models. The study asymptotic properties of such minimum Wasser-
stein distance estimators, complementing results derived by Bassetti, Bodini

and Regazzini [45], are presented in [46].

13
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Squared Euclidean distance. The squared Euclidean distance between two den-

sities f and ¢ is defined as

dsp(9(@)||f(z)) = / l9(z) — F@)P-

The estimator of 6, denoted as O E, based on minimizing squared Euclidean
distance can be obtained as
1N
0sp = argmin { [N Z lg(zk; 0) — fn(CUk)Ql } : (9)
Oco k=1
Note that the estimator obtained based minimizing the squared Euclidean dis-
tance can be viewed as a special case of the minimum Wasserstein distance

estimator when 6 = 2.

8.4. Minimum distance estimation based on empirical CDF

Based on the observed sample y = (y1,¥2, - .., Yn), we consider the empirical
CDF Fn as
- 1—0.5
E, (yi:n) = n
for i = 1,2,...,n. Note that other kinds of nonparametric estimate of CDF,
such as F,(2i:n) = i/(n + 1) can be considered here. Then, the minimum

distance estimate based on empirical CDF can be obtained by minimizing the

function

Z D(G(yzn7 a, ‘€7 c, /1')||Fn(yzn))
i=1
The following distance or divergence measures are considered.

Hellinger distance. The Hellinger distance between two CDFs F' and G is de-

fined as
Drp(Gw)|[F(y)) = / VGEW) - VEG)P

The estimator of 8, denoted as 8 pc, based on minimizing Hellinger distance

can be obtained as

éHDC = argmin {z”: [\/m_ V Fn(yzn)r} . (10)
1

Oco i=

14
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Wassertein distance. The Wassertein distance between two CDFs F' and G is

defined as 1/s
Dwmme@»L/G@F@W@}.

The estimator of 8, denoted as 6w pc, based on minimizing Wassertein distance
can be obtained as

1
P

~ ) 1 < .
Owpc = argmin [ > G (yin; 0) — Fn(yi:n)5‘| : (11)
Oco "=

Here, we consider § = 4.

Squared Fuclidean distance. The squared Euclidean distance between two CDFs

F and G is defined as
'mﬂme@»:/wwa@ﬁ

The estimator of @, denoted as és Ec, based on minimizing squared Euclidean
distance can be obtained as

N 1 & . 2

0spc = argmin { Z [G(yim; 0) — Fn(yln)} } . (12)

Oco ni4
For the MDE based on nonparametric density estimation and the MDE based

on empirical CDF, similar to the MLE, we can first obtain the MDE of @ in the
parameter space {a > 0, tt € (Y1.n,00), £ € R*, ¢ € R\{0}}, denoted as Opp,
and then obtain the MDE of 8 in the parameter space {a < 0, g € (—00, Yn:n),
¢ e RT, ¢ € R\{0}}, denoted as 6;p_. The MDE of 8 can be obtained as

Onipr, if d(g(w;Oarp+)|Ifa(2)) < dlg(w;0nrp-)||fa(2))

Orip—, if d(g(x;Onrp+)||fu(2)) > d(g(w;001p-)|| fn(2)).

Orp =
3.5. Bias-reduced estimator for parameter p

In Sections 3.2, 3.3 and 3.4, we studied different methods to obtain the four

parameters in the four-parameter GI" distribution. After obtaining the estimates

15
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of a, ¢, ¢ (denoted as a, /, é), from Eq. (3), a bias-reduced estimator of u can

be obtained based on the first sample moment as

. n ar(i+1/e .
K mln{ylznai;yi_(r(l;))}, for a > 0,
UBR = Z_n dp(é+1/é) (13)
max{yn:n,i;yi—m}, for a < 0.

3.6. Standard error estimation and confidence interval based on bootstrap pro-

cedure

In statistical practice, in addition to reporting point estimates of the model
parameters, it is desirable to give an estimate of the variation of each parameter
estimate or an interval estimate with a certain degree of confidence for each
parameter or a function of the parameters (e.g., the percentiles and survival
probabilities) in general. Since the analytic asymptotic variances of the estima-
tors proposed in Section 3.2, 3.3, and 3.4 are intractable due to different reasons
such as the parameter spaces are depending on the parameters themselves, we
propose using the bootstrap method (see, for example, [47]) to estimate the stan-
dard error of the estimate and the confidence interval of a function of model
parameters, A(a, ¢, ¢, 1) in the four-parameter GI" distribution, in which the in-
dividual model parameters can be considered as special cases of the function A.
Suppose the estimate of the parameter vector 8 = (a, ¢, ¢, 1) obtained by one of
the methods presented in Sections 3.2, 3.3, and 3.4 is denoted as 0, = (a, f, é, ),
where x = ML, KL, JSB,HD,WD,SE,HDC,WDC, or SEC, the following
bootstrap procedure can be used to obtain the standard error estimate and the

confidence interval of a function of the model parameters A(a, ¢, ¢, u):

(b) , (b)

Step B1. Generate a bootstrap sample, y®® = (y,”, v, ,...,y,(Lb)), from the four-

parameter GI' distribution with parameter vector 8, = (d,é, ¢, i) using

Property (4) presented in Section 2.2.

Step B2. Based on the bootstrap sample y®), obtain the estimates of the four pa-

280

rameters using the same method to obtain 6., and denote the estimate of

6 based on y® as 87 = @®, i®) &®) 40,

*
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Step B3. Repeat Steps B1-B2 for B times to obtain 6

(2)

*

(B)

I A

Step B4. The bootstrap estimate of standard error of )\(dj, ¢, 1) can be obtained

as
1< .
5 STIAG@®), 40), 600, p®)) — X2,
b=1
285 where
1 B
A=) M@, 80,60, @),
b=1
Step B5. Order AV, X AB)where A®) = X(a®,/®) &®) 4®)) to obtain

290

295

300

M < X2 < .. < APl Then, a 100(1 — 7)% percentile bootstrap confi-

dence interval of A(a,?, ¢, ) can be obtained as

{ Alint(B /)] A[mt(Bufwm))]} ,

where int(z) is the integer part of x.

Note that if one wants to estimate the standard error and/or construct confi-
dence interval for a particular parameter, for example the parameter a, we can

set A(a,l,c, 1) = a.

4. R Package

There are some existing R packages that have the capability to estimate the
parameter of different statistical distributions using maximum likelihood esti-
mation method in which suitable modifications of the R programs are needed for
applying to the four-parameter GI" distribution. For example, the fitdistrplus
package [48], the MASS package [49], and the survival package [50]. There are
also some R packages for fitting the three-parameter generalized gamma distri-
bution, a special case of the four-parameter GI' distribution with p = 0 such as
the fit.GenGamma function in the R package temporal (Parametric Time to

Event Analysis) [51]. However, these existing R functions can only obtain the

17



305

310

315

320

325

330

maximum likelihood estimates of the model parameters for some special cases
of the four-parameter GI' distribution with ¢ > 0 (power shape parameter)
and a > 0 (positive scale parameter) or require substantial R programming to
modify the code.

Here, we aim to develop an R package to estimate the parameters of the
four-parameter GI" distribution based on different estimation methods proposed
in Section 3. The package called AmoRosoDistrib (https://github.com/
ccombesGG4/AmoRosoDistrib/) written in R [52] is a general package that aims
at fitting univariate parametric distributions in the Amoroso family of distribu-
tions with the scale parameter a € R\{0}, the location parameter u € (—o0, c0)
and the shape parameters £ € RT and ¢ € R\{0}.

The AmoRosoDistrib package also provides the PDF, CDF, quantile func-
tion, hazard function for the four-parameter GI" distribution using the parametriza-
tion originating from Amoroso [1]. The package also includes a random number
generation for the four-parameter GI' distribution based on the property that
if Z ~ Gamma (1,), then Y = aZc + w~ GG(a,l,c, ).

The AmoRosoDistrib package includes different parameter estimation meth-
ods based on optimization approach to fit the univariate population. By default,
direct optimization is performed using the general-purpose constraint optimiza-
tion function constrOptim with Nelder-Mead method available in the R package
stats [52] which minimizes a function subject to linear inequality constraints
using an adaptive barrier algorithm. In summary, the nine estimation methods

that are provided in the package are:

1. Maximum Likelihood Estimate: fit.mle() (see, Eq. (4));

2. Minimum Kullback-Leibler divergence estimate based on PDF: fit.mkle ()
(see, Eq. (5));

3. Minimum Jensen-Shanon divergence estimate based on PDF: fit.mjse()
(see, Eq. (6));

4. Minimum Hellinger distance estimate based on PDF: fit.mhe () (see, Eq.

(7);
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5. Minimum Wasserstein distance estimate based on PDF: fit.mwe () (see,
Eq. (8));

6. Minimum squared distance estimate based on PDF: fit.msqe() (see, Eq.
9));

7. Minimum Hellinger distance estimate based on CDF: fit.mhdfe() (see,
Eq. (10));

8. Minimum Wasserstein distance estimate based based on CDF: fit.mwdfe ()
(see, Eq. (11));

9. Minimum squared distance estimate based on CDF: fit.msqdfe() (see,

Eq. (12)).

For all these estimation methods, the users have the flexibility to provide the
initial values of the parameters. Since the initial values are essential for the
optimization algorithm and they may have a strong impact on the quality of the
estimates due to the problem of local optimum, we have also provide the function
called init_theta() in the AmoRosoDistrib package to obtain reasonable
initial values based on the method presented in Section 3.1. Moreover, we also
provide the function called mu_bias_reduced _estimate to compute the bias-
reduced estimator for parameter p based on Eq. (13).

In addition, the AmoRosoDistrib package also provides functions to com-
pute different theoretical characteristics of the GI'4 distributions (i.e., the values
of the parameters are input variables) and different statistics computed from a

sample (i.e., the data are the input variables):
e Theoretical mean: mean_theo;

e Theoretical variance: var_theo;

Theoretical moments: moment_theo;

Sample moments: moment;

Sample skewness: skewness;

Sample kurtosis: kurtosis.
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5. Numerical Examples

In this section, we use two real data examples to illustrate the proposed

parameter estimation procedures for four-parameter GI" distribution.

5.1. Neurotransmission in Guinea Pig Brains (paulsen data)

The paulsen data frame in R package boot [53, 47] has 346 observations of
the spontaneous current flowing into individual brain cells in the brain of adult
guinea pigs. The currents are measured in pico-amperes. These observations
are obtained from an experiment to see if the current flow was quantal in nature
[54].

We fit the paulsen data by using the four-parameter GI" distribution. First,
we use the method proposed in Section 3.1 with 1,000 equal-spaced points in
(—20,20) as the sequence of values for parameter ¢ to obtain the initial value
of 6 in the parameter space Qy = {a > 0, p € (y1.n,0), £ € RT, ¢ € R\{0}},
and the initial value of 8 in the parameter space Q_ = {a < 0, p € (—00, Yn:n),
¢ € RT, ¢ € R\{0}}. Then, based on these initial estimates, we obtain the
parameter estimates using the estimation methods described in Section 3 in
parameter spaces 24 and _. The parameter estimates are presented in Table
1 and the parameter estimates that give a better value of objective function are
indicated by an asterisk. The histogram and the fitted PDFs for the paulsen
data with the two initial estimates, and the estimates obtained from different
estimation methods (i.e., the set of estimates with an asterisk in Table 1) are
presented in Figure 2. From Figure 2, we observe that all the proposed methods,
including the initial estimates, provide a reasonable fit to the data. Moreover,
the fitted PDFs based on different parameter estimation methods are similar
except for the initial estimate in parameter spaces {2_ and the MDE-HD.

To provide an estimate of the variation of each parameter estimate and
an interval estimate with a certain degree of confidence for each parameter, we
compute the estimated standard errors of the selected point estimates (indicated

with asterisk in Table 1) and the 95% confidence intervals the four parameters

20



Table 1: Parameter estimates of the four-parameter GI' distribution based on different esti-

mation methods for the paulsen data set.

Value of

Parameter Parameter estimates objective

Methods space a 4 c o function
Initial Q4 2.56418 2.65481 0.98098 2.87100  —949.2714*
Q_ —24.25277 0.21465 20.00000 29.08800 —950.3481
MLE Q4 0.00243  20.94687 0.38253 2.23448 —946.1885
Q_ —33.63409 0.19869 30.07615 38.39699  —941.8875%*

MDE-KL Q4 2.46675 2.74086 0.94761 2.90000 3.577317

Q_ —34.21816 0.30807 19.84622 39.15368 2.43993%

MDE-JSB Q. 1.35520 3.75067 0.81873 2.88080 7.25734

Q_ —35.00385 0.31365 21.09198 39.99006 4.86410*

MDE-HD Q4 4.36420 1.79173 1.16580 2.90000 0.32401

Q_ —351.85447 0.61295  141.59483  357.89817 0.02574%*

MDE-WD Q4 0.00005  27.45406 0.28308 2.75488 0.01190

Q_ —113.95793 0.25992 85.50569  118.82425 0.00792%*

MDE-SE Q4 0.00011  27.18671 0.29909 2.55018 0.04358

Q_ —213.03378 0.31778  137.54679  218.10832 0.00505*

MDE-HDC Q4 2.19365 2.96368 0.98964 2.90000 0.18574%*

Q_ —41.89894 0.08910 81.44715 46.52610 0.21051

MDE-WDC Q4 0.76866 4.48282 0.7036 2.90000 0.03549

Q_ —104.08400 0.12016 167.1149  108.88144 0.02908*

MDE-SEC Q4 0.21302 6.98729 0.57329 2.90000 0.28877

Q_ —154.48710 0.16138  192.87155  159.35486 0.19522%*

* indicates parameter estimates that give a better value of objective function.

21



390

395

Figure 2: Histogram and fitted PDFs of the paulsen data set.

based on the bootstrap procedure presented in Section 3.6 with B = 1,000

bootstrap samples. The results are presented in Table 2.

5.2. Anorexia Data on Weight Change (anorexia data)

The anorexia data set in the M ASS package [49] contains the weight change
data for young female anorexia patients. Here, the studied variable is the Weight
of the patient after the study period (in lbs.): Postwt. There are 72 observations

in the data set. The objective of this example is to study the behavior of the

Table 2: Bootstrap standard error (SE) estimates and 95% confidence interval (CI) based

on 1,000 bootstrap data sets according to the four-parameter GI' distribution based on the

different parameter estimates (indicated with an asterisk) in Table 1.

a 2 é i
Methods SE 95% CI SE 95% CI SE 95% CI SE 95% CI
MLE 16.389 (—38.577, —22.297) 0.062 (0.150, 0.332) 12.256 (25.631, 66.959) 16.545 (31.856, 78.683)
MDE-KL 3.386 (—32.832, —22.27) 0.111 (0.342,0.707) 2.501 (12.064, 18.916) 3.456 (34.426,41.243)
MDE-JSB 3.180 (—32.077, —22.433) 0.120 (0.350, 0.749) 2.657 (12.161, 19.952) 3.220 (33.773,40.975)
MDE-HD 80.815 (—120.11, —23.148) 0.254 (0.400, 1.164) 22.790 (12.283, 86.72) 81.621 (33.259, 276.734)
MDE-WD 18.445 (—70.527, —29.073) 0.107 (0.305, 0.609) 12.183 (23.873, 62.426) 18.466 (52.859, 107.98)
MDE-SE 26.517 (—97.982, —36.992) 0.125 (0.370,0.723) 14.570 (29.125, 72.250) 26.598 (72.134,150.519)
MDE-HDC 2.658 (0.011, 8.143) 12.832 (1.525,42.002) 0.530 (0.455,2.052) 0.690 (2.311, 3.644)
MDE-WDC  25.040 (—74.122, —26.8) 0.064 (0.053, 0.244) 100.981 (92.511, 436.78) 25.146  (43.385,119.962)
MDE-SEC 45.799 (—122.874, —27.732) 0.071 (0.095, 0.316) 64.087 (87.123,261.553) 45.929 (55.326, 195.493)
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Table 3: Parameter estimates of the four-parameter GI' distribution based on different esti-

mation methods for the anorexia data set.

Value of
Parameter Parameter estimates objective
Methods space a 4 c o function
Initial Q4 25.92861 0.32126 4.38438 70.58700 —247.7085
Q_ —32.07908 0.08792  18.91892  104.63600  —246.4883*
MLE Q4 26.38376 0.26558 4.46531 71.20407 247.0739*
Q_ —31.70010 0.10629  15.44827  104.47086 246.4163
MDE-KL Qy 19.95212 0.83938 2.02986 70.38661 0.9072
Q_ —56.07346 0.31234  12.66618  130.71678 0.72463*
MDE-JSB Q4 0.018040  51.72513 0.52424 51.02371 1.66871
Q_ —33.86042 0.28699 7.24023  107.65803 1.1343*
MDE-HD Q4 24.75166 0.42261 3.26804 70.83969 0.0531
Q_ —34.07224 0.27576 7.45461  107.65995 0.0121%*
MDE-WD Qi 19.05471 0.90292 1.86721 70.37946 0.0028
Q_ —36.82913 0.25279 8.99935  110.51578 0.0021%*
MDE-SE Q4 18.72147 1.00642 1.89545 69.24949 0.0029
Q_ —35.27432 0.27184 8.00305  108.99058 0.0014%*
MDE-HDC Q4 15.90206 1.13124 1.71907 70.00529 0.0156
Q_ —32.52647 0.13146  13.79075  105.64742 0.0153*
MDE-WDC Q4 14.18711 1.34909 1.59308 69.73335 0.0236
Q_ —40.37422 0.29562  10.11036  115.24716 0.0228%*
MDE-SEC Q4 16.87272 0.99972 1.79398 70.42269 0.0263
Q_ —35.81867 0.21207  10.84299  109.69528 0.0232%*

* indicates parameter estimates that give a better value of objective function.

proposed estimation methods based on a relatively small sample.

Following the same approach in the previous numerical example in Section
5.1, the parameter estimates are presented in Table 3 and the parameter esti-
mates that give a better value of objective function are indicated by an asterisk.
The histogram and the fitted PDFs for the variable Postwt in anorexia data
set with the two initial estimates, and the estimates obtained from different
estimation methods (i.e., the set of estimates with an asterisk in Table 3) are
presented in Figure 3. From Figure 3, we observe that all the proposed methods,
provide a reasonable fit to the data, however, the variation between the fitted
PDF's based on different parameter estimation methods are larger compared to
the example in Section 5.1 probably due to the small sample size.

To provide an estimate of the variation of each parameter estimate and
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Figure 3: Histogram and fitted PDFs of the anorexia data set.

an interval estimate with a certain degree of confidence for each parameter, we
compute the estimated standard errors of the selected point estimates (indicated
with asterisk in Table 3) and the 95% confidence intervals the four parameters
based on the bootstrap procedure presented in Section 3.6 with B = 1,000

bootstrap samples. The results are presented in Table 4.

Table 4: Bootstrap standard error (SE) estimates and 95% confidence interval (CI) based

on 1,000 bootstrap data sets according to the four-parameter GI' distribution based on the

different parameter estimates in Table 3.

a i é i

Methods SE 95% CI SE 95% CI SE 95% CI SE 95% CI
MLE 3.010 (25.431, 31.467) 0.496 (0.109, 0.573) 456.541 (4.053,59.019) 0.629 (71.367, 73.094)
MDE-KL 14.052 (—68.267, —34.654) 0.722 (0.305, 2.921) 5.261 (6.835, 24.407) 15.444  (117.357,156.425)
MDE-JSB 8.608 (—42.544, —25.217) 1.521 (0.267,4.251) 4.348 (4.567,20.874) 12.231 (105.939, 136.417)
MDE-HD 53.009 (—38.002, —26.799) 11.201 (0.278,8.543) 3.077 (5.105,12.173) 67.908  (105.403, 404.756)
MDE-WD 25.822 (—56.633, —26.289) 4.557  (0.255,10.020) 6.193 (5.518,22.031) 32.704  (108.004, 217.270)
MDE-SE 47.222 (—76.828, —25.871) 10.960  (0.271,34.013) 7.617 (5.359, 27.562) 63.083  (107.004, 296.130)
MDE-HDC 21.764 (—35.483, —22.882) 2.432 (0.049, 4.646) 57.176  (7.466,220.913)  25.370  (104.486, 198.399)
MDE-WDC  49.836  (—102.387, —25.894) 3.952 (0.158, 4.892) 38.825  (8.351,117.528)  52.500  (109.416,272.711)
MDE-SEC 48.788 (—61.370, —26.048) 3.799 (0.112, 4.463) 42.775  (8.347,169.406)  52.058  (106.776, 281.766)
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6. Monte Carlo Simulation Studies

In order to give a comprehensive evaluation of the proposed estimation pro-
cedures, we conduct extensive experimentation on synthetic univariate popula-
tions drawn from a specific Amoroso distribution, and compare results obtained
with the parameter estimation methods presented in Section 3.

All the Monte Carlo simulations are performed with the R package
AmoRosoDistrib described in Section 4 and the code to reproduce the results
can be obtained from the authors upon request. In our preliminary simulation
studies, we observed that the variations of the parameter estimates, especially
for parameter a, can be large (with standard deviations in the order of 1013 in
some cases). Moreover, we observe that some of the optimization procedures
do not converge and the parameter estimates cannot be obtained. These re-
sults agree with the issues in estimating the parameters of the four-parameter
GT distribution discussed in the literature (see, Section 1), which is one of the
reasons we propose different estimation methods in this paper.

Since the variations of the parameter estimates can be large, in order to pro-
vide reasonable and meaningful comparisons of different estimation methods,
instead of using the conventional measures for comparing estimation methods
using biases and variances, we consider some robust measures including the
medians and interquartile ranges (IQRs). In addition, we also present the pro-
portion of simulations that the parameter estimates cannot be obtained.

For the initial estimates, 1,000 equal-spaced points in (—20,20) as the se-
quence of values for parameter ¢ are used to obtain the initial value of 8 in the
parameter space Q. = {a > 0, p € (y1.0,00), £ € RT, ¢ € R\{0}}, and the

initial value of 8 in the parameter space Q_ = {a < 0, u € (—00, Ypnn), £ € RT,

c € R\{0}}.

6.1. Simulation setting based on the paulsen data

In this setting, we simulate the data sets with sample size n = 346 from the

four-parameter GI" distribution with parameters a = —33.6, £ = 0.2, ¢ = 30.00,
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w = 38.4, which are the maximum likelihood estimates based on the paulsen
data presented in Section 5.1. The simulated medians and IQRs, and the pro-
portion of the set of estimates in the correct sample space (i.e., Q_ in this
setting) is selected for each estimation method, except for the method to obtain
the initial estimates, based on 2,000 simulations (denoted as % choose -ve) are
presented in Table 5. The simulated medians closest to the true values of the
parameters and the smallest IQR among all the methods, except for the method

to obtain the initial estimates, are highlighted in bold.
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From Table 5, we observe that the estimates in parameter space 24 have
larger variations compared to the estimates in parameter space {2_ as the true
value of parameter a is negative. We can see that the MDE-HD method perform
well in terms of the closeness of the medians to the true values, however, the
variations (IQRs) of this method are much larger than the other methods. When
we take both IQRs and the closeness of the medians to the true values into
account, the performance of the MDE-KL and MDE-JSB methods are better
than the other methods. In this case, the MDE-JSB method is preferred since
the proportion of times that the parameter estimates in the right sample space
are identified for MDE-JSB (93.8%) is higher than that for the MDE-KL method
(88.4%). It is clear that there is not a single estimation method outperforms

the other methods in estimating the four parameters in the model.

6.2. Simulation setting based on the anorexia data

In this setting, we simulate the data sets with sample size n = 72 from a four-
parameter GI' distribution with parameters a = 26.4, { = 0.27, ¢ = 4.47, p =
71.2, which are the maximum likelihood estimates based on the anorexia data
presented in Section 5.2. The simulated medians and IQRs, and the proportion
of the set of estimates in the correct sample space (i.e., €4 in this setting) is
selected for each estimation method, except for the method to obtain the initial
estimates, based on 2,000 simulations (denoted as % choose +ve) are presented
in Table 6. The simulated medians closest to the true values of the parameters
and the smallest IQR among all the methods, except for the method to obtain
the initial estimates, are highlighted in bold.
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From Table 6, once again, we observe that there is not a single estimation
method that outperforms the other methods in estimating the four parameters
in the model. The MLE and MDE-HD methods perform reasonably well for
all the four parameters in terms of both the closeness of the medians to the
true values and the IQRs. In this case, the MLE method is preferred since
the proportion of times that the parameter estimates in the right sample space
are identified for MLE (91.0%) is higher than that for the MDE-HD method
(46.9%).

6.3. Simulation setting based on the bladder cancer data

In this subsection, we consider the simulation setting based on the model
fitting of a data set that represents the remission times (in months) of a random
sample of 128 bladder cancer patients reported in Lee and Wang [55] based on
the three-parameter GI' distribution (i.e., with g = 0 in the four-parameter
GT distribution).

Shanker and Shukla [56] modeled this bladder cancer data by using the
three-parameter GI' distribution and reported the parameter estimates (the
formulation in Eq. (1) with p = 0) as & = 0.52813, ¢ = 3.8869, ¢ = 0.5139 (see,
Table 1 of [56]). Here, we simulate the data sets with sample size n = 128 from
a four-parameter GI' distribution with parameters a = 0.52813, ¢ = 3.8869,
c = 0.5139, and g = 0. The simulated medians and IQRs, and the proportion
of the set of estimates in the correct sample space (i.e., Q4 in this setting) is
selected for each estimation method, except for the method to obtain the initial
estimates, based on 2,000 simulations (denoted as % choose +ve) are presented
in Table 7. The simulated medians closest to the true values of the parameters
and the smallest IQR among all the methods, except for the method to obtain
the initial estimates, are highlighted in bold.
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From the simulation results in Table 7, we observe that the MDE-SEC meth-
ods perform reasonably well for all the four parameters in terms of both the
closeness of the medians to the true values, the IQRs and the proportion of
times that the parameter estimates in the right sample space.

From the three settings presented in Sections 6.1, 6.2, and 6.3, the perfor-
mance of the estimation methods proposed in this paper can be varied and there
is not a single method better than the others in all the situations. Therefore, as
a practical recommendation, researchers can consider using Monte Carlo simu-
lation methods to evaluate the performance of the estimation procedures under

some particular settings specified based on the context of the problem.

7. Concluding Remarks

The Amoroso family of distributions are widely used in many areas for mod-
eling a real phenomenon. The main advantage of the four-parameter GI" distri-
bution distribution is its flexibility regarding the varieties of shapes and hazard
functions for modeling real-life data. However, the flexibility of GI" distribution
comes at the price of having difficulties in parameter estimation since different
values of parameters may appear almost identical fit of PDF, as discussed in
Lawless [10].

In this paper, we present a unified framework for fitting a univariate data set
by using the four-parameter GI' distribution with different parameter estimation
methods. Our proposed approaches have taken the negative shape parameter
and negative scale parameter into account. Since the initial values have an
impact on the efficiency of the iterative numerical algorithms to obtain the
parameter estimates, we also present a feasible and reliable method to obtain
initial estimates for those iterative numerical algorithms. The computational
algorithms for the methods presented in this paper are programmed in R and
made available as an R package called AmoRosoDistrib.

From the numerical and simulation studies, we show that the proposed meth-

ods are feasible and efficient in fitting the four-parameter GI" distribution to

32



530

535

540

545

550

555

data. However, we found that there is no one single method presented in this
paper that outperforms the other methods in all situations. Therefore, overall
speaking, we propose applying all the estimation methods and graphically dis-
play the fitted PDF's of the GI" distribution in order to assess the suitability of
using a specific set of parameter estimates.

For future research, exploring different methods for fitting the four-parameter
GT' distribution to incomplete data, such as censored and truncated data in
reliability /survival analysis, is an interesting topic. For instance, the study con-
cerning a three-parameter GI' distribution with ¢ > 0 and ¢ > 0 by Shang
and Ng [57] based on left-truncated and right-censored data can been extended
to the four-parameter GI'distribution with a € R\{0} for the scale parameter,
i € (—o0, 00) for the location parameter and ¢ € R\{0}. Research in this direc-

tion is in progress and we hope to report the results in a future paper.
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