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a b s t r a c t 

Direct Numerical Simulations of mass transfer within Taylor flows are carried out using the periodic unit- 

cell approach by means of the Level-Set method, under the axisymmetric assumption. The considered

cases are based on the experimental study of Butler et al. [1] (absorption of gaseous species) for bubbles

of Reynolds numbers Re b > 200 and capillary numbers Ca > 10 −3 . Firstly, the hydrodynamics of five cases 

are calculated up to steady state, after which the bubble shape, lubrication film thickness and velocity

profiles are compared to experimental and theoretical results. Using these converged hydrodynamics, the

transient mass transfer between the gas and liquid phases is then simulated, assuming no change in bub- 

ble volume. The Péclet number Pe is varied between 10 and 900 by changing the diffusion coefficient, al- 

lowing for new insight into local phenomena of mass transfer. In this way, the maximal transfer fluxes at

the interface are observed to be (i) close to the stagnation point at the film entrance, and (ii) at the rear

cap where the tangential velocity is greatest. As once as the mass transfer coefficient becomes constant,

the fluxes across the part of the interface in contact with the film and around the bubble caps are each 

characterised by a local Sherwood number. The latter evolves by 
√ 

Pe f ilm across the film and is found to 

be predictable by a simple model when Pe f ilm > 1 , where Pe f ilm is the film Péclet number. Concerning the 

caps, it evolves by
√ 

Pe but only in a finite range of Pe , contrary to the common assumption of similarity

of transfer around the caps with that around a rising unconfined spherical bubble. Such local analyses

could be further used in multizone models of mass transfer for Taylor flows. Finally, a correlation is pro- 

posed to scale the global Sherwood number Sh ∞ 

far from channel inlet, defined as a function of both a

Péclet number Pe R based on the relative velocity between the bubble and the two-phase flow, and the 

gas volume fraction in the unit cell. Its predictions are discussed against experimental results at much

higher Péclet numbers, after showing that Sh ∞ 

is independent on the initial concentration distribution in

the liquid (the latter being sensitive to the injection conditions in experiments).
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. Introduction

Gas-liquid Taylor flows, which consist of trains of bubbles sep- 

rated by liquid slugs, with the bubbles being of comparable di- 

meter to that of the tube, are commonly encountered in milli- 

etric or microfluidic devices used as microreactors or monolithic 

hemical reactors. The existence of the Taylor flow regime depends 

n the ratio of superficial gas and liquid velocities [2] , and it is a

egime which is actively sought since it allows good controllabil- 

ty of the reacting system and promotes enhanced heat and mass 

ransfer compared to other chemical reactors. Therefore, it is cru- 

ial to characterise the transfer dynamics between the gas and the 
∗ Corresponding author.

E-mail address: benjamin.lalanne@ensiacet.fr (B. Lalanne).
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iquid phase, either in the presence or absence of chemical reac- 

ion. 

For the case of physical absorption of concentrated gas in the 

urrounding liquid, resistance to transfer lies in the liquid phase. 

n a train of Taylor bubbles, mass transfer has been experimentally 

tudied by several authors, based on either global measurements of 

he liquid concentration at inlet and outlet of the capillary tube [3–

] , or, more recently, based on visualisation or measurement of the

oncentration field in the liquid slug [1,7,8] . However, the effective

ontributions from the different bubble zones in the whole transfer

rocess is still under debate.

Most of the existing studies are dedicated to producing global 

orrelations, either of the mass transfer coefficient k L a or the 

lobal Sherwood number Sh , but these correlations generally badly 

eproduce the influence of all the different parameters playing a 

ole in the mass transfer dynamics, possibly due to the difficulty 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2021.121670&domain=pdf
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Nomenclature 

Bo Bond number (-) 

C local mass concentration (mg/L) 

C volume average mass concentration in the liquid 

(mg/L) 

C ∗ mass saturation concentration (mg/L) 

Ca capillary number (-) 

D diffusion coefficient (m 

2 /s) 

d diameter (m) 

g acceleration due to gravity (m/s 2 ) 

H Heavyside function 

J mass transfer flux (mg/s) 

j diffusion flux density (mg/m 

2 /s) 

k mass transfer coefficient (m/s) 

L length (m) 

n normal vector 

P pressure (Pa) 

Pe Péclet number (-) 

Pe R Péclet number based on the relative velocity (-) 

R capillary channel radius (m) 

Re Reynolds number (-) 

r radial distance (m) 

r 0 radial position of vortex center (m) 

r 1 radial position of dividing streamline (m) 

S surface area (m 

2 ) 

Sc Schmidt number (-) 

Sh Sherwood number (-) 

t, τ time (s) 

u , u, w velocity (radial and axial components) (m/s) 

V volume (m 

3 ) 

W e Weber number (-) 

W relative slip velocity (-) 

x coordinate (m) 

�x mesh spacing (m) 

z axial distance (m) 

Greek 

δ average thickness (film or boundary layer) (m) 

θ angle (rad) 

κ interface curvature 

μ dynamic viscosity (Pa.s) 

σ surface tension (N/m) 

ρ density (kg/m 

3 ) 

φ level set distance function (m) 

ξ coordinate (m) 

Subscripts 

b bubble 

bs bubble surface in contact with the slug 

b f bubble surface in contact with the film 

cir circulation 

di f f diffusion 

ds dividing streamline 

f ilm film 

f ilm, b lubrication film in contact with the bubble (in be- 

tween the two side stagnation points) 

g gas phase 

gs superficial gas phase 

m mass boundary layer 

min minimal 

max maximal 

n first normal derivative 

nn second normal derivative 
g

l liquid phase

loc local 

ls superficial liquid phase 

pred predicted 

s slug 

slug core slug core region 

t tangential 

t p two-phase 

uc unit cell 

� interface 

∞ steady state 

Supercripts 

Gh ghost values 

n varying only one parameter at the time. Some of these corre- 

ations combine different contributions both from the film zone 

nd the bubble caps, as proposed by Irandoust et al. [3] and van 

aten and Krishna [9] . More sophisticated models are based on lo- 

al characteristics of the flow or transfer fluxes, like the one sug- 

ested by Abiev [10] , 11 ] which relies on a decomposition of the 

ow into three layers, but such models still require more local data 

o be validated and relevant scaling laws for the local mass transfer 

uxes. In the experimental study of Butler et al. [1] , local contribu- 

ions of the film all along the channel wall and for the rest of the

lug have been distinguished for the mass transfer process, show- 

ng some of the mechanisms involved: the whole transfer dynamic 

s strongly influenced by the recirculation motion in the slug, and 

he film surrounding the slug core contributes by feeding the rest 

f the slug in addition to the bubble caps, as it is a region rapidly

nriched in dissolved gas. Such a contribution has been included in 

he theoretical framework proposed by Nirmal et al. [12] : the au- 

hors divide the system into different regions, the bulk slug, the 

iquid film surrounding the bubble and the liquid film close to 

he bulk slug, and solve (i) convection-diffusion equations for the 

oncentrations in the liquid film in contact with the bubble and 

he surrounding bulk slug, and (ii) a modified version of such an 

quation in a coordinate system based on the streamsurfaces in 

he bulk slug, where the outermost streamline receives concentra- 

ion both from the bubble caps and the surrounding liquid film. 

his modelling approach has shown potential for the prediction 

f the shrinkage rate of a dissolving bubble, but it still requires 

he knowledge of the relevant local transfer coefficients which are 

sed as input in such a model or validations of their underlying as- 

umptions. This can be achieved either through local experimental 

tudies or Direct Numerical Simulations. 

Experimentally, several issues make this task challenging. In- 

eed, it can be difficult to target a given cross-section of the flow 

13] , and therefore measure the gradients along the bubble inter- 

ace. Then, local measurements are generally limited to a short

ime period. The latter issue can be solved by using a colorimet- 

ic technique to follow the solute absorption over a longer time 

14] , but such a method involves chemical reactions for which the

inetics need to be sufficiently slow compared to diffusion in or- 

er to avoid any acceleration of the intrinsic mass transfer rate. 

inally, controlled conditions can be difficult to achieve in experi- 

ents, i.e. without surfactant effects or without an influence of the 

njection conditions of the two phases on the hydrodynamics and 

ass transfer characteristics. For example, in the investigation of 

utler et al. [1] with the PLIF-I technique, some particular hydro- 

ynamic features in the generated Taylor flow with a T-junction 

ave been observed, showing the presence of zones richer in oxy- 

en in the middle of the slugs for the cases of bubble Reynolds 
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umber greater than 300, which could lead to some difficulties in 

he interpretation of the mass transfer rate. 

Numerical studies offer a complementary approach, making it 

ossible to work in ideal conditions and allowing for the computa- 

ion of local fluxes along the interfaces. Several CFD simulations of 

aylor flows have been carried out, including heat or mass trans- 

er between the two phases or with the channel wall [9,15,16] . In 

rder to be valid, these numerical simulations require the use of a 

esh fine enough close to the wall so as to capture the thin lu- 

rication film [16–19] . Moreover, the mesh also needs to be fine 

nough close to the interface so as to accurately resolve the trans- 

er boundary layers. Because of these constraints, simulations at 

pplication-related values of the Schmidt number around bubbles 

f complex shapes have a very high computational cost, hardly af- 

ordable by Direct Numerical Simulations, especially at high Pé- 

let number where a full grid independence of the results is dif- 

cult to achieve. Additionally, several works have used idealised 

hapes for the Taylor bubbles [9,20,21] . However, the exact shape 

f the bubble can produce interface regions with locally higher 

r lower rates of transfer [1,22] . Then, it is of interest to assess

he transfer around Taylor bubbles of realistic shapes, a possibil- 

ty being to use numerical methods able to compute the hydro- 

ynamics around deformable bubbles and to maintain sufficient 

ccuracy for interfacial mass transfer. Among recent works, such 

umerical methods simulate the hydrodynamics of Taylor bubbles 

y using the Volume of Fluid method [16,22–24] , the Level-Set 

ethod [25,26] , the Lattice Boltzmann method [27] or an interface 

racking approach taking into account the bubble dissolution due 

o mass transfer [28] . A comparison of several computational re- 

ults on the hydrodynamics with experimental data can be found 

n Marschall et al. [29] . Such a validation step based on experi- 

ental data or available theoretical results is of particular impor- 

ance in order to ensure the accuracy of the numerical solution; in- 

eed, Abadie et al. [26] have shown the existence of artificial addi- 

ional recirculation loops when solving the hydrodynamics around 

 single Taylor bubble at small capillary number due to numerical 

purious currents. Concerning the mass transfer dynamics, a full 

irect comparison between numerical simulations and local ex- 

erimental results remains very challenging and has not yet been 

erformed. 

This work is a first step in the comparison of numerical and 

xperimental results on the mass transfer dynamics in a train of 

aylor bubbles. Simulations of trains of Taylor bubbles in the iner- 

ial regime (bubble Reynolds number higher than 100) are carried 

ut: they correspond to four cases from the experimental study of 

utler et al. [1] , where the bubble shapes have been observed to be

xisymmetric in the latter, and an additional case from the numer- 

cal work of Gupta et al. [18] , also corresponding to axisymmetric 

onditions. The in-house DIVA code [30,31] for DNS, based on the 

evel-Set and Ghost Fluid methods, is employed to solve these Tay- 

or flows. First, the hydrodynamics in a periodic unit cell is com- 

uted until steady-state, and bubble shapes and velocities are com- 

ared to experimental measurements or theoretical results. Then, 

ass transfer from the gas to the liquid is solved on the steady 

ydrodynamics (case of physical absorption), at low to moderate 

chmidt numbers ( 0 . 1 ≤ Sc ≤ 14 ), by neglecting the bubble size de-

rease in time. The objective of this paper is to provide new insight 

n the mechanisms of mass transfer in a train of Taylor bubbles. 

he results will lead to the analysis of local Sherwood numbers 

or mass transfer fluxes both in the part of the interface in con- 

act with the lubrication film and around the caps, allowing com- 

arisons with previous simplified models when they are available. 

inally, the global Sherwood number will also be scaled as a func- 

ion of relevant non-dimensional numbers in this problem, allow- 

ng comparisons to the values obtained in our previous experimen- 

al study [1] at higher Schmidt numbers. 
. Numerical procedure

.1. Governing equations 

The two-phase flow is computed by solving the incompressible 

avier-Stokes equations, which are written in the framework of a 

ulerian one-fluid approach as: 

∂u
∂t

+ ( u . ∇ ) u = 

∇ . ( 2 μD )
ρ − ∇P

ρ + g ,

∇ . u = 0 

(1) 

here u is the velocity, P the pressure, ρ and μ the local values of 

ensity and dynamic viscosity respectively, g the acceleration due 

o gravity and D the rate of deformation tensor. Several of these 

ariables are discontinuous across the interface, such as ρ , μ and 

 . By denoting [ P ] � = P g − P l the pressure jump at the interface, the

alance of normal stresses at the interface leads to 

 

P ] � = σκ + 2

[
μ

∂u n 

∂n 

]
�

, (2) 

here u n is the velocity normal to the interface, n the normal vec- 

or, σ the surface tension and κ the interface curvature. In the ab- 

ence of surfactants or impurities adsorbed at the interface in this 

umerical study, the tangential stresses are assumed to be contin- 

ous across the interface. 

Mass transfer is simulated by solving the advection-diffusion 

quation in the liquid phase, written on the mass concentration 

of solute as: 

∂ C 

∂t 
+ ( u . ∇) C = D �C, (3) 

ith D being the diffusion coefficient associated with the consid- 

red binary fluid system. 

.2. Numerical methods 

In this study, axisymmetric direct numerical simulations are 

arried out in the frame of the bubble, on Cartesian non-uniform 

eshes in order to accurately calculate both the bubble shape in 

quilibrium with the flow and the concentration gradients around 

he bubble, following the numerical procedure detailed in Lalanne 

t al. [30] concerning the hydrodynamics. It is briefly summarised 

ere. 

The governing equations are discretised by using by the finite 

olume method. For all equations, spatial derivatives in the diffu- 

ive terms are estimated with a second order central scheme and 

ll the convective terms with a fifth order WENO scheme. Tempo- 

al derivatives are approximated with a second-order Runge-Kutta 

cheme. The capture of the interface on the mesh is ensured by 

he Level-Set method: the interface corresponds to the zero-level 

urve of a distance function φ, which is defined as the algebraic 

istance of each mesh point x to the interface. Its displacement in 

he velocity field u is tracked by solving the following equation for 

: 

∂φ

∂t 
+ u . ∇φ = 0 (4)

dditionally, an algorithm of redistancing is employed in order to 

nsure that φ remains a distance function at each time step, which 

onsists of solving the following equation until steady state for a 

ctitious time τ : 

∂d 

∂τ
= sign (φ)(1 − | ∇d | ) (5)

here d( x , t, τ ) τ=0 = φ( x , t) . The Navier-Stokes equations (eq. 1 )

re computed by means of a projection method, with the jump 

ondition (eq. 2 ) taken into account thanks to the Ghost Fluid 

ethod. 



Fig. 1. Simulation B from Table 1 for Sc = 10 , at t = t cir (defined later): concentration profile along the axis (red squares) and the extrapolated values inside the bubble close 

to the interface (black points). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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For the mass transfer resolution, eq. 3 is computed with an ex- 

licit discretisation of the convective term and an implicit treat- 

ent of the diffusive term. Concentration is solved in the liquid 

hase only, with a Dirichlet boundary condition C = C ∗ imposed 

n the immersed interface. To such a purpose, the method pro- 

osed by Gibou et al. [32] is used, which takes into account the 

irichlet condition during the discretisation of the Laplacian of the 

oncentration in the cells close to the interface. Indeed, discretiza- 

ion of �C = f is written as 
C i +1 −C i 

�x 2
+ C i −C i −1 

�x 2
= f i at a grid node i

n a one dimensional mesh of spacing �x . If the immersed inter- 

ace lies between the node i − 1 , inside the bubble, and i , in the

iquid, this discretization can no longer be written in that form as 

radients are not computed in the gas; then, the method proposes 

o replace C i −1 by a fictitious value C Gh 
i −1 

calculated from a linear

xtrapolation between points i − 1 and i , which involves both the 

alue C i and the value C ∗ at the interface:

 

∗ = θC Gh 
i −1 + (1 − θ ) C i , (6) 

here θ is a distance ratio which indicates the position of the in- 

erface between the nodes i − 1 and i by θ = | φi | / ( | φi −1 | + | φi | ) .
dditionally, in order to maintain a high accuracy of the discretiza- 

ion of the convective term in eq. 3 , a WENO scheme of 5th order

s employed. Around the interface, such a discretization requires 

ctitious values of the concentration in the gas. These ghost values 

re generated by the second-order extension method introduced 

y Aslam [33] . It consists of solving three partial differential equa- 

ions until steady state (on a fictitious time) at each time step, in 

rder to preserve the continuity of the extrapolated function along 

he normal direction to the interface, by eq. 7 c, as well as the

ontinuity of the first and second directional derivatives, by eq. 7 b 

nd 7 a respectively: 

∂C nn 

∂τ
+ H(φ) n . ∇C nn = 0 (7a) 

∂C n 

∂τ
+ H(φ)( n . ∇C n − C nn ) = 0 (7b) 

∂C + H(φ)( n . ∇C − C n ) = 0 , (7c) 

∂τ
here C n and C nn are respectively the normal first derivative and 

he normal second derivative of C, and H(φ) the Heaviside function 

entered on the interface position. An example of second-order fic- 

itious values extrapolated in the gas phase from computed values 

n the liquid phase is given in Fig. 1 for a case of simulation of

ass transfer around a Taylor bubble. 

Computation of hydrodynamics with these numerical methods 

as been extensively validated in Lalanne et al. [30] for the case of 

ising and shape-oscillating bubbles and droplets at Reynolds num- 

ers of order 100. Concerning the mass transfer computation and 

he related specific numerical treatments previously mentioned, 

hey have already been used in benchmark two-phase flow config- 

rations involving phase change like boiling, drop evaporation or 

ondensation [31,34–37] . In Appendix A, new validations are pro- 

ided in the case of mass transfer around a spherical bubble, (i) in 

 pure diffusive case and (ii) in case of a rising spherical bubble 

t Reynolds number close to 20 for different Schmidt numbers Sc. 

his procedure validates the ability of such a numerical simulation 

o compute the mass transfer flux at high Sc by using mesh grids 

hich are not boundary-fitted, provided that the mass boundary 

ayers are captured on several grid points. 

.3. Simulation of Taylor bubble cases 

Axisymmetric trains of Taylor bubbles in a liquid flow are con- 

idered in this study. They correspond to four cases A-D of the 

xperimental study of Butler et al. [1] in a vertical capillary tube 

f diameter d = 3 mm, which are either ascending (B-D) or de- 

cending flows (A). For each case, only one unit cell is modelled 

one bubble surrounded by two half slugs, see Fig. 2 ), with periodic 

oundary conditions for the lower and upper domain boundaries. 

he bubble volume V b , the bubble velocity u b , and the unit cell 

ength L uc are taken from the set of experiments and used as in- 

uts in the simulations, corresponding then to realistic Taylor bub- 

le flows obtained in a T-junction experimental device. A fifth as- 

ending case E of Taylor flow is considered, where the characteris- 

ics are directly taken from the numerical study of Gupta et al. [18] ,

hich allows for the simulation in a different tube diameter d = 

.5 mm, using the same approach. Table 1 displays the physical pa- 

ameters related to these simulation cases, and Table 2 the corre- 



Fig. 2. (a) Initial and boundary conditions for the simulation of the hydrodynamics (case D), and (b) comparison between experimental and numerical final bubble shapes,

with streamlines from the simulation (left) and concentration patterns of dissolved oxygen (right) from the experiments (see Butler et al. [1] for details on the experimental

procedure). Cases A (descending flow), and B, C and D (ascending flows).

Table 1

Taylor flow input parameters for the five cases investigated for the hydrodynamical study, g = −9 . 81 m/s 2 for cases B-E (ascending), g = 9 . 81 m/s 
2 

for case A (descending). 

Cases A, B, C, D correspond respectively to cases labeled 10, 3, 2, 12 in Table 2 from Butler et al. [1] . Case E corresponds to the case simulated by Gupta et al. [18] . V b is the

bubble volume (given with accuracy as it is an input for the simulation), L uc is the unit cell length, and d is the channel diameter.

Case ρl (kg/m 

3 
) μl (mPa.s) ρg (kg/m 

3 
) μg (mPa.s) σ (mN/m) d (mm) V b (m 

3 ) L uc (mm) u b (m/s)

A 998 1.04 1.354 1.914 ×10 −2 72.8 3 1.73494 ×10 −8 10.2 -0.24

B 998 1.04 1.354 1.914 ×10 −2 72.8 3 3.63304 ×10 −8 15.8 0.1402

C 998 1.04 1.354 1.914 ×10 −2 72.8 3 5.75659 ×10 −8 17.0 0.094

D 1,006 4.20 1.354 1.914 ×10 −2 52.2 3 2.70839 ×10 −8 8.7 0.373

E 997 0.89 1.185 1.83 ×10 −2 72.0 0.5 1.47407 ×10 −10 1.65 0.55

Table 2

Dimensionless Taylor flow parameters for hydrodynamics and mass transfer for the five simulated cases. The mesh used to obtain an accurate resolution in the range of Pe

considered is given. Note that the mesh is Cartesian and non-uniform, having smaller cells around the bubble than far from it in the z-direction, and keeping a uniform cell

size �x around the interface (same value in both the r and z-directions). In the lubrication film, in the r-direction, the mesh size is always equal to �x for these grids except

for the case A with the grid 457 × 1340 for which �x f ilm = 2 . 5 μm. Re b = 

ρl | u b | d 
μl 

, Ca = 

μl | u b | 
σ , We = 

ρl u 
2 
b 

d 

σ , Pe = 

t di f f 

t cir 
= 

(| u t p |−1 / 2 | u b | ) d 2 
L s D 

. 

Case Re b Ca We V b
V uc

Pe range mesh

A 691 3.4 ×10 −3 2.4 0.24 17 ≤ Pe ≤ 838 457 × 1 , 340 , or 670 × 1 , 850 for Pe ≥ 350 

�x = 3 . 3 μm, or �x = 2 . 2 μm for Pe ≥ 350 

B 404 2.0 ×10 −3 0.8 0.33 17 ≤ Pe ≤ 872 400 × 2 , 100 , or 600 × 3 , 150 for Pe ≥ 650 

�x = 3 . 8 μm, or �x = 2 . 5 μm for Pe ≥ 650 

C 271 1.3 ×10 −3 0.4 0.48 18 ≤ Pe ≤ 272 220 × 2 , 500 

�x = 6 . 8 μm 

D 268 3.0 ×10 −2 8.0 0.44 11 ≤ Pe ≤ 142 380 × 2 , 220 

�x = 4 . 0 μm 

E 308 6.8 ×10 −3 2.1 0.45 25 ≤ Pe ≤ 308 160 × 1 , 056 

�x = 1 . 6 μm 
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ponding dimensionless numbers. The simulations are carried out 

n the frame moving with the bubble, with a wall velocity equal to 

| ub  |. 
Firstly, the hydrodynamics in the unit cell are simulated, by 

tarting with an idealised bubble shape (two hemispheres and a 

ylindrical central body) of volume Vb  as sketched in Fig. 2 (a). A

oiseuille velocity profile is injected at the bottom of the domain, 

ith an average value u t p − ub  in the frame of the bubble, where

 t p = u gs + u ls is the average two-phase flow velocity and u gs and
 ls are the superficial velocities of the gas and liquid phases re- 

pectively. On the top of the domain, the periodicity imposes con- 

inuity of axial velocity and its derivative in the axial direction. The 

imulation of the hydrodynamics is performed in order to find the 

quilibrium conditions in terms of bubble shape and velocity: the 

ubble must not translate in its frame of reference when the suit- 

ble u t p value is imposed at the inlet. Starting from the experi- 

ental u t p value, the bubble deforms and its velocity may change; 

hen, the u t p boundary value is adjusted. In the simulation, the 

hoice has been made to update u t p instead of the value of u b be-

ause the experimental precision on the latter was higher [1] . The 

nal value of u t p , predicted by the simulation as the equilibrium 

elocity at a given u b , is then compared to the expected value, as

ell as the final bubble shape and several geometrical properties 

f the bubble train (slug length, lubrication film thickness) from 

he experiments and simulations of Gupta et al. [18] . These com- 

arisons are described below. 

After convergence of the hydrodynamics, mass transfer from the 

as to the liquid phase is computed in the periodic unit cell (physi- 

al absorption), starting with an initial solute concentration of zero 

n the liquid phase, and by using a Dirichlet condition at the in- 

erface ( C = C ∗ which is the saturation concentration of gas solute 

n the liquid phase at equilibrium), as well as a Neumann condi- 

ion of vanishing flux at the wall, and periodic conditions at the 

pper and lower boundaries of the unit cell which ensure conti- 

uity of both the concentration and the flux in the axial direction. 

imulations are performed for different Péclet numbers by varying 

he diffusion coefficient. The mass transfer dynamics is analysed in 

he corresponding section, with a focus on the concentration fields 

nd the local mass transfer fluxes, before characterising the global 

herwood number. 

For each simulation case, several Cartesian non-uniform mesh 

rids are employed, the final grids being presented in the Table 2 . 

hey are more refined in the bubble region, in order to accurately 

apture the concentration gradients around the interface, where 

he cells are uniform with a characteristic cell size �x given for 

ach case. Mesh convergence tests, which are introduced in each 

esults section, have been performed to verify that both the hy- 

rodynamics and mass transfer rate are accurately solved, knowing 

hat the latter is more demanding at large Péclet number. In par- 

icular, the choice of these mesh grids for mass transfer, depending 

n the Schmidt number to be simulated, has been based on several 

ensitivity tests. The highest Péclet number for which the simula- 

ions of the different cases remain sufficiently precise on the mesh 

rids of Table 2 is limited by the computational resources available 

or this study. 

. Validation of hydrodynamics features

The hydrodynamics of the five simulation cases is only briefly 

escribed here as such Taylor flows are well-documented in liter- 

ture. In all these cases, the normalised relative slip velocity W = 

| u b |−| u t p | 
| u b | is lower than 0.5. Then, in agreement with the pioneering 

ork of Taylor [38] , the hydrodynamics involves circulation flows, 

s shown by the streamlines in the liquid slug in Fig. 2 (b) for cases

-D. At the bubble interface, there are two stagnation points at the
ymmetry axis and two further stagnation points on the side of the 

ubble - see also Fig. 3 where the stagnation points are marked 

y circles. A dividing streamline joins the side stagnation points 

f two adjacent bubbles in the train, therefore separating the cir- 

ulation vortex from the liquid film along the wall. Based on the 

ssumption that the slug is long enough to be described by a fully 

eveloped Poiseuille flow, Thulasidas et al. [39] gives the radial po- 

ition r 1 = R 

√ 

2 − | u b | | u t p | of the dividing streamline and the radial po- 

ition r 0 = 

R √ 

2

√ 

2 − | u b | | u t p | of the vortex center where velocity is zero 

n the slug, as illustrated on Fig. 3 (where R is the capillary radius).

The following sections discuss the hydrodynamics against ex- 

erimental and theoretical results for the five cases. 

.1. Bubble shape and film thickness 

For the cases A-D, Fig. 2 (b) presents a comparison of the nu- 

erical bubble shape in the unit cell, after the hydrodynamics is 

onverged, with the experimental shapes from the study of But- 

er et al. [1] . In this figure, the computed streamlines from the 

imulation are displayed beside the concentration fields measured 

ith the PLIF-I technique. Good agreement is obtained, both for 

he bubble shapes and patterns of the visible vortex with both ap- 

roaches. Some spatial waves of the bubble shape in the film re- 

ion are also clearly reproduced by the simulation, even though 

heir position is slightly shifted in the case D. Such a good global 

atching confirms the suitability of the axisymmetric assumption 

or the computations of these experimental cases. 

For some output parameters of the simulations ( u t p , lubrication 

lm thickness δ f ilm 

, bubble length L b ), Table 3 compares the nu- 

erical values with the experimental ones (cases A-D) or with re- 

ults from another simulation (case E), taken as reference. It can 

e seen that all these parameters are generally in very good agree- 

ent. 

The values of the two-phase superficial velocities are very close 

o the values from these previous studies, with a maximal relative 

iscrepancy of 7 % . Concerning the geometry of the Taylor bubble, 

he bubble length is found to be similar to the references, with 

he maximal relative difference being only 4 % . Concerning the film 

hickness, it is noted that it has been evaluated either by the min- 

mal or average thickness of the nearly flat zone of the bubble 

when such a flat zone exists, i.e for all cases except case A). The 

alues are also very close to the reference values: results for cases 

 and D match very well with the experimental data, results for 

ases B and D show a discrepancy below 9 % , there is only a higher

ifference on the film thickness value for the case C but which lies 

nder the experimental uncertainty of 11 μm [1,8] , noting that sim- 

lar values are found with simulations on different grids (76 × 680 

nd 220 × 2500) for this case C. As previously reported by But- 

er et al. [1] , and confirmed by Table 3 , δ f ilm 

can be satisfyingly 

redicted by the visco-capillary correlation of Aussillous and Quéré

40] , valid for Ca < 1 , under a precision of about 20% even if these

nertial cases. The accuracy is similar with the correlation of Han

nd Shikazono [41] , which takes into account an inertial contri- 

ution and which, in these five cases, only slightly increases the 

isco-capillary prediction by a maximum of 10%. 

For case B, Table 4 shows the convergence of the results as a 

unction of the number of mesh points in the lubrication film em- 

loyed for three different tests. It can be seen that both the aver- 

ge liquid velocity u t p and the film thickness are independent of 

he mesh using the two last grids, for which more than 10 grid 

ells are used to capture the lubrication film for this case. These 

ast two grids were used for further mass transfer study. 

From these detailed comparisons with experimental or other 

umerical or theoretical results, the simulations of hydrodynam- 



Fig. 3. Definition of parameters of the Taylor flow based on the hydrodynamics in the unit cell (Note the definition of the slug length L s = L uc − L b ). δ f ilm,b is defined as the 

average value in the film region between the two stagnation points on the side of the bubble; it is nearly equal to the average lubrication film thickness δ f ilm computed in

the zone of nearly flat interface. Division of the whole slug into two regions for mass transfer analysis: the ”film” and the ”slug core” regions. Simulation case D at Pe = 214 . 

Table 3

Simulation results (”sim.”) of u t p , minimal lubrication film thickness δmin , average lubrication film thickness δ f ilm (in the nearly flat zone) and normalised bubble length L b /d,

compared to previous works (”ref.”): experimental values for cases A-D [1,8] where the experimental uncertainty corresponds to ±1 pixel size, which was approx. 11 μm 

close to the film region, and numerical values for case E [18] . Comparison to prediction values (”pred.”) according to the correlations of Aussillous and Quéré [40] and Han

and Shikazono [41] .

Case δmin ( μm) δ f ilm ( μm) - Average value in the flat zone u t p (m/s) L b /d

sim. ref. [1] , [18] sim. ref. [1] , [18] pred. [40] pred. [41] sim. ref. [1] , [18] sim. ref. [1] , [18]

A 24.6 23.6 No flat zone 42.4 46.1 -0.229 -0.217 1.21 1.27

B 24.0 29.3 38.6 42.3 30.3 31.7 0.133 0.124 2.12 2.17

C 20.9 18.7 30.1 23.0 23.5 24.2 0.086 0.086 3.26 3.30

D 114.9 118.1 176.7 182.5 146.7 151.4 0.292 0.275 2.05 2.05

E 7.8 - 11.1 12.0 10.7 11.3 0.503 0.500 2.00 2.00

Table 4

Mesh convergence of hydrodynamics calculation for case B. N f ilm is the number of

grid cells in the lubrication film.

Mesh grid u t p (m/s) Average film thickness δ f ilm ( μm)

256 × 1 , 900 0.134 32.1

N f ilm = 6 

400 × 2 , 100 0.133 38.4

N f ilm = 10 

600 × 3 , 150 0.133 38.6

N f ilm = 15 

i

v

3

r

d

c

c

s

i

o
Fig. 4. Radial velocity profiles for simulation case B, in the frame of the laboratory,

taken in the middle of the unit cell UC (upper boundary of the domain), and in the

middle of the bubble which includes both the gas bubble and the lubrication film.

Theoretical comparisons are based on the work of Abiev [42] .
cs in the frame moving with the bubble can be considered to be 

alidated, for the five cases. 

.2. Velocity profiles 

For case B, Fig. 4 displays the numerical velocity profiles in the 

adial direction, both in the liquid phase only at the top of the 

omain, and at the middle of the bubble along a radial line in- 

luding the gas phase and the film. In the plot, these profiles are 

ompared with the theoretical solution obtained by Abiev [42] by 

olving the Navier-Stokes equations with continuity of both veloc- 

ties and tangential stresses at the interface, under the assumption 

f a fully-established hydrodynamics, which leads to: 

• in the liquid slug:

w (r) = 2 u t p 

[
1 −

(
r 

R 

)2 
]

(8) 

• in the lubrication film, for R − δ f ilm 

≤ r ≤ R : 

w (r) = E 1 (R 

2 − r 2 ) − C 1 ln 

(
R 

r 

)
(9) 

with E 1 a constant and C 1 = (ρl − ρg ) g 
(R −δ f ilm ) 

2

2 μ , 

l 

7

• inside the bubble, for 0 ≤ r ≤ R − δ f ilm 

:

w ( r ) = E 1 

(
R 

2 − R − δfilm 

2 
)

+ E 2 

((
R − δfilm 

2 − r 2
)

− C 1 ln
R 

R − δfilm 

)
(10) 
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Fig. 5. Normalised concentration fields for simulation case B for Sc = 10 , Pe = 686 , 

at (a) t = 0 . 2 t cir , (b) t = 0 . 8 t cir = 1 . 1 L uc /u b , (c) t = 2 . 1 t cir , (d) t = 10 . 8 t cir . Note 

that the bubble concentration is artificially set to 0 in the figure.
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with E 2 being another constant. 

Note that, for the numerical computation of eq. 9 and 10,  con-

tants E 1 and E 2 have been evaluated so as to match the velocity 

alue at the axis and at the bubble interface respectively. Profiles 

re observed to be in very good agreement between this analyti- 

al solution and the numerical results. The very slight discrepancy 

long the middle line is attributed to the fact that the velocity pro- 

le extracted at the middle of the bubble is close to but not fully 

ndependent of the axial coordinate, the assumption of established 

ow in the bubble and in the lubrication film being a good ap- 

roximation. In the slug of liquid, the profile at the top is identical 

o that imposed at the bottom of the unit cell, the slug being long 

nough for the flow to be fully established. 

. Mass transfer analysis

In this section, the mass transfer dynamics is simulated based 

n the converged hydrodynamics previously described, under the 

ssumptions that (i) the resistance to mass transfer is negligible in 

he gas phase compared to that in the liquid phase (which allows 

or the solving of the concentration fields in the liquid phase only, 

hus neglecting the concentration gradients inside the bubble and 

onsidering a Dirichlet boundary condition for the concentration at 

he interface based on the thermodynamics equilibrium between 

he liquid and the gas phases), (ii) the interface is at the satura- 

ion concentration C ∗, as given by the thermodynamics, and (iii) 

he rate of mass transfer is considered to be low enough so the 

otal volume of the bubble does not change in time and that the 

verage concentration in the gas phase remains constant. 

For cases A-E, simulations are performed at different Péclet 

umbers by varying the diffusion coefficient D.  For these Taylor

ows, we define a Péclet number to characterise mass transfer as 

e = 

t di f f 

t cir
= 

(| u t p |− 1 
2 
| u b | ) d 2 

L s D by comparing the relative importance of 

 diffusion time scale d 2 /D at a length scale d (close to the diame-

er of the bubble caps) and a convective time scale t cir which char- 

cterises the recirculation time in the vortex of the slug of length 

 s ( L s ≥ d). For t cir , the expression from Thulasidas et al. [39] is

sed: 

 cir = 

πL s r 
2 
0 

2 π
 r 0
0

2 | u tp | 
(

1 −( r R ) 
2 
)
−| u b | 

]
rdr

= 

L s| u tp |− 1 
2 | u b | 

,
(11) 

ased on the assumptions that the velocity profile in the slug is 

 Poiseuille flow and that the recirculation region is cylindrical, of 

ength L s and radius r 0 . Fig. 3 displays an example of concentra- 

ion field obtained for the simulation case D, as well as the main 

eometric parameters which describe Taylor flow. 

Pe is varied up to values of 900 (see Table 2 ). Its value is cho-

en (by varying the diffusivity in the simulations) so as to accu- 

ately simulate mass transfer by respecting the condition that sev- 

ral grid cells are present in the regions of the interface where the 

oncentration gradients are the highest, which cannot be estimated 

efore running the simulations contrary to the case of transfer 

round spherical rising bubble in an unconfined medium. Valida- 

ion of mass transfer calculations was achieved by mesh conver- 

ence tests. Indeed, for case A, Fig. 7 presents the time evolution of 

he Sherwood number for two simulations at high Pe with differ- 

nt grid resolutions, showing that their discrepancy is lower than 

 % . Then, for cases A-E, results on the Sherwood number in the 

teady regime computed on several grids are given in Appendix B , 

nd are found to be almost identical when changing the mesh size, 

hich justifies the range of Pe chosen for this study. It has been 

bserved that, with this numerical method, the results are mesh- 

onverged provided that the mass boundary layer, at its thinnest 

oint, is described by at least 8 mesh cells. 
.1. Dynamics of mass transfer in Taylor flow 

Fig. 5 shows the time evolution of the concentration field in 

he liquid, for case B for Pe = 686 . At very short time, as diffu-

ion begins, a mass transfer boundary layer appears around the 

nterface. Then, as seen in Fig. 5 (a), two convective effects trans- 

ort the solute (i.e. oxygen) in parallel. Firstly, along the central 

xis, oxygen travels from the bubble front towards the rear of the 

receding bubble in the train because the liquid velocity is higher 

han that of the bubble along the symmetry axis. This process has 

 characteristic time of approximately L s / (2 | u t p | − | u b | ) based on

he relative liquid velocity at the axis. Secondly, at the outlet of 

he lubrication film between the near-flat bubble interface and the 

all, the relative velocity in the film, close to | u b | , convects oxygen

owards the following bubble for a time t f ilm 

≈ L uc / | u b | . Note the

resence of a filament of dissolved oxygen nearly attached to the 

ubble rear, close to the convergent stagnation point (also visible 

n Figs. 9 (b) and 11 (b), where the convergent stagnation point is in-

icated with a white circle), which is slowly convected in the same 

irection as the flow in the film. The presence of this filament has 

lso been reported in the experiments of Butler et al. [1] and the 

imulations of Silva et al. [22] with isolated Taylor bubbles (de- 

oted as a concentration plume). 

As soon as the solute is convected to the neighboring bubble 

n the train, the concentration fields in the different unit cells be- 

ome interdependent ( Fig. 5 (b)). In a given unit cell, the transfer 

rocess both from the bubble caps and the bubble film along the 

all continues, and, in the slug core, diffusion occurs across the 

irculation motion ( Fig. 5 (c)), leading to patterns of concentration 

hat follow the streamlines (high Pe ), with the vortex center being 

he point of lowest concentration in the unit cell. 

In addition to solute transfer coming from the bubble interface, 

he slug core is also fed by an exchange flux originating from the 

iquid film along the wall, that surrounds the bulk slug, as it is 

 zone richer in oxygen. This process of mass exchange connects 

he different unit cells due to the film continuity and is analogous 

o the cross talk mechanism in the multizone model proposed by 

irmal et al. [12] . Here, it is found that the ratio of this exchange

ux, i.e mass transfer from the liquid film into the core of the slug 

o the flux coming from the bubble caps, increases with Pe , and 

eaches values close to 1 for Pe of approximately 500. For values 

f Pe large enough that convection is faster than radial diffusion, 

he characteristic thickness of the liquid film surrounding the bulk 



Fig. 6. Time evolution of the normalised average concentration C̄ (t) /C ∗ in the liquid 

(and fitting by eq. 17 ), and for both the film and slug core region (as defined in

fig. 3 ). Simulation case B for Pe = 490 . 
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f

lug can be described by R − r 1 , where r 1 is the radial position of

he dividing streamline (see Fig. 3 ). 

All these local transfer fluxes need their own times to fully es- 

ablish, after which the unit cell concentration field remains qual- 

tatively the same other than values that increase with time, like 

etween Fig. 5 (c) and (d). Based on these different characteristic 

ones of the mass transfer process, Fig. 3 proposes a separation of 

ll the liquid into a ”slug core” region (the bulk slug) and a ”film”

egion, all along the wall, which includes by continuity both the 

ubrication film along the bubble and the liquid surrounding the 

lug core. 

The transient mass transfer process can be characterised thanks 

o the time evolution of the average concentration C̄ (t) in the liq- 

id: from the local Eulerian field C(r, z, t) in the simulation, the 

verage concentration is computed as 

 ( t ) = 

1

V l 

∫∫ ∫
l

CdV , (12) 

here dV is the elementary volume element and V l = V uc − V b is 

he volume of liquid in the unit cell, with V uc equal to the unit cell

olume and V b the bubble volume. The instantaneous total trans- 

er flux J at the interface is also computed, from which the mass 

ransfer coefficient k l is determined: 

 ( t ) = 

  

b − D ∇C. n dS = k l ( t ) S b C ∗ − C ( t ) (13) 

with S b the bubble surface area), then it is included in the global 

herwood number: 

h (t) = 

k l (t) d

D 

. (14) 

ote that, from an unsteady mass balance of solute dissolved in 

he liquid, the Lagrangian time derivative of C̄ (t) can be related to 

he total transfer flux J(t) at the bubble surface by 

 l 

D C ( t ) 

Dt 
= 

∫ ∫ 
b

− D ∇C. n dS +
∫ ∫

uc boun dari es

j . n dS = J ( t ) , (15) 

ith j the diffusive flux. Indeed, the second integral in the right 

and side of eq. 15 vanishes because the flux is null at the wall and

t the symmetry axis, and the integral j . n dS on both the upper

nd lower unit cell boundaries is also null due to the periodicity 

ondition. 

Fig. 6 presents the time evolution of C̄ (t) /C ∗ for case B for 

e = 490 , and partial averages in the ”film” and ”slug core” regions 
omputed by eq. 12 in these specific areas (defined in fig. 3 ). The

oncentration in the film is always much higher than that in the 

lug core region, and increases strongly at first until the convective 

ime t f ilm 

is reached, before displaying a slower dynamic. In paral- 

el, Fig. 7 displays the time evolution of the global Sherwood num- 

er Sh . It can be seen that its value is initially very large, before de-

reasing rapidly during the fast establishment of the mass bound- 

ry layers around the interface. This has also been seen in simula- 

ions of heat transfer around single Taylor bubbles preformed by 

hang et al. [43] . Then Sh continues to slowly decrease by pre- 

enting damped oscillations at a higher frequency than its time 

ecrease. These oscillations are controlled by the circulation mo- 

ion in the slug since their period corresponds to the theoretical 

irculation time t cir , as computed by eq. 11 . This periodic renewal 

f fresh liquid close to the caps causes such variations of Sh . Such 

n oscillating behaviour is characteristic of a transfer process in a 

egion of closed streamlines, such as mass or heat transfer inside 

 droplet [44] . This also confirms that t cir is a relevant convective 

ime scale of the problem. 

Concerning the long-term evolution in fig. 7 , the global Sh al- 

ays reaches a plateau denoted Sh ∞ 

, and therefore an associ- 

ted constant mass transfer coefficient k l, ∞ 

. The higher the Pe , the 

maller the rate of damping of Sh (t) , leading to a larger time re-

uired to reach Sh ∞ 

. In this steady regime for Sh , the average con-

entration C̄ (t) in the liquid continues to increase while the trans- 

er flux decreases, leading to: 

 l 

D C

Dt 
= k l, ∞ 

S b C ∗ − C ( t ) (16) 

hose solution is 

¯
 (t) /C ∗ = 1 − exp 

(
−k l, ∞ 

S b 
V l 

t 

)
(17) 

ith k l, ∞ 

S b /V l = k l a generally called the volumetric mass transfer 

oefficient. Such a fitting function can be verified in fig. 6 . It is

orth noting here that a unique k l a value for mass transfer in Tay- 

or flow can be measured only in the case where the mass transfer 

rocess has reached steady state and such a fitting function should 

ot be used from the beginning. The time required to reach the 

teady regime will be presented later in Section 4.4 . 

.2. Local fluxes along the interface 

The mass transfer dynamics previously described are similar 

or all the Taylor flows considered here. To analyse these com- 



Fig. 8. Normalised tangential velocity u t / | u b | (in the frame of the bubble) and local Sherwood number Sh loc along the interface. Simulation case B at Pe = 686 . The white 

points correspond to the locations of the convergent stagnation points (the tangential velocity around these points is directed towards them) and the black points to that of

the divergent stagnation points (with tangential velocity escaping from these points).

Fig. 9. Velocity and concentration fields in the liquid phase only. Simulation case B for (a) Pe = 686 , at t = 2 . 1 t cir as in fig. 8 , for (b) Pe = 1 , 743 at t = 1 . 1 t cir (this high Pe 

case is presented for illustration purposes only). White points: convergent stagnation points, black points: divergent stagnation points.
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on features, Figs. 8 and 10 present profiles of both the local 

herwood number Sh loc = 

− n . ∇C d 
C ∗ and the normalised tangential

elocity u t / | u b | in the frame of the bubble, along the bubble in-

erface (along the θ polar angle), for cases B and A, respectively. 

he concentration and velocity fields for these cases are displayed 

n fig. 9 (a) and 11 (a) respectively. At the bubble surface, the four

tagnation points (two convergent and two divergent points) are 

arked and are of particular interest to describe the mass transfer 

ux distribution. For these Taylor bubbles of non-ideal shapes, the 

film zone” of the interface can precisely be defined as the bubble 

urface between the two stagnation points which are close to the 

hannel wall. Along this film zone, it is noted that the magnitude 

f tangential velocity is close to | u b | and presents a local maximum

t the place where the film thickness is minimal. Two other local 

aximal values of the tangential velocity are also observed along 

he caps, which are each other of comparable magnitude (lower 

han | u b | ).
The spatial distribution of Sh loc around the interface presents 

wo locations of maximal values: (i) close to the divergent stagna- 

ion point at the entrance of the film, and (ii) at the bubble rear, 

t the point where the tangential velocity is maximal. As shown 

ere with cases A and B, the importance of these two local maxi- 

um values is not systematically the same, despite their locations 

eing similar. They correspond to the interface points where the 
ass boundary layer is locally thinnest at all times because it is 

ressed against the bubble by the circulation flow within the slug. 

oreover, even though the evolution of the tangential velocity is 

omparable between the front and the rear cap, note that their 

rofiles of mass flux density are different. However, by consider- 

ng the surface integral of the flux density along each cap sepa- 

ately, it can be seen that they both significantly contribute to the 

ransfer towards the slug core region. It is worth noting that this 

ehavior strongly differs from the case of external transfer around 

 freely rising bubble, for which the two hemispheres have very 

ontrasted integral contributions with much higher fluxes on the 

orthern hemisphere compared to the southern [45] . 

In the film region of the interface, based on figs. 9 (b) and 11 (b),

tarting from the black point where the flux is maximal and fol- 

owing the direction of the flow (from the bubble front to the rear), 

he interfacial flux decreases until being zero at the white conver- 

ent stagnation point (end of the film). This decrease can be linked 

o a growth of the mass boundary layer while the liquid film trav- 

ls along the interface. At the end of the film, the vanishing flux 

an be related to the presence of a stagnant concentration plume 

isible on the concentration fields of figs. 9 (b) and 11 (b) around 

he white points. 

These common features in terms of local transfer fluxes pro- 

les around the interface of these Taylor bubbles, either in de- 



Fig. 10. Normalised tangential velocity u t / | u b | (in the frame of the bubble) and local Sherwood number Sh loc along the interface. Simulation case A at Pe = 419 . White points: 

location of the convergent stagnation points, black points: location of the divergent stagnation points.

Fig. 11. Velocity and concentration fields in the liquid phase only. Simulation case A for (a) Pe = 419 , at t = 3 . 1 t cir as in fig. 10 , for (b) Pe = 1 , 197 at t = 1 . 8 t cir (this high 

Pe case is presented for illustration purposes only). The two white points correspond to the convergent stagnation points and two black points to the divergent stagnation

points. White points: convergent stagnation points, black points: divergent stagnation points.
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cending or ascending flows, suggest that a common correlation 

or the global Sherwood number can be proposed. Before analysing 

he global Sh ∞ 

in Section 4.4 , local Sherwood numbers integrated 

er zone are discussed in the following sections. 

.3. Local Sherwood numbers 

In this section, the local fluxes are quantified through local 

herwood numbers for transfer across the ”film zone” of the in- 

erface, across the bubble caps (including both the front and rear 

ap), and the internal exchange flux between the film region along 

he wall and the slug core. The local Sherwood numbers are com- 

uted once they reach steady values. 

.3.1. Transfer across the film zone of the bubble interface 

Transfer in the lubrication film is mainly driven by diffusion in 

he transverse direction and by convection in the axial direction. 

ven though the film is stagnant in the frame of the laboratory, 

ts relative velocity with the bubble, of magnitude very close to 

 u b | based on the velocity profiles in the film ( fig. 4 ), induces con-

ective transfer. From the DNS results, the transfer flux across the 

lm zone of the interface can be measured by integration along 

he corresponding surface S b f , from which the local mass transfer 
11
oefficient k b f can be determined: 

 bf ( t ) = 

  

bf − D ∇C. n dS = k bf S bf C ∗ − C f ( t ) .
(18) 

he corresponding local Sherwood number Sh b f is then computed 

rom 

h b f = 

k b f δ f ilm,b 

D 

(19) 

y considering an average uniform film thickness δ f ilm,b of length 

 f ilm,b for the lubrication film along the bubble (note that δ f ilm,b , 

efined between the two side stagnation points, is equal or 5% 

reater than the average thickness δ f ilm 

evaluated in the flat re- 

ion of the interface for the cases B-E). 

These values Sh b f will be compared to the simplified model 

f mass transfer in the film surrounding the bubble, proposed by 

randoust et al. [3] , Eskin and Mostowfi [46] and Nirmal et al. [12] ,

hich relies on assumptions that were not yet validated against 

irect measurements of the transfer flux in the film. This model 

onsiders only the dominant transfer mechanisms in the axial and 

adial directions, neglecting the velocity gradients in the lubrica- 

ion film, and assuming that the film thickness is small compared 

o the channel radius. This model, at steady state, predicts a con- 

entration profile C f ilm,pred (x, z) in the film given by 

 u b | ∂C f ilm,pred = D 

∂ 2 C f ilm,pred 

2 
, (20) 
∂z ∂x 



Fig. 12. For all cases, local Sherwood numbers in the film zone of the interface,

Sh b f , as a function of the film Péclet number Pe f ilm = 

| u b | δ2 
f ilm,b 

L f ilm,b D 
. Comparison with

the prediction of the simplified analytical solution giving Sh f ilm,pred from eq. 23 .
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Fig. 13. For all cases, local Sherwood numbers in the bubble cap regions of the

interface, Sh bs , as a function of the Péclet number Pe = 

(| u t p |− 1 
2 | u b | ) d 2 

L s D 
. A similar trend 

is obtained as a function of Pe b = 

| u b | d 
D 

instead of Pe . 
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y using a Cartesian coordinate system where x = 0 corresponds 

o the bubble interface and x = δ f ilm,b to the wall. The film is 

ocated in the range 0 ≤ x ≤ δ f ilm,b and extends in the axial di- 

ection between z = 0 and z = L f ilm,b . For the specified model

oundary conditions, C f ilm,pred (x = 0 , z) = C ∗, C f ilm,pred (x, z = 0) =
 0 and ∂ C f ilm,pred /∂ x (x = δ f ilm,b , z) = 0 , the analytical solution of

q. 20 can be written as 

C f ilm,pred (x, z) − C ∗

C 0 − C ∗
= 

2

π

∞ ∑ 

n =1 

1 − (−1) n 

n 

exp 

[
−
(
πn

2 

)2 Dz 

| u b | δ2 
f ilm,b

]
sin 

πn 

2 

x 

δ f ilm,b 

)
(21) 

hen, the local mass transfer coefficient predicted by this model 

an be computed from 

 b f,loc,pred (z) = 

−D ∂ C f ilm,pred /∂ x (x = 0 , z)

C ∗ − C 0 
(22) 

eading to a predicted Sherwood number for the film Sh f ilm,pred 

iven by 

h f ilm,pred = 

δ f ilm,b 
1

L f ilm,b

 L f ilm,b 

0
k b f,loc,pred (z) dz 

D 

(23) 

ote that Sh f ilm,pred is independent of the value of C 0 , therefore, 

or simplicity, it can be taken that C 0 = 0 . 

The film Péclet number is defined as Pe f ilm 

= 

| u b | δ2 
f ilm,b 

L f ilm,b D which 

s the ratio of the diffusion time scale δ2 
f ilm,b 

/D and the convection

ime scale L f ilm,b / | u b | in the film. In this model, the third boundary

ondition ∂ C f ilm,pred /∂ r(r = δ f ilm 

, z) = 0 is only valid provided that

he mass boundary layer that develops in the film, with character- 

stic thickness δm,b f , remains small compared to the average film 

hickness δ f ilm,b . From eq. 20 , which balances a convective flux of 

rder 
| u b | C f ilm,pred 

L f ilm,b 
to a diffusive flux of order 

D C f ilm,pred 

δ2 
m,b f

, it can easily 

e shown that 
δm,b f 

δ f ilm,b 
∼ 1√ 

Pe f ilm 
, proving that the prediction given by 

q. 23 will only work for sufficiently large Pe f ilm 

. Under this condi- 

ion, the film theory shows that the Sherwood number in the film 

s given by Sh f ilm,pred ∼
δ f ilm,b 

δm,b f 
, leading to Sh f ilm,pred ∼

√ 

Pe f ilm 

. 

Fig. 12 plots the Sherwood number characterising mass trans- 

er across the bubble film Sh b f obtained from the DNS results as 
 function of Pe f ilm 

. It compares the solution with the predicted 

alue Sh f ilm,pred computed from the simplified literature model 

resented above (eq. 23 ). From the results, it is clear that Pe f ilm 

s a relevant parameter to quantify the rate of transfer across the 

ubble film: numerical results of cases B, C and E lie on a sin- 

le curve for any Pe f ilm 

; those from cases A and D follow a differ-

nt trend for Pe f ilm 

<< 1 but tend towards the same curve as the 

ther cases for Pe f ilm 

of order unity. Indeed, for the latter Taylor 

ow cases, the shape of the bubble is farthest from the case of a 

ong flat film interface, possibly explaining the different behaviours 

t small Pe f ilm 

. Interestingly however, when Pe f ilm 

≥ 0 . 7 , the figure

hows that the scaling law Sh b f ∼
√ 

Pe f ilm 

accurately matches the 

NS results of the mass flux in the film, for the cases A, B and

. Furthermore, for several points of case A at Pe f ilm 

≥ 1 , the pre-

iction Sh f ilm,pred is very close to the numerical values Sh b f . Such

 result suggests that the simplified model with a 1D convection- 

iffusion equation is suitable for predicting the mass transfer co- 

fficient in the film for Pe f ilm 

> 1 , which is an important result, in

ractice, for further modelling. 

.3.2. Transfer across the two bubble caps 

In this section, the transfer from the bubble caps to the slug 

ore region is quantified. This corresponds to the surface areas be- 

ween the stagnation points along the axis and those approaching 

he film zone. As such, S b f + S bs = S b . From the DNS results, the

ransfer flux is integrated along the bubble caps surface, and from 

hich the local mass transfer coefficient k bs can be determined 

 bs ( t ) = 

∫ ∫
bs

− D ∇C. n dS = k bs S bs C ∗ − C slug core ( t ) (24) 

he corresponding local Sherwood number is computed from 

h bs = 

k bs d

D 

(25) 

Fig. 13 plots the evolution of Sh bs as a function of the Péclet 

umber Pe , for all simulation cases. Note that the evolution as a 

unction of Pe b = 

| u b | d 
D is very similar but Pe appears more suit- 

ble for describing the ratio between convective and diffusive pro- 

esses in a unit cell with two distinct characteristic lengths. Results 

rom the DNS show that there exists a dependence of Sh bs ∼
√ 

Pe at 

oderate Pe numbers up to approximately 100. However, for larger 

e , Sh bs increases by a lower rate, tending even to saturate at large 

e at thresholds which appear to be case dependent. These satu- 

ation values may depend on both Re b and the geometrical prop- 

rties of the slug core region. Such an evolution can be related to 



Fig. 14. Radial concentration profiles in the liquid slug at different z levels. Simulation case D for Pe = 142 . 
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he fact that the slug core is a region of closed streamlines, ex- 

ctly like the Hill vortex inside a moving droplet. Indeed, studies 

f heat or mass transfer inside a droplet [44,47] have revealed that 

he transfer rate evolution is completely different to the external 

ne: at a given Re b , the Sherwood is bounded when increasing 

he Péclet number, and this asymptotic limit increases only very 

lightly when increasing Re b in a large range. One interpretation 

f this effect involves the fact that when the recirculation motion, 

lready containing solute, returns close to the bubble interface, it 

revents the boundary layer around the bubble caps to be as small 

s it would be in an infinite medium for which the solute already 

ransferred is convected far from the interface. 

The evolution of Sh bs with the Péclet number can be com- 

ared to the prediction of the model generally proposed for mass 

ransfer around the bubble caps of a Taylor bubble, in the works 

f Irandoust et al. [3] , van Baten and Krishna [9] , Nirmal et al.

12] and Abiev [11] . The latter assume mass transfer along the

aps to behave like around a spherical bubble rising in an uncon- 

ned liquid. In this way, they predict a local mass transfer coef- 

cient based on the penetration model of Higbie [48] , which is

he dimensional form of the solution of Boussinesq [49] giving the

herwood number to be proportional to 
√ 

Pe b = 

√ | u b | d/D for both

arge Re b and Pe b (Figueroa-Espinoza and Legendre [45] ). However,

rom fig. 13 , it is clear that the evolution of Sh bs as a function of Pe

trongly differs from this scaling law. Such a discrepancy has never

een reported in other works. This conclusion on Sh bs is consistant

ith the local fluxes behaviour measured along the bubble caps in

ection 4.2 , where the contribution of the two caps in mass trans- 

er were found to be comparable, which is in contrast to the case 

f an unconfined rising bubble. Thus, the evolution of Sh bs as a 

unction of Pe 1 / 2 is restricted to moderate Péclet numbers and, at 

igher Pe , the slower increase of Sh bs should be taken into account 

n future models for mass transfer around the bubble caps of a 

aylor bubble. 

.3.3. Exchange along the dividing streamline 

The slug core is bounded by the dividing streamline of radial 

osition r 1 , as illustrated in fig. 3 . Fig. 14 presents several radial

oncentration profiles in the slug, for the case D at Pe = 142 . At

he rear of the bubble (line 1), the concentration is greater in the 

eighborhood of the convergent stagnation point. However, at a 
hort distance from the bubble rear (such as for line 2) and until 

he front of the following bubble, the maximum concentration val- 

es are observed at the channel wall, leading to an exchange flux 

f solute from the liquid film region towards the slug core. At large 

e , the thickness of this film is larger than that of the lubrication 

lm along the bubble surface. From lines 2 to 4, this exchange flux 

ecreases with the distance from the bubble rear because of the 

rowth of the filament of dissolved oxygen along the wall. 

In order to quantify this exchange flux and compare the dif- 

erent cases, rather than performing a surface integration of the 

adial flux along the dividing streamline to measure an average 

ux (which would be approximative to achieve since that stream- 

ine is not straight), the radial flux density j ds = −D 

∂C 
∂r 

is evalu- 

ted at the boundary of the unit cell (along the line 3 in fig. 14 )

t r = r 1 , taken as characteristic value. A local Sherwood number 

o characterise this exchange flux across the dividing streamline is 

hen computed as Sh ds,loc = 

| j ds | d
D ( ̄C f ilm (t) −C̄ slugcore (t)) 

, its value being re- 

ained when it is time independent. For all the simulation cases, 

g. 15 plots Sh ds,loc as a function of a Péclet number Pe ds = 

w (r 1 ) d 
2

L s D 

escribing the ratio between diffusion and convection time scales 

ithin the liquid slug. The convection time scale is based both on 

he liquid slug length and the axial velocity w (r 1 ) = 2(| u b | − | u t p | )
long the dividing streamline, given by eq. 8 , which is directly 

roportional to the relative bubble velocity. The five experimental 

oints from the study of Butler et al. [1] , for which the same pro-

essing gives the normalised exchange flux density, are included in 

he plot. A single master curve well gathers the numerical points 

f Sh ds,loc from all cases, which confirms the importance of w (r 1 ) 

i.e of the relative bubble velocity) for driving the mass exchange 

ux between the film region surrounding the slug core and the 

atter. Such a trend is observed to follow a 
√ 

Pe ds function only 

ver one decade range, corresponding to the highest Péclet number 

alues in the simulations. The addition of the experimental points 

n this curve shows that such an evolution no longer continues at 

igher Pe ds : the exchange flux still increases but at a smaller rate 

ver several decades, leading to moderate Sherwood number val- 

es. An interpretation of such a saturation of this exchange flux 

ould involve the same arguments as for the flux around the caps: 

he transfer being directed towards a region of closed streamlines 

the slug core), the rate of transfer is completely different from the 



Fig. 15. For all cases, local Sherwood numbers characterising the normalised local

exchange flux density between the liquid film region and the slug core, Sh ds,loc , as

a function of the Péclet number Pe ds = 

w (r 1 ) d 
2 

L s D 
where w (r 1 ) is the axial velocity at 

the dividing streamline position (note that P e ds = 2 P e R with P e R the Péclet number 

based on the relative bubble velocity). Red symbols: same data extracted from the

experimental concentration fields measurements from Butler et al. [1] on five cases

(including cases C and D of the present study, at higher Péclet numbers).
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ase of an unbounded region where convection is able to evacuate 

he transferred species far from the source of transfer. However, 

t can be noticed from figs. 13 and 15 that the saturation of this

xchange flux appears for greater Péclet numbers than that of the 

imulations, i.e. a saturation of the flux coming from the bubble 

aps Sh bs in terms of Pe is observed earlier. 

.4. Global Sherwood number 

After the characterisation of the local transfer fluxes in the unit 

ell, a correlation for the global Sherwood number is proposed in 

his section. In this numerical study, five cases are considered with 

ifferent bubble and two-phase velocities, different liquid phase 

ystems, two contrasting channel diameters ( d = 3 or 0.5 mm), 

ifferent geometrical parameters of the bubble or unit cell ( V b , L uc ,

 b , L s ), with the numerical simulations allowing also the variation 

f D for a given case. 

In the results presented in the previous sections, it was found 

hat the Sherwood number globally decreases over time before set- 

ling on a constant value ( fig. 7 ). After the steady regime of mass

ransfer is reached, it is straight-forward to verify that the profiles 

f flux along the interface can be obtained by homothetic scaling 

etween two distinct times (see figs. 8 or 10 ). Moreover, at this 

tage, the concentration fields, C(r, z, t ) / ̄C (t ) , normalised by their

nstantaneous spatial average values, are found to remain identical 

see figs. 5 (c) and (d)). These arguments suggest that the concen- 

ration field C(r, z, t) can be decomposed into a series of eigen- 

odes by separating the dependence in space and time. Then, 

s described by Rivero-Rodriguez and Scheid [50] for the case of 

rains of unconfined bubbles in microchannels, Sh ∞ 

is associated 

ith the dynamics of the slowest mode of the solution and char- 

cterises the mass transfer process at long-time. In this section, we 

ropose a scaling law to predict both Sh ∞ 

and the time required to 

each this value. 

In fig. 16 (a), it is propose to rationalise the computed values 

f Sh ∞ 

for the different cases by using a relative Péclet number 

e R = 

(| u b |−| u t p | ) d 2 

L s D , where the convection time scale in the slug

s given by the global relative velocity | u b | − | u t p | between the

ubble and the average liquid flowing in the slug, with a length 

cale L s , and the diffusion time scale given by d 2 /D . The choice

f this characteristic velocity is consistent with the one describ- 
ng the exchange flux between the film region and the slug core, 

rom Section 4.3.3 . Fig. 16 (a) shows that Sh ∞ 

presents an evolu- 

ion which is proportional to 
√ 

Pe R , for each case (actually, on this 

ub-figure (a), for a given case, only D is varied). But such a plot 

resents the interest that the proportionality constants of the dif- 

erent cases can be ordered depending on the volume fraction of 

as in the unit cell, V b /V uc : a lower gas volume fraction always re-

ults in a greater Sh ∞ 

, at a given Pe R . Taking into account this ob-

ervation, the global Sherwood numbers are grouped together by 

onsidering the following correlation, proposed in fig. 16 (b), of the 

orm: 

h ∞ 

= 0 . 522 

√ 

P e R (V b /V uc ) 
−1 . 65 (26) 

he scaling law eq. 26 is based on the two non-dimensional pa- 

ameters Pe R and V b /V uc , and a prefactor of order 1. The figure

hows that the results from the numerical simulations collapse on 

 master curve with excellent accuracy, across two orders of mag- 

itude. Therefore, the proposed correlation constitutes an accurate 

escription of the global mass transfer rate over the range of in- 

estigated parameters, for Pe R ≤ 100 and V b /V uc varied between 24 

nd 48 % in the simulations. 

The scaling proposed for Sh ∞ 

in eq. 26 is valid provided that 

teady state is reached. From the simulations, the time t ∞ 

required 

o reach such a regime is defined as the time where the moving 

verage of the curve Sh (t) , measured over time t cir , becomes equal

o Sh ∞ 

± 1% . The measured times t ∞ 

/t cir are presented in fig. 17

s a function of the Péclet number Pe . This figure can be used to

etermine the residence time, i.e. the channel length at a given 

ow rate, that is required to reach the steady regime. This time in- 

reases with Pe but, from values Pe > 100 , there is a clear change

n behaviour. This can be related to the time evolution of Sh , which 

iffers at high Pe as shown by fig. 7 : when Pe > 100 , the curve

h (t) presents a slow initial decrease with oscillations at higher 

requency 1 /t cir , whereas, at lower Pe , the initial decrease is much 

tronger and the instantaneous values of Sh can even be smaller 

han Sh ∞ 

before rapidly stabilising. In fig. 17 , a correlation is pro- 

osed to predict the time t ∞ 

for large Pe based on the simulation 

esults, of the form: 

 ∞ 

= 0 . 01 t di f f , (27) 

stablished for 100 ≤ Pe ≤ 10 0 0 . 

.5. Discussion with experimental data 

In the study of Butler et al. [1] , the experimental concentration 

elds have revealed the presence of some unusual patterns of high 

oncentrations of solute dispersed inside zones of lower concentra- 

ions in the slug core (see the experimental pictures of cases A, B, 

 on fig. 2 ). This phenomenon, discussed in Abiev et al. [51] , could

e due to initial effects during the bubble formation stage (see also 

he concentration field during this stage from Liu et al. [52] ). Since 

he initial conditions are different in the simulations, as well as 

he range of Péclet number, the experimental and numerical con- 

entration fields cannot be directly compared. However, a compar- 

son could be achieved through the scaling law evolution of Sh ∞ 

btained from the numerical results. The first step is to assess the 

nfluence of the initial distribution of concentration in the slug on 

he long-term transfer dynamics, before comparing the numerical 

nd experimental Sherwood number evolutions. 

.5.1. Influence of initial conditions 

In experimental studies, the mass transfer taking place close to 

he contact zone between the gas and liquid phases, before the full 

stablishment of the Taylor flow, can be significant [53] . To address 

he question of the influence of the first stages of mass transfer on 



Fig. 16. (a) Sh ∞ as a function of Pe R = 

(| u b |−| u t p | ) d 2 

L s D 
for the different simulation cases. (b) Proposed scaling law from eq. 26 . The plot includes all numerical data from this

study ( Sh ∞ ) and experimental points (global Sh ) from Butler et al. [1] where the mass transfer coefficient is taken as defined by eq. 17 . The experimental points have been

obtained at larger Pe R and may not all correspond to Sh ∞ since a constant value of Sh is probably reached only for the two cases of lower Pe R (based on estimates of the

time required to reach the steady regime), as discussed in the Section 4.5.2 . Note that the abscissa of one experimental point has been shifted by using a value of | u t p | 
obtained from a simulation of the hydrodynamics in this case because of the large experimental uncertainty on this value.

Fig. 17. For all cases, normalised time t ∞ /t cir required to reach the steady regime

of transfer (defined by Sh = Sh ∞ ± 1% ), as a function of Pe . 
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Fig. 18. For case A, time evolution of the Sherwood number in a simulation where

an instantaneous concentration field measured by the PLIF-I technique from Butler

et al. [1] is used to initialise the simulation (continuous lines), versus the solution

otherwise obtained with a zero initial concentration field (dashed lines), for the

conditions Pe = 84 and 335. The screenshots display the concentration field at two 

instants ( t= 0 and 0.9 t cir ) for Pe = 335 . 
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he long-term dynamics, simulations were performed by using dif- 

erent initial conditions in the liquid. For case A, a concentration 

eld in the liquid phase, directly taken from the PLIF-I experimen- 

al study of Butler et al. [1] at the first position of measurement 

long the experimental channel (already far from the injection, at 

 distance of 198 d), is used to initialise new simulations of mass 

ransfer at Pe = 84 and 335, by conserving the same converged hy- 

rodynamics and bubble shape as before. To this purpose, the ex- 

erimental concentration field in the liquid, recorded on a pixel 

rid, has been interpolated to the numerical mesh grid so as to be 

sed as initial condition; the latter is shown in fig. 18 , and also

orresponds to the field presented in fig. 9 of [1] . 

In fig. 18 , the time evolution of the Sherwood number for these 

imulations is compared to that of the same cases where there is 

nitially no solute in the liquid phase. Some differences are notice- 

ble at short time: since the beginning, the values of Sh with the 

xperimental concentration field are closer to their long-term val- 

es, the time evolution of Sh presenting a lower rate of decrease 

ompared to the case starting from a null concentration which re- 

uires a longer time to establish the mass boundary layer around 

he interface. However, after the different transient stages for the 
wo initial conditions, the evolution of Sh is no longer affected by 

he initial conditions, leading to the same Sh ∞ 

. This conclusion is 

onsistent with the fact that Sh ∞ 

is a parameter characteristic of 

he long-time behaviour of mass transfer [50] , allowing compar- 

sons when the constant Sh condition is achieved. 

.5.2. Comparison of the global Sherwood numbers 

In the experiments from Butler et al. [1] , the Péclet numbers are 

uch higher than in the simulations and lie in the range 12 , 0 0 0 ≤
e ≤ 340 , 0 0 0 . Fig. 16 (b) compares the experimental Sherwood

umbers with an extrapolation of the numerical correlation eq. 26 . 

t can be seen that the experimental values are consistent with 

he numerical correlation and are distributed around the predicted 

alues. Nevertheless, it is worth reminding the conditions of mea- 

urement of the experimental Sherwood numbers. As what is con- 

entionally done, in Butler et al. [1] , the mass transfer coefficient 

or each case was obtained from fitting of the curve of the four 
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easurement points of the average liquid concentration C̄ /C ∗ by a 
xp (−kl  a t) function. However, it has been shown here that such a

tting function is only valid for long times, once the steady regime 
f transfer is reached, i.e under measurement times of the order 
f t ∞.

 

 Therefore, even though these global experimental Sherwood
umbers are suitable to describe the average transfer rate during 

he time of residence considered (not the same for all experimen- 

al conditions), they may not all correspond to Sh ∞ 

values as de- 

ned in the simulations. 

By using eq. 27 to predict t ∞,
 

 it is estimated that only the

xperimental cases at the two lower Péclet numbers may have 

eached the steady regime of mass transfer (corresponding to the 

xperimental points at the lower abscissa on fig. 16 (b)). Note that, 

oncerning the first of these points (regime 1 in Butler et al. [1]) 

nd contrary to the other points, the uncertainty on the mea- 

ured u t p was relatively high compared to the velocity difference 

 b − u t p , impacting strongly the value of the relative Péclet num- 

er Pe R used in the correlation. Then, to increase the accuracy of

his point, the hydrodynamics of this case has been simulated: u t p

s found to differ by only 6% in the simulation compared to the

easured value, which permits to estimate a better abscissa for

his point on fig. 16 (b), in agreement with the error bar estimated

n the measurements.

By considering that the two experimental values at the lower 

e are Sh ∞ 

values, it can be seen in fig. 16 (b) that they are close

o the prediction from the extrapolated correlation, by being lower 

f about 30%. For the remaining cases, Sh ∞ 

can be expected to be 

maller than the measured Sh since Sh (t) is globally a decreasing 

unction of time during the transient. Then, by combining all these 

umerical and experimental results, it can be reasonably inferred 

hat, at higher Péclet numbers than in the simulations ( Pe R > 100 ),

he increase of Sh ∞ 

with Pe R would take place at smaller rate than 

s a 
√ 

Pe R evolution. Such an observation on the global rate of 

ransfer in the unit cell could not be surprising, considering the 

onclusions already obtained on (i) a saturation of the Sherwood 

umber Sh bs characterising mass transfer around the bubble caps, 

isible at the higher Péclet number values in the simulation cases, 

nd (ii) the smaller rate of increase of Sh ds,loc exhibited at the ex- 

erimental Péclet number values concerning the mass exchange 

etween the film and slug region. Obviously, this conclusion on the 

volution of Sh ∞ 

as a function of Pe R would need to be validated 

y simulations at much higher Péclet numbers or by experimental 

esults fulfilling the condition of having reached a steady regime of 

ass transfer. 

. Conclusions

In this study, five trains of axisymmetric Taylor bubbles flow- 

ng in channels have been simulated using the unit cell periodic 

pproach, based on the Level-Set method. These cases, originating 

ainly from a previous experimental study and another numerical 

tudy, present a variety of different geometrical parameters (unit 

ells, bubbles), and sit within the inertial regime, having bubble 

eynolds numbers between 200 and 700 with moderate-to-high 

eber numbers. The hydrodynamics features (such as the two- 

hase velocity, lubrication film thickness and bubble shape) were 

ound to be in good agreement with existing results. 

On this basis, simulations of the mass transfer dynamics have 

een performed using the converged hydrodynamic fields by vary- 

ng the diffusion coefficients in a range of Péclet numbers 10 ≤
e ≤ 900 . High spatial resolution has been required to accurately 

olve the thin mass boundary layers that develop around the bub- 

le interface. The analysis of the local transfer fluxes has revealed 

hat the highest gradients are located (i) at the bubble front, close 

o the divergent stagnation point (corresponding to the entrance 

f the film) and (ii) at the bubble rear, at the point where the tan-
ential velocity of the fluid is the highest. High temporal resolution 

llows for the observation of the oscillation of the global Sherwood 

umber evolution, at a period determined by the circulation time 

 cir , and makes it possible to show that an unsteady regime takes 

lace during which the different local transfer processes develop. 

hey are namely the fast convective processes along both the chan- 

el axis and the dividing streamline, diffusion across the boundary 

ayers around the bubble caps and in the lubrication film, and a 

ass exchange process from the film along the wall towards the 

lug core region. During this transient period, the Sherwood num- 

er decreases over time before reaching a constant value Sh ∞ 

. The 

umber of circulations required to reach this steady regime in- 

reases with Pe . Afterwards, the average concentration in the liquid 

hase grows based on a exp (−k l a t) function, in agreement with 

he models which assume a perfectly mixed liquid phase: such a 

unction with constant mass transfer coefficient is therefore suit- 

ble for describing the long-time evolution of the liquid concen- 

ration. 

In the steady regime, in the film zone of the bubble interface, 

he transfer flux follows an evolution Sh b f ∼ Pe 1 / 2 
f ilm 

provided Pe f ilm 

s greater than 1, as predicted analytically by a balance between 

xial convection and radial diffusion. The excellent agreement of 

his analytical model with the simulation results allows being con- 

dent to use it to predict an accurate value for the transfer coeffi- 

ient across the interface in contact with the lubrication film. 

After being enriched by contact with the bubble surface, the 

iquid film continues flowing along the wall (in the bubble frame) 

nd mainly discharges the solute into the core of the slug, at a 

ate Sh exch which increases with the Péclet number Pe ds . However, 

he increase of this transfer rate becomes smaller at Pe ds greater 

han 1,0 0 0. This exchange flux contributes to enrich the outer- 

ost streamline of the slug core region, in addition to the trans- 

er flux coming from the two bubble caps. The latter is quanti- 

ed by Sh bs , and evolves as ∼ Pe 1 / 2 only at moderate Péclet num- 

ers ( Pe < 100 ), contrary to what is generally assumed in the mod-

ls which use correlations for mass transfer around a freely rising 

ubble to characterise mass transfer around the bubble caps. The 

imulations performed here prove that at large Pe , Sh bs increases 

lower than a Pe 1 / 2 evolution: this is characteristic of a mass trans- 

er process in a region of closed streamlines, completely different 

rom transfer towards an unbounded region. 

Such local characterisations of the local transfer processes in 

aylor flows have never been reported or verified in previous stud- 

es, and will be useful for local models of mass transfer distin- 

uishing the contribution from the different zones. 

As the different Taylor flows investigated here show common 

eatures on the local mass transfer dynamics, a common correla- 

ion to predict the global Sh ∞ 

has been proposed, eq. 26 , which 

athers all the numerical results. This correlation gives Sh ∞ 

as an 

ncreasing function of both a Péclet number Pe R , based on the rel- 

tive slip velocity, and of the volume fraction of the liquid phase 

n the unit cell. The scaling law covers two orders of magnitude of 

e R (until 100), and involves several hydrodynamic and geomet- 

ical parameters. Then, it constitutes a reference for a compari- 

on with experimental Sherwood numbers from Butler et al. [1] , 

t cases of higher Péclet numbers ( Pe R ≥ 2 , 0 0 0 ). Such a compar-

son is challenging because of the completely different values of 

hysical parameters involved ( Pe R , Reynolds and Weber numbers, 

eometrical ratios), the possible influence of residual impurities in 

xperiments and different initial conditions for the hydrodynam- 

cs and the mass transfer (than in the simulations) as injection ef- 

ects are present in the experiments and create particular concen- 

ration patterns at the contact point between the gas and liquid 

hase. Thanks to simulations initialised with experimental concen- 

ration fields, it has been possible to show that initial conditions 

o not modify the long-term transfer dynamics measured by Sh ∞ 

, 
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Fig. A1. Validation case - Mass transfer around a spherical bubble in the pure dif- 

fusion regime. Comparison of the simulation profiles (symbols) to the analytical so- 

lution eq. 28 (continuous lines) at four different times, expressed as a function of

the diffusive time t di f f = d 2 /D . 
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hich is therefore a robust parameter for a comparison, provided 

he time t ∞ 

required to reach the steady regime of mass transfer 

s reached. Considering the experimental cases at the lowest Pe R 
here the latter condition is probably satisfied, the experimental 

alues of Sh ∞ 

are close to the predictions by the numerical corre- 

ation and tend to show that Sh ∞ 

could increase at a smaller rate 

han a 
√ 

Pe R evolution at Pe R > 100 . Such a conclusion should be 

onfirmed in further works. 

This study constitutes an example of the strong complemen- 

arity between numerical and experimental studies, permitting a 

etailed understanding of the transfer mechanisms (mass or heat 

ransfer) involved within a train of Taylor bubbles. 
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ppendix A 

This appendix presents two validation cases on the problem of 

ass transfer around (i) a static bubble and (ii) a rising bubble in 

 large range of Péclet numbers Pe b . 

ass transfer in the pure diffusive regime 

A static spherical bubble of radius R is considered, which is 

ssumed to have uniform concentration, the interface being at a 

oncentration C(r = R, t) = C ∗ and the external liquid (at rest) at a

oncentration C(r → ∞ , t) = C i = 0 at an infinite distance from the

ubble. The transient mass transfer process, only due to diffusion, 

s solved in the liquid phase, starting from zero concentration at 

nitial time in the liquid phase ( C(r, 0) = C i = 0 for r > R ). The ra-

ial concentration profile at several time instants can then be com- 

ared with the analytical solution of the problem [54] , given by 

(r, t) = C ∗ − 1

r 

C ∗ − C i 

2 

√ 

πDt 

∫ ∞ 

0 

(R + ξ
′ 
) 

{
exp 

[
− (ξ − ξ

′ 
) 2 

4 Dt 

]
− exp

[
− (ξ + ξ

′ 
) 2 

4 Dt 

]}
dξ

′ 
(28) 

here ξ = r − R . As can be clearly seen in fig. A.19 , there is excel-

ent agreement between the numerical and analytical solution for 

ll times, for this purely diffusive case. 

ass transfer around a rising bubble 

The mass transfer around a spherical bubble rising in an ex- 

ernal liquid at rest is considered, for a Reynolds number of 20, 

or a sufficiently low Bond number so there is no deformation of 

he interface, and for varying Schmidt numbers, leading to a large 

ange of Péclet numbers Pe b = 

u b d 

D . Hydrodynamics are solved un- 

il steady state for the rising motion; then, based on this converged 

elocity field, the transient mass transfer process is simulated with 

he same boundary and initial conditions as in the previous vali- 

ation case. Simulations are axisymmetric and performed on dif- 

erent grids from 10 to 240 nodes per bubble radius. 

Physical values of the different properties used for the simula- 

ion can be found in the caption of Table 5 . Based on the value
f the drag coefficient from the boundary-fitted simulations of 

liver and Chung [55] , the Reynolds number at steady state should 

e equal to Re b = 20 in an unconfined media. The comparison of 

esults of terminal velocity presented in Table 5 show excellent 

greement, with a discrepancy of only -3%, as well as demonstrat- 

ng clear mesh convergence. This small discrepancy is attributed to 

he slight confinement imposed by the size of the simulation box, 

hich is of (8 R, 16 R ) . Hydrodynamics around the bubble is then

onsidered to be well computed by the code. 

For the mass transfer simulations, the Sherwood number de- 

ned by 

h ∞ 

= 

−   

b ∇C. n dS 

C ∗ S b 
d, (29) 

s calculated when it has reached a constant value. The latter 

s compared with the correlation proposed by Colombet et al. 

44] from boundary-fitted simulations, given by

h ∞ ,pred = 1 + 

[
1 + 

(
4 

3 π

)2 / 3

(2 P e max ) 
2 / 3 

]3 / 4

, (30) 

here Pe max = 

u max d 
D is based on the maximum tangential velocity 

t the interface, given by the relation proposed by Legendre [56] as 

 max = 

1

2 

16 + 3 . 315 Re 1 / 2 
b 

+ 3 Re b

16 + 3 . 315 Re 1 / 2 
b 

+ Re b

)
u b (31) 

he results are summarised in Table 5 for a large range of Péclet 

umbers. The mesh convergence of the results are clearly illus- 

rated, noting that achieving a lower discrepancy for Sh is more de- 

anding than for the hydrodynamics, at large Pe b . Indeed, it is ob- 

erved that when the mass transfer boundary layer is not resolved 

nough, the concentration gradient in the normal direction to the 

nterface, i.e the mass transfer flux, is underestimated, whereas the 

evel of error for the simulation falls drastically when the mesh 

esolution becomes sufficient. It can therefore be concluded that 

he meshes used for this benchmark allow for the accurate sim- 

lation of the mass transfer dynamics until Pe b = 10 , 0 0 0 with an

rror less than 3% , noting that the boundary layer is captured on 

our grid cells at its thinnest part at Pe b = 10 , 0 0 0 with a mesh

esolution of 240 nodes per bubble radius. 

ppendix B 

In Table 6 , the mesh sensitivity analysis carried out on the com- 

utation of the mass transfer rate in the considered Taylor flows 



Table 5

Validation case - Sherwood number in the steady regime around a spherical freely bubble rising for

Re b = 

ρl u b d 
μl 

= 20 , Bo = 

(ρl −ρg ) gd 2 

σ = 0 . 025 (theoretical prediction, eq. 30 ) and at different Pe b numbers. 

Six numerical grids are used. Physical parameters: d = 39.1 μm, ρl = 1 , 0 0 0 kg/m 

3 
, μl = 0.00113 Pa.s, 

ρg = 1 . 226 kg/m 

3
, μg = 1 . 78 × 10 −5 Pa.s, g = −9 , 144 . 4 m/s 

2
, σ = 0 . 56 N/m, D is varied from 2.3 ×10 −9 

to 1.1 ×10 −7 m 

2 / s so as to produce different Péclet numbers. 

Number of mesh points per radius 10 20 40 80 120 240

Discrepancy on Re b 1.4% -0.6% -4.5% -3.9% -3.2% -3.0%

Discrepancy on Sh ∞ at Pe b = 200 -49.4% -8.86% 1.2% 0.5% -0.3% -0.1%

Discrepancy on Sh ∞ at Pe b = 1 , 0 0 0 - 53.2% -18.7% 2.3% 3.5% 1.4%

Discrepancy on Sh ∞ at Pe b = 2 , 0 0 0 -72.6% -37.2% -4.7% 2.4% 1.3%

Discrepancy on Sh ∞ at Pe b = 5 , 0 0 0 -24.2% 0.6% - 0.1%

Discrepancy on Sh ∞ at Pe b = 10 , 0 0 0 -42.8% -8.5% 3.3%

Table 6

Sensitivity of Sherwood number Sh ∞ obtained after simulations of cases A-E by us- 

ing different grids. �x is the characteristic mesh size around the interface.

Case A Mesh grid 337 × 780 457 × 1340 670 × 1850 

�x @ interface 5 μm 3.3 μm 2.2 μm

Pe = 84 - Sh ∞ = 16 . 3 Sh ∞ = 16 . 4 

Pe = 419 - Sh ∞ = 32 . 3 Sh ∞ = 33 . 4 

Pe = 838 Sh ∞ = 35 . 5 Sh ∞ = 38 . 0 Sh ∞ = 48 . 1 

Case B Mesh grid 256 × 1900 400 × 2100 600 × 3150 

�x @ interface 5.9 μm 3.8 μm 2.5 μm

Pe = 343 Sh ∞ = 22 . 5 Sh ∞ = 22 . 5 Sh ∞ = 22 . 1 

Pe = 686 - Sh ∞ = 28 . 2 Sh ∞ = 27 . 9 

Case C Mesh grid 74 × 680 400 × 2100 

�x @ interface 24.9 μm 6.8 μm

Pe = 54 Sh ∞ = 5 . 4 Sh ∞ = 6 . 2 

Pe = 272 Sh ∞ = 11 . 5 Sh ∞ = 13 . 6 

Case D Mesh grid 190 × 1080 380 × 2200 

�x @ interface 8.1 μm 4.0 μm

Pe = 21 Sh ∞ = 6 . 5 Sh ∞ = 7 . 5 

Pe = 36 Sh ∞ = 8 . 7 Sh ∞ = 10 . 5 

Pe = 71 Sh ∞ = 12 . 1 Sh ∞ = 14 . 9 

Case E Mesh grid 80 × 528 160 × 1056 

�x @ interface 3.1 μm 1.6 μm

Pe = 49 Sh ∞ = 6 . 9 Sh ∞ = 7 . 0 

Pe = 81 Sh ∞ = 8 . 8 Sh ∞ = 9 . 0 

Pe = 122 Sh ∞ = 10 . 6 Sh ∞ = 10 . 9 
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f Table 2 is detailed, for cases A-E. It can be seen that, in the

ange of investigated Péclet numbers, the Sh ∞ 

values are very close 

hen increasing the level of refinement of the grid, thus validat- 

ng the reliability of the results for the physical analysis presented 

n Section 4 . Such tests allows for determining the highest Péclet 

umber condition for mass transfer which can accurately be simu- 

ated on a given mesh. 
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